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with a new generation of larger, faster ferries (some with speeds over ro knots) due to
enter service shortly. Alongside the proposed changes there is also a need for electronics
manufacturers to address the particular needs of the fast-ferry industry in order to
enhance the electronic navigation capabilities of fast ferries.
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Reduction to Final Speed: A Simple Formula

Adrian Burnett

In a recent issue of the Journal1 Captain Fales discusses the question of achieving an
accurate arrival time concomitant with fuel economy. He proposes a method of
monitoring permutations of speed by the setting up of simultaneous equations. Whilst
agreeing with him, I believe the following alternative presentation of the problem makes
the computation more intuitively appealing, and considerably more accessible and
therefore useful to the average operator.

Firstly, the question of differentials in operating speeds extends beyond simple fuel
economy to include ships with combination propulsion systems, typically warships. The
considerate navigator of such a ship will co-operate with his engineer to plan passages
in such a way that life cycles of gas turbines, as well as fuel economy, are taken into
account. Even a short passage can present an alarming combination of possibilities;
therefore the simpler the sums, the more satisfactory the result. Although graphing this
sort of problem is useful, the results are never accurate enough, and they have to be re-
worked by another method to achieve precision.

Warship navigators also face another problem unknown to the merchant navigator —
namely that of getting a large and varied group of ships through pilotage waters and into
harbour in some degree of order. Although the mathematics of this are identical to that
of the single ship, the activity level involved in managing a formed body of ships is high,
and the consequences of a mistake are embarrassing and public, especially when
'showing the flag' abroad. Again therefore, the most blunder-proof possible approach
is indicated.

Simple though simultaneous equations may be at the classroom desk, they change from
Jekyll into Hyde when the navigator is trying to write night orders for the formation
commander at 2200 on a busy bridge. Is x the higher or lower speed? Shall I allow for
tidal stream and if so, where? How much slack do I want? These are all questions which
beset the navigator at a time of pressure. The chances are that, once he has got a result
by simultaneous equations, he will not feel inclined to re-work the whole thing to check
it or, if he does, he will make the same mistake again. Even more importantly, the
humble Officer of the Watch, entrusted with overseeing the night orders which will
ensure successful arrival the next day, will be so put off by simultaneous equations that
he will evade conscientious checking and monitoring, and will rely on the navigator's
brilliance to carry things through. This belief in the navigator's infallibility usually
presages a disaster of far-reaching proportions. However, given the simple formula
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below, cross-checks and re-works are easy, and even the mathematical rabbits will
produce successful and painless arrivals.

The formula is derived from one in air navigation, designed to tell the aviator when
it is time to turn round and go home. However, it has just as much use for the marine
navigator. It is:

D-HT

where: t = the elapsed time from when the calculation is done to when the
reduction to terminal speed is ordered

D = distance in nautical miles from calculation point to final arrival point
T = time in hours from time of calculation to required ETA
0 = present speed ordered
H = second, lower speed; that is, terminal speed.

Let us take an example. At 2030 the navigator is assessing what speed changes are
required prior to his making the pilotage ground at 0900 the next morning. He wishes
to finish the passage at 1 o knots, this speed allowing economical running and safe working
conditions on the upper deck. At the moment he has 18 knots rung on. Referring to
chart or navigation system, he sees that he has 192 nautical miles to run from 2100 to
his arrival point. Substituting these values into the formula gives:

i 9 2 - ( i o x 12)

( 1 8 - 1 0 )

t = 9 .

This means that at 2100 + 9 hours — that is, 0600 — he can reduce speed to 10 knots.
Not only is this formula more blunder-resistant than the simultaneous equations of

Captain Fales, it also allows easy and intuitive refinement. For example, the net effect
of current and tidal stream is 3 miles advantageous, so D is reduced by 3 nautical miles.
The navigator, ever cautious, wants to keep half an hour in hand, so T = (12 — o-g). Those
with real class will also allow for the time of gaining and losing speed: for example, a
heavy unit may carry its way for 10 minutes after reducing speed, allowed for by
reducing T by an equivalent amount. For the perverse navigator who wants to go slowly
now and arrive at high speed, the formula is equally applicable.

The navigator can thus present this solution with the confidence that he has
sidestepped blunder country, and can go to bed secure in the knowledge that the formula
is simple enough for the overnight OOWs to check at frequent intervals, thus ensuring
a painless and economical arrival. Almost total blunder-proofing can be applied by
calculating the critical distance D in different ways; for example, one working can be
done using D obtained from a nav system waypoint chain, and another check calculation
can use D obtained from a small-scale planning chart or the distances to go marked on
the bridge charts. It is easy to judge whether a difference in answers is due to the ' slop'
involved in manual chartwork, or whether a blunder has invited itself in.

Should there be a mismatch between bridge time and the time kept at the destination,
the scope for mischief is reduced because all times are elapsed bridge times, other than
the first calculation of total time available.

Success is therefore 99 percent certain, and the navigator need no longer shuffle
around with compasses and furthest-on circles, knowing that he is in blunder country
and will in any case get a less precise solution.
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' Navigation with km and gon'

K. K. White

In an article published in the September 1991 edition of this Journal,1 S. Stubert put
forward an interesting and informative case in support of the universal adoption of the
gon (grade) for the measurement of angle and arc in navigation. However, while the gon
is a decimal unit, and while it may be said that in general the introduction of simpler
decimal measurements into navigation should be beneficial, this would only be the case
if the gon system were the best possible. I am unable to agree that it is, for the four main
reasons which follow.

First, the gon system does not meet the criteria for good decimal measurement which
were outlined in an article entitled ' A decimal system of navigation' which was published
in the May 1986 edition of Navigation News. Of particular note is the view that a good
decimal system for measuring any kind of quantity should be based on one unit only and
not on three as in the gon system, namely the circle, the right angle and the gon. Also,
it may be noted that the division of the gon into a hundred parts or centigons does not
conform with the preference of the International Metric System (SI) for decimal
submultiples with prefixes such as milli- and micro- and not for submultiples prefixed
by centi-, except in special circumstances.

Secondly, it would seem to be wrong to even consider the suitability of a decimal
system for measuring angle and arc for the purposes of navigation without at the same
time considering the suitability of a complementary system of measuring time, because
the measurement of angle, arc and time are all closely related in navigation. It would
appear from Stubert's article that the gon system lacks a complementary decimal time-
measuring system, and it is doubtful that one developed on similar lines to the gon
involving a division of the day into quarters, followed by a division of each quarter-day
into decimal fractions, would find general acceptance.

Thirdly, what is considered to be a better decimal system for measuring angle and arc
has been developed and described in the article in Navigation News mentioned above. It
is based on the circle itself, which is divided into decimal submultiples which are
convenient and which conform with SI preferences such as the millicircle and
microcircle. This is complemented by a decimal system of measuring time based on the
day, which is likewise divided into convenient and preferred SI decimal submultiples
such as the milliday and microday. This simple and coherent decimal system of measuring
time, angle and arc, which has been called for brevity the 'decimal-day-circle' or DDC
system offers, in theory at least, a superior measuring system to any other which is based
purely on the decimalization of some non-decimal portion of a circle, like the gon or
the degree, and lacks a complementary and coherent decimal time-measuring system.
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