A note on generalised linear complementarity problems

J. Parida and B. Sahoo

Given an $n \times n$ matrix A, an n-dimensional vector q, and a closed, convex cone S of k^{n}, the generalized linear complementarity problem considered here is the following: find a $z \in R^{n}$ such that

$$
\begin{gathered}
A z-q \in S^{*}, z \in S \\
\langle A z-q, z\rangle=0,
\end{gathered}
$$

where S^{*} is the polar cone of S. The existence of a solution to this problem for arbitrary vector q has been established both analytically and constructively for several classes of matrices A. In this note, a new class of matrices, denoted by J, is introduced. A is a J-matrix if

$$
A z \in S^{*}, \quad z^{T} A z \leq 0, \quad z \in S \text { imply that } z=0
$$

The new class can be seen to be broader than previously studied classes. We analytically show that for any A in this class, a solution to the above problem exists for arbitrary vector q. This is achieved by using a result on variational inequalities.

1. Introduction

The generalized linear complementarity problem is to find a $z \in R^{n}$ satisfying

Received 11 November 1977.

$$
\begin{gather*}
A z-q \in S^{*}, \quad z \in S \tag{1.1}\\
(A z-q, z)=0
\end{gather*}
$$

where A is a given $n \times n$ matrix, q is a given n-dimensional vector, S is a closed, convex cone in R^{n}, and S^{*} is the polar cone of S.

For $S=R_{+}^{n}$, the complementarity problem (1.1) has been extensively studied in the literature. The existence of a unique solution to this problem has been shown by Dantzig, Cottle [2] for P-matrices, which include all the previously studied matrices for which there is a unique solution. Karamardian [7] has solved this problem for the class of regular matrices, and thus has enlarged the class of matrices each of which guarantees a solution (but not necessarily unique).

Habetler and Price [4] have shown that the problem (1.1) has a solution when S is a pointed, closed, convex cone with nonempty interior, A is a strictly S-copositive matrix, and either
(i) $q \in \operatorname{int} S^{*}$ ur
(ii) $S \subset S^{*}$.

Karamardian [6] has generalized this result, and shown that strict S-copositiveness of A is sufficient to ensure the existence of a solution to (1.1). In [9], the authors have shown that the linear complementarity problem defined over polyhedral cones in a complex n-space possesses a solution when A is a strictly S-copositive complex matrix.

In this note, we define a new class J of matrices A such that: if $A \in J$, then

$$
A z \in S^{*}, z^{T} A z \leq 0, z \in S \text { imply that } z=0
$$

The classes of P - and regular matrices become proper subclasses of this class when S is taken as R_{+}^{n}. It is also found that the class J includes the class of strictly S-copositive matrices, and thus becomes a broader class than previously studied ones.

We show that if $A \in J$ and there exists a vector $p \in$ int S^{*} such that the system $0 \neq z \in S, A z+p \in S^{*}, z^{T}(A z+p)=0$ is not consistent, then (1.1) possesses a solution for every vector $q \in R^{n}$.

2. Notations and definitions

Throughout this note, R^{n} will denote euclidean n-space with the usual inner product $\langle x, y\rangle=y^{T} x$ of $x, y \in R^{n}$ and norm $\|x\|$ of $x \in R^{n} . R_{+}^{n}$ denotes the nonnegative orthant of R^{n}. A subset S of R^{n} will be called a closed, convex cone if, and only if,
(i) S is closed, and
(ii) $\alpha x+\beta y \in S$ for $\alpha, \beta \geq 0$ and $x, y \in S$.

The polar of a cone S is the cone S^{*} defined by

$$
S^{*}=\left\{x \in R^{n}:\langle x, y\rangle \geq 0 \text { for all } y \in S\right\}
$$

The interior of S^{*} is given by

$$
\text { int } S^{*}=\left\{x \in S^{*}:\langle x, y\rangle>0 \text { for all } 0 \neq y \in S\right\}
$$

A cone is said to be pointed if whenever $x \neq 0$ is in the cone, $-x$ is not in the cone. For a closed, convex cone S, int S^{*} is nonempty if, and only if, S is pointed.

A square matrix A is a P-matrix if all its principal minors are positive.

For every $x \geq 0$, let $I_{+}(x)$ and $I_{0}(x)$ denote the set of indices corresponding to the positive and zero components of x; that is, $I_{+}(x)=\left\{i: x_{i}>0\right\}$ and $I_{0}(x)=\left\{i: x_{i}=0\right\}$. A square matrix A is said to be regular if the system

$$
\begin{gathered}
(A x)_{i}+t=0 \text { for } i \in I_{+}(x) \\
(A x)_{i}+t \geq 0 \text { for } i \in I_{0}(x), \\
0 \neq x \geq 0, \quad t \geq 0
\end{gathered}
$$

is inconsistent. Here $(A x)_{i}$ denotes the i th component of the vector $A x$.

A square matrix A is said to be strictly S-copositive if $x^{T} A x>0$ for all $0 \neq x \in S$.

3. Preliminary results

LEMMA 3.1. Let A be an $n \times n$ matrix, and let S be a closed, convex cone in R^{n}.
(a) If A is strictly S-copositive, then $A \in J$.
(b) If $S=R_{+}^{n}$, then A is in J whenever A is either
(i) a P-matrix or
(ii) a regular matrix.

Proof. (a) It immediately follows from the definitions of J_{-}and S-copositive matrices given above.
(b) Let A be a P-matrix. The conclusion (b) for P-matrices follows from the following result of Fiedler and Pták [3]: if A is a P-matrix, then for each $0 \neq x \in R^{n}$, there is an index i for which $x_{i}(A x)_{i}>0$.

To prove the second part of (b), we observe that when $S=R_{+}^{n}$, the system $x \in S, A x \in S^{*}, x^{T} A x \leq 0$, reduces to $x \geq 0, A x \geq 0$, $x^{T} A x \leq 0$, the consistency of which implies that $x_{i}(A x)_{i}=0$ for $1 \leq i \leq n$. If $x \neq 0$, we will have $(A x)_{i}=0$ for $i \in I_{+}(x)$ and $(A x)_{i} \geq 0$ for $i \in I_{0}(x)$, which is a contradiction to the regularity of A.

REMARK 3.2. It is interesting to note that the class of regular matrices is properly included in J. For example, the matrix $\left(\begin{array}{ll}-2 & 2 \\ -1 & 2\end{array}\right)$ is a J-matrix, but not regular.

LEMMA 3.3. Let C be a closed, convex cone in R^{n} with nonempty interior, $d \in R^{n}$, and let $x \in$ int C. Then there is $a \lambda_{0}>0$ such that $\lambda x+d \in C$ for every $\lambda \geq \lambda_{0}$.

Proof. Since $x \in$ int C, there is a $\delta>0$ such that $u \in C$ whenever $\|u-x\| \leq \delta$. Consider the vector $\omega=x+d / \mu$ for some $\mu>0$. Now
$\|\omega-x\|=\|d\| / \mu \leq \delta$ if $\mu \geq\|d\| / \delta$. Taking $\lambda_{0}=\|d\| / \delta$, we see that $x+d / \lambda \in C$ for every $\lambda \geq \lambda_{0}$. Since C is a cone, $\lambda x+d=\lambda(x+(d / \lambda))$ will be in C for all $\lambda \geq \lambda_{0}$.

LEMMA 3.4. Let C be a closed, convex cone in R^{n} with nonempty interior, $d \in C$, and let $x \in \operatorname{int} C$. Then $x+d \in \operatorname{int} C$.

Proof. If $x, d \in C$, then $x+d \in C$ because C is a convex cone. Further, if $0 \neq y \in C^{*}$, then we have $\left.\langle d, y\rangle \geq 0,\langle x, y\rangle\right\rangle 0$, and hence $\langle x+d, y\rangle\rangle 0$, from which it follows that $(x+d)$ is in int C.

We shall make use of the following results.
LEMMA 3.5 [4, Lemma 5.1, p. 227]. Let S be a pointed, closed, convex cone in R^{n}, and let $p \in \operatorname{int} S^{*}$. Then the set

$$
V=\{x: x \in S,\langle p, x\rangle=1\}
$$

is bounded.
THEOREM 3.6. If $F: R^{n} \rightarrow R^{n}$ is a contiruous mapping on the nonempty, compact, convex set C in R^{n}, then there is an x^{0} in C such that

$$
\left\langle F\left(x^{0}\right), x-x^{0}\right\rangle \geq 0 \text { for all } x \in C
$$

REMARK 3.7. Theorem 3.6 was first stated and proved in [5]. A complex version of this result has been used by the present authors to obtain some existence theorems for nonlinear complementarity problems in complex space [8].

4. Solvability of the complementarity problem

THEOREM 4.1. Let S be a pointed, closed, convex cone in R^{n}. If $A \in J$ and there exists a vector $p \in$ int S^{*} such that the system $0 \not \equiv z \in S, A z+p \in S^{*}, z^{T}(A z+p)=0$ is not consistent, then for each $q \in R^{n}$ there is a vector z^{0} satisfying $A z-q \in S^{*}, z \in S$.

Proof. Consider the set $V=\{z: z \in S,(p, z)=1\}$. It is clear that V is a closed, convex set, and by Lemma 3.5, it is also bounded. Thus V is a nonempty, compact, convex set in R^{n}. Now applying Theorem
3.6, we get a point \bar{z} in V such that

$$
\begin{equation*}
\langle A \bar{z}, z-\bar{z}\rangle \geq 0 \text { for all } z \in V \text {. } \tag{4.1}
\end{equation*}
$$

It follows from (4.1) that

$$
\langle A \bar{z}, \bar{z}\rangle=\min _{z \in V}\langle A \bar{z}, z\rangle,
$$

and therefore, the following set of necessary conditions [1] is satisfied:

$$
\begin{align*}
& A \bar{z}+\eta p \in S^{*},\langle A \bar{z}+n p, \bar{z}\rangle=0, \tag{4.2}\\
& \bar{z} \in S,\langle p, \bar{z}\rangle=1, \eta \in R .
\end{align*}
$$

Obviously $\bar{z} \neq 0$. Now the consistency of (4.2) for a vector $0 \neq \bar{z} \in S$ and $\eta \geq 0$ will contradict the assumptions made in the statement of the theorem. So $\eta<0$, and thus we have a $0 \neq y=\bar{z} / \eta \in S$ satisfying Ay $-p \in S^{*}$. Since $p \in$ int S^{*}, it follows from Lemma 3.4 that $A y \in \operatorname{int} S^{*}$. Now, for any given vector $q \in R^{n}$, Lemma 3.3 will determine a $\lambda>0$ such that $\lambda(A y)-q \in S^{*}$. Since S is a cone, $\lambda y \in S$. The proof of the theorem is then completed by writing $z^{0}=\lambda y$.

Now we give the following existence theorem.
THEOREM 4.2. Let S be a pointed, closed, convex cone in R^{n}, and let p be a vector in int S^{*} such that the system $0 \neq z \in S$, $A z+p \in S^{*}, \quad z^{T}(A z+p)=0$ is inconsistent. Then there is a solution to (1.1) for each $q \in R^{n}$ if A is a J-matrix.

Proof. Consider the function

$$
F(z, t)=\left[\begin{array}{c}
A z+t(p-q) \\
t
\end{array}\right]
$$

defined over the set

$$
C=\{(z, t): z \in S, t \geq 0,\langle p, z\rangle+t=1\} .
$$

From Lemma 3.5, it is clear that C is a nonempty, compact, convex set in R^{n+1}. It is also evident that $F(z, t)$ and C satisfy the conditions of Theorem 3.6, and hence, there exists a point (\bar{z}, \bar{t}) in C such that

$$
(A \bar{z}+\bar{t}(p-q), z-\bar{z})+\bar{t}(t-\bar{t}) \geq 0 \text { for all }(z, t) \in C .
$$

But this means that

$$
\langle A \bar{z}+\bar{t}(p-q), \bar{z}\rangle+\bar{t} \cdot \bar{t}=\min _{(z, t) \in C}(\langle A \bar{z}+\bar{t}(p-q), z\rangle+\bar{t} \cdot t) .
$$

Now using the Kuhn-Tucker necessary conditions of optimality [1] for cone domains, we have a ζ_{0} in R such that

$$
\begin{align*}
& A \bar{z}+\bar{t}(p-q)+\zeta_{0} p \in S^{*}, \quad \bar{t}+\zeta_{0} \geq 0, \\
& \left\langle A \bar{z}+\bar{t}(p-q)+\zeta_{0} p, \bar{z}\right\rangle=0, \bar{t}\left(\bar{t}+\zeta_{0}\right)=0 \tag{4.3}\\
& \bar{z} \in S, \quad \bar{t} \geq 0,\langle p, \bar{z}\rangle+\bar{t}=1 .
\end{align*}
$$

Suppose that $\bar{t}=0$. Since $\langle p, \bar{z}\rangle+\bar{t}=1$ and $p \in$ int $S^{*}, \bar{z} \neq 0$. If this is the case, then (4.3) will imply that the system

$$
\begin{aligned}
& 0 \neq \bar{z} \in S, A \bar{z}+\zeta_{0} p \in S^{*}, \\
& \left\langle A \bar{z}+\zeta_{0} p, \bar{z}\right\rangle=0, \zeta_{0} \geq 0,
\end{aligned}
$$

is consistent. When $\zeta_{0}=0$, the consistency of (4.4) will contradict the assumption that A is a J-matrix. Further, when $\zeta_{0}>0$, (4.4) will yield a nonzero vector $\bar{y}=\bar{z} / \zeta_{0} \in S$ satisfying $A \bar{y}+p \in S^{*}$,
$\bar{y}^{T}(A \bar{y}+p)=0$, again a contradiction. Hence, $\bar{t}>0$, and since $\bar{t}\left(\bar{t}+\zeta_{0}\right)=0$, therefore, we have $\bar{t}+\zeta_{0}=0$. Now substituting $\zeta_{0}=-\bar{t}$ in (4.3), and then dividing throughout the resulting relations by \bar{t}, we get the desired solution.

REMARK 4.3. We do not require any other assumption for the cone S, except that it is to be pointed in the statement of Theorem 4.2. But for q, we impose the restriction that when $-q=p \in$ int S^{*}, there is no nonzero solution to (1.1). FFor this value of q, zero is obviously a solution. This restriction is automatically satisfied when A is strictly S-copositive, whereas if A is a regular matrix and $S=R_{+}^{n}$, (1.1) has no nonzero solution for the vector $-q=e t, t \geq 0$, with $e^{T}=(1,1, \ldots, 1)$.

References

[1] M.S. Bazaraa and J.J. Goode, "Necessary optimality criteria in mathematical programming in the presence of differentiability", J. Math. Anal. Appl. 40 (1972), 609-621.
[2] G.B. Dantzig, R.W. Cottle, "Positive (semi-)definite programming", Nonlinear progromming, 55-73 (North-Holland, Amsterdam; Interscience [John Wiley \& Sons], New York; 1967).
[3] Miroslav Fiedler and Vlastimil Pták, "On matrices with non-positive off-diagonal elements and positive principal minors", Czechoslavak Math. J. 12 (1962), 382-400.
[4] G.J. Habetler and A.L. Price, "Existence theory for generalized nonlinear complementarity problems", J. Optimization Theory Appl. 7 (1971), 223-239.
[5] Philip Hartman and Guido Stampacchia, "On some non-linear elliptic differential-functional equations", Acta Math. 115 (1966), 271-310.
[6] S. Karamardian, "Generalized complementarity problem", J. Optimization Theory App 2.8 (1971), 161-168.
[7] S. Karamardian, "The complementarity problem", Math. Programming 2 (1972), 107-129.
[8] J. Parida and B. Sahoo, "On the complex nonlinear complementarity problem", Bull. Austral. Math. Soc. 14 (1976), 129-136.
[9] J. Parida and B. Sahoo, "Existence theory for the complex nonlinear complementarity problem", Bull. Austral. Math. Soc. 14 (1976), 417-423.

Department of Mathematics, Regional Engineering College,
Rourkela, Orissa,
India.

