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Abstract. Upcoming large-scale spectroscopic surveys such as WEAVE and 4AMOST will provide
thousands of spectra of massive stars, which need to be analysed in an efficient and homogeneous
way. Studies on massive stars are usually based on samples of a few hundred objects which pushes
current spectroscopic analysis tools to their limits because visual inspection is necessary to verify
the spectroscopic fit.

The novel spectroscopic analysis pipeline takes advantage of the statistics that large samples
provide, and determines the model error to account for imperfections in stellar atmosphere codes
due to simplified, wrong or missing physics. Considering observational plus model uncertainties
improve spectroscopic fits. The pipeline utilises the entire spectrum rather than selected diagnos-
tic lines allowing a wider range of temperature from B to early O stars to be analysed. A small
fraction of stars like peculiar, contaminated or spectroscopic binaries require visual inspection,
which are identified through their larger uncertainties.

Keywords. methods: data analysis, stars: early-type, stars: massive, stars: fundamental
parameters, stars: abundances

1. Introduction

Historically and still today, the most common way to analyse massive stars is by “eye”,
which limits the sample size to 10s of stars. This means that stellar parameters as well
as uncertainties are estimated rather than determined. Sample of a couple of hundreds
of stars are usually analysed with a y2-minimisation algorithm. Multi-dimensional prob-
ability distribution functions are obtained depending on the number of free parameters
and uncertainties are then defined on confidence intervals rather than Gaussian standard
deviations (Fig. 1). Those uncertainties can be highly asymmetric and very large in the
case of degenerated parameters. In the massive star community there are 2 main flavours
of x?-minimisation algorithms, grid based (e.g. Simén-Diaz et al. (2011); Castro et al.
(2012); Bestenlehner et al. (2014)) and Generic Algorithm on the basis of natural selec-
tion (e.g. Mokiem et al. (2007); Brands et al. (2022)). All those pipelines use a pre-defined
selection of spectral lines for their analysis.

However, the drawback of the y2-method is that parameter estimates can be strongly
distorted by minimizing differences between synthetic spectra and real observations. This
requires human verification of the spectroscopic fit, which is not feasible for large samples
in excess of a couple of hundreds stars. In addition, synthetic spectra based on stellar
atmosphere models are imperfect due to missing or simplified physics, insufficient atomic
data, and so forth. Therefore, model uncertainties should also be budgeted into the
parameter determination.
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Figure 1. Probability heat map of surface gravity vs. effective temperature. Contours
indicate confidence intervals of 68%, 95% and 99.7%.

2. Method

The pipeline presented here is a grid-based y?-minimisation algorithm, but uses infor-
mation of the entire available spectral range instead of specific spectral lines. The
observational error spectrum is included into the error matrix N and the x? has the
following form

\*=(d—R$)"™N"'(d - R3) (1)

with data d_: observed spectra, response matrix R and idealised synthetic model spec-
trum §. Synthetic spectra are de-idealised by asking the reverse question: for a given
model spectrum s, which data d can reproduce the model. This is implemented by substi-
tuting § with /P! 4+ @. ¢! is the idealised model spectrum defined by stellar parameters p
and additional error term 4. The model error of a single star does not contain much infor-
mation, but should be determined utilising the statistic a large sample of homogeneously
observed stars provides.

To test and verify the methodology we used the VLT /MUSE observation of ~ 250 OB
stars from Castro et al. (2018). The VLT /MUSE data cover the wavelength range between
4600 to 9300 A at spectral resolution of 2000 to 4000. The spectrum normalisation is
fully automated simulating the work-flow of the analysis of a large dataset.

The grid of synthetic spectra was computed with the non-LTE stellar atmosphere
and radiative transfer code FASTWIND (Santolaya-Rey et al. (1997); Puls et al. (2005);
Rivero Gonzalez et al. (2011)). The VLT /MUSE data cover a less used wavelength range
for hot star and we extended the line list to longer wavelength (~ 10000 A) beyond
the tested range of FASTWIND (4000 to 7000 A). Around 150000 stellar atmosphere
models were computed with varying stellar parameters and chemical composition of He
and CNO. Of those models ~20% did not converged properly and were removed. Still
the number was too large to individually check all stellar models and we trust that the
majority of those remaining are okay.

3. Results

The following parameters were derived: effective temperature T, surface gravity log g,
helium composition Y and estimates on mass-loss rate M and CN chemical abundances.
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Figure 2. Spectroscopic fit of an early Of supergiant (left) and a early-mid B dwarf (right).
Blue solid line is the observation, red solid line the synthetic spectrum and the grey shaded area
is the square-root of the diagonal elements of the covariant-matrix calculated by the pipeline.
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Figure 3. Effective temperatures (left) and surface gravities (right) determined by the
pipeline vs. the results from Castro et al. (2021).

Figure 2 shows the spectroscopic fit of an Of supergiant and a B dwarf with ATus ~
25000 K and Alog M > 2.5 dex. This highlights that stars covering of large spectral type
range can be successfully and reliably analysed with a single pipeline set up at the same
time. However, issues occur for low signal to noise spectra (S/N <10 to 15) and spectra
with strong nebular lines.

In Fig. 3 we compare our results with the ones of Castro et al. (2021) which is based
on the ionisation balance of selected Hel and Hell and the wings of Hg. In contrast, we
used all H, He plus CNO, Si and Mg metal lines available in the VLT /MUSE wavelength
range. In general there is a good agreement for the effective temperature, but the pipeline
predicted in correct temperatures for spectra with strong nebular contaminations. The
picture is inconclusive for the surface gravity. Even though we also utilised the Paschen
lines, log g is basically unconstrained in both studies.

The Hertzprung-Russell diagram (HRD, Fig. 4) shows that as expected most stars are
populated near and to the cool side of the zero-age main-sequence (ZAMS). There are a
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Figure 4. Hertzsprung-Russell diagram of the analysed stars using the VLT /MUSE data from
Castro et al. (2018). Thin black lines are stellar evolutionary tracks by Brott et al. (2011) and
Kohler et al. (2015).
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Figure 5. Probability density functions of ages.

couple of exceptions but their uncertainties do not exclude a cooler location in agreement
with the majority of the sources. This can be improved by including a meaningful prior
into the analysis, e.g. based on evolutionary tracks, and could increase the accuracy of the
results, as we used only a flat prior. For example, only hydrogen deficient stars are found
to be on the hot side of the ZAMS. A prior would give the star a higher probability to be
found either on the hot or cool side of the ZAMS depending on its helium composition.

This can be done as part of the analysis or in the post-processing, e.g. with BONNSAT
(Schneider et al. (2014)), when determining stellar masses and ages for our sample.
Figure 5 shows the age probability density of our sample based on ages calculated
with BONNSAI on the bases of the stellar evolutionary tracks of Brott et al. (2011)
and Kohler et al. (2015). The probability density is comparable to the findings of
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Schneider et al. (2018), but features are smoother and less prominent as a result of
the overall larger uncertainties. However, taking into account that our analysis was com-
pleted in less then 2 weeks while the study of Schneider et al. (2018) was based on 4 PhD
theses with a combined effort of more than 10 years.

4. Conclusion

With advent of large spectroscopic surveys such as WEAVET and 4MOST$ 10000s of
massive stars are going to be observed and need to be analysed. We will require fully
automated spectroscopic analysis tools which reduce the human interaction to a minimum
to cope with the amount of data. The pipeline presented here analyses ~ 250 stars in less
than half a day. Overall the quality of the spectroscopic fits is good, but around 15% of
the stars need additional attention as a result of strong nebular contamination, low S/N;,
multiplicity et cetera. Still this will provide more time for doing science rather than data
analysis.

Future developments will replace the y2-minimiser with machine learning approach
including observational and model errors. After training the neural network the analysis
process should be faster, less resource hungry and increasing the accuracy.

Acknowledgements

JMB is supported by the Science and Technology Facilities Council research grant
ST/V000853/1 (PI. V. Dhillon).

References

Bestenlehner, J. M., Gréafener, G., Vink, J. S.; Najarro, F., de Koter, A., Sana, H., Evans,
C. J., Crowther, P. A., Hénault-Brunet, V., Herrero, A., Langer, N., Schneider, F. R. N
Simén-Diaz, S., Taylor, W. D., Walborn, N. R. 2014, A&A, 570, A38

Brands, S. A., de Koter, A., Bestenlehner, J. M., Crowther, P. A., Sundqvist, J. O., Puls, J.,
Caballero-Nieves, S. M., Abdul-Masih, M., Driessen, F. A., Garcia, M., Geen, S., Grifener,
G., Hawcroft, C., Kaper, L., Keszthelyi, Z., Langer, N., Sana, H., Schneider, F. R. N
Shenar, T., Vink, J. S. 2022, A6 A accepted, arXiv:2202.11080

Brott, I., de Mink, S. E., Cantiello, M., Langer, N., de Koter, A., Evans, C. J., Hunter, I.,
Trundle, C., Vink, J. S. 2011, A&A, 530, A115

Castro, N., Urbaneja, M. A., Herrero, A., Garcia, M., Simén-Diaz, S., Bresolin, F., Pietrzynski,
G., Kudritzki, R. -P., Gieren, W. 2012, A&A, 542, A79

Castro, N., Crowther, P. A.| Evans, C. J., Mackey, J., Castro-Rodriguez, N., Vink, J. S., Melnick,
J., Selman, F. 2018, A¢A, 614, A147

Castro, N., Crowther, P. A., Evans, C. J., Vink, J. S., Puls, J., Herrero, A., Garcia, M., Selman,
F. J., Roth, M. M., Simén-Diaz, S. 2021, A&A, 648, A65

Kohler, K., Langer, N., de Koter, A., de Mink, S. E., Crowther, P. A., Evans, C. J., Gréfener,
G., Sana, H., Sanyal, D., Schneider, F. R. N., Vink, J. S. 2015, A&A, 573, AT1

Mokiem, M. R., de Koter, A., Puls, J., Herrero, A., Najarro, F., Villamariz, M. R. 2005, A&A,
441, 711

Puls, J., Urbaneja, M. A., Venero, R., Repolust, T., Springmann, U., Jokuthy, A., Mokiem,
M. R. 2005, A&A, 435, 669

Rivero Gonzélez, J. G., Puls, J., Najarro, F. 2011, A¢A, 536, A58

Santolaya-Rey, A. E., Puls, J., Herrero, A. 1997, A6 A, 323, 488

Schneider, F. R. N., Izzard, R. G., de Mink, S. E., Langer, N., Stolte, A., de Koter, A,
Gvaramadze, V. V., HuBmann, B., Liermann, A., Sana, H. 2014, ApJ, 780, 117

1 https://www.ing.iac.es/weave
1 https://www.4most.eu

https://doi.org/10.1017/51743921322002800 Published online by Cambridge University Press


https://www.ing.iac.es/weave
https://www.4most.eu
https://doi.org/10.1017/S1743921322002800

150 J. M. Bestenlehner

Schneider, F. R. N., Ramirez-Agudelo, O. H., Tramper, F., Bestenlehner, J. M., Castro, N., Sana,
H., Evans, C. J., Sabin-Sanjulian, C., Simén-Diaz, S., Langer, N., Fossati, L., Gréfener, G.,
Crowther, P. A., de Mink, S. E., de Koter, A., Gieles, M., Herrero, A., Izzard, R. G., Kalari,
V., Klessen, R. S., Lennon, D. J., Mahy, L., Maiz Apelldniz, J., Markova, N., van Loon, J.
Th., Vink, J. S., Walborn, N. R. 2018, A& A, 618, A73

Simén-Diaz, S., Castro, N., Herrero, A., Puls, J., Garcia, M., Sabin-Sanjulian, C. 2011, JPhCS,
328, 012021

Discussion

FABRY: As you mentioned the log g uncertainty is driven by normalisation issues (Paschen
lines) or uncertainties on the normalisation. Do you have suggestions, how to improve on
this or will machine learning solve this?

BESTENLEHNER: You can use machine learning to normalise your spectra, but if your
analysis pipeline uses machine learning the normalisation is less of an issue as preliminary
tests have shown. Here we use a simple normalisation routine to simulate the analysis
work-flow of AMOST. However, if spectra are flux calibrated and the temperature is rea-
sonably well known, they can be normalised by dividing the observation by the theoretical
model energy distribution (SED). In this way the Paschen jump is better normalised out
and the accuracy of log g improves.

NAJARRO: Large errors on logg comes from high Paschen series which are not well fitted.
In comparison with VFTS, where the log g are based on low order Balmer series, log g
on the Paschen series is unconstrained.

BESTENLEHNER: The Paschen lines contain a lot of information on log g, but the line
profiles overlap and become not only very sensitive to the normalisation but also to
the line broadening parameters (macro-turbulent and projected rotational velocities). In
addition, the Paschen line profiles are less verified in stellar atmosphere codes than the
Balmer series. The machine learning approach might improve on this in the future, but I
would like to understand first the issues and how well my current approach works before
using a new approach where I want to be able to follow step by step the analysis process
like using a black-box.
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