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Introduction. In recent years elliptic boundary value problems have been 
studied in great detail; see, for example, Agmon (1), Agmon, Douglis, and 
Nirenberg (2), Browder (4), Hormander (7), Schechter (10; 11; 12), Agrano-
vich and Dynin (3). In all these cases the boundary problems considered were 
local or semilocal, i.e. the boundary operators involved are differential 
operators possibly having singular integral operators for coefficients (cf. (3)). 
The basic tool in these investigations is the following coercive inequality 

\\u\\m < C(\\Au\\0+Zj(Bju}kj + IMIo) 

for u 6 Coœ(Œ), where (. . .)kj denotes the boundary Hilbert space norms and 
12 is the basic domain. 

In 1964 Browder (6) defined a non-local elliptic boundary problem on a 
bounded domain. His boundary operators are general continuous operators 
defined on the boundary Hilbert spaces and the problem is supposed to satisfy 
a coercive inequality. 

Earlier, M. I. Visik (15) gave a complete treatment of general boundary 
value problems for second-order elliptic partial differential operators on 
bounded domains. In fact, Visik's work includes non-coercive boundary prob­
lems as well. 

In this paper we study general, local as well as non-local coercive boundary 
problems on a half-space i?w

+. The following definition is Browder's, adapted 
for the unbounded domain Rn

+. 

Definition 1. Under a general coercive boundary problem on a half-space 
Rn

+ we understand the triple {A, B, T), where A is an elliptic partial differen­
tial operator on Rn

+ and B is a continuous operator from Wm'2{Rn+) into some 
Hilbert space r , such that B: W0

m'2(R^) —» 0 and 

(1) IMI»< C(\\Au\\o+ \\Bu\\T+ |M|O) 

for** g C 0
œ (^+) . 
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We study a subclass of elliptic partial differential operators which we call 
simple; for precise definitions see §1. Without any a priori assumptions on the 
form of B and T we obtain a sufficient condition, Condition K> for (A, B, T) 
to be coercive on Rn

+ if A is simple. Our method is an adaption of a recent 
proof Schechter gave of the usual local coercive estimates (see (12)). We also 
show that the usual local elliptic boundary problems are included in our 
result. Finally we study an inequality of the form 

\u\m< C(\\Au\\o+ \\Bu\\T). 

This is satisfied by differential elliptic boundary value problems. We show that 
Condition K is actually necessary if we want (A, B, T) to satisfy such an 
inequality. 

1. Notation and terminology. Let Rn, n > 2, denote the Euclidean 
n-space, Rn

+ the open half-space 

Rn+ = {(yi, . . . , 3 0 | Jn > 0}, 

and Rn
+ its closure. For the sake of convenience, points of Rn

+ will be written 
as (x, t), where 

x = (yu . . . , yn-i), t = yn. 

Rn-i
{K) for some K > 0 will denote the domain {£| f 6 Rn-i, |f| > K}. 

We need partial Fourier transforms with respect to the variables x and t 
given by 

Ml t) = (2^)"("-1)/2 f /(*, *)*-"•« dx = F,ffo t), 

f\x,r) = (2x)-1 /2 (" f(x,t)e-t,Tdt = FJ(x,r). 

The Fourier transform with respect to both x and t is denoted b y / r ( £ , r) 
The inverse Fourier transform is defined in the usual fashion. Let 

M = (MI , . . . , Un) 

be a multi-index of non-negative integers with length \fi\ = MI + • • • + M«- Let 
Dj = d/jdXj, 1 < 7 < n, and set 

Dx = ( A , . . . , Z \ _ i ) , £>* = A.. 

A partial differential operator of order m is denoted by 

A (y, D) = x «M(̂  o#r. . . A^r-1 Dr, 
where the variable coefficients aM(x, 0 are defined in Rn+. For each fixed 
(x, t) £ i ^ + we associate a polynomial -4s,i(p)(£, r) with A (y, D) given by 

Ax,l
v\ï, T) = D a„(*, Ob"1 • • • &-1"- 1 r"". 

\v\=rn 
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For our purposes it is sufficient to assume that aM(x, t), |/x| = m are constants, 
that is 

A partial differential operator A(y, D) whose principal part has constant 
coefficients is said to be elliptic if 

\A^&T)\>Cm2+\r\2)m/2 

for some C > 0 and all (£, r) £ i^ . An elliptic partial differential operator is 
always of even order m = 2r for n > 2, and for n = 2 we assume that A has 
even order. We shall always assume that an elliptic partial differential operator 
satisfies the root condition, i.e. for each £ y£ 0, AiP)(£, r) = 0 has exactly 
r = m/2 roots with positive imaginary part as a function of r. This condition 
is only necessary for n = 2 since for w > 2 it is automatically satisfied 
(cf. (10)). 

We shall call a homogeneous elliptic partial differential operator of order 
m = 2r with constant coefficients simple if for each |£| = 1, A (£, r) = 0 has 
simple roots. For example, Di2r + . . . + ZV r is simple for every positive 
r. Similarly, we call an elliptic differential operator with variable coefficients 
simple if its principal part is simple. 

To define a boundary problem we need some Hilbert spaces of distributions; 
for details the reader should consult the comprehensive treatise of Hormander 
(8). Denote by Wa'2(Rn) the Hilbert space of distributions u in Rn whose 
Fourier transform u is a function which satisfies 

f a + isi2n«(s)i2^ < ». 
•J Rn 

The norm is given by 

(u)a
2= f (l+|ê|2y|«(S)|2<Z£. 

^ Rn 

If a is a positive integer k, then Wk'2(Rn) consists of all functions u whose 
distribution derivatives Dau for |a| < k belong to L2(Rn). Using this notion 
one defines the Hilbert space of functions Wk,2(Rn

+) for k a positive integer. 
In this case the norm is defined by 

lkll*= X l l^l lo = S \UJ\2> 
|a|<* j<k 

M2= £ \\D"u\\l 

I t is well known that the mapping 

d: u(x, i) -» (u(x, 0), . . . , Dt
m-lu(xy 0)), 

where u G Coœ(Rn
+) can be extended to a continuous map 

m— 1 

d: Wm'\Rn
+) -> £ © r - ' - 1 ' 2 ' 2 ^ . ! ) 
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which is onto with kernel Wom'2(Rn
+)1 i.e. functions of Wm'2(Rn+) whose 

0, 1, . . . , m — 1 derivatives vanish at t = 0. This allows us to treat Wm,2(Rn
+) 

as the space 
TO— 1 

Wom'\Rn
+) ® E 0 ^ - ' - 1 / 2 ' 2 ( i 4 - l ) . 

On the domain Rn
+ a general boundary operator B associated with an rath 

order elliptic partial differential operator A is a continuous mapping 

into some Hilbert space T such that BWom'2(Rn
+) = 0, that is 

TO—1 

£ : £ ®Wm-j-1/2-\lU-i)-*T 

defines B. To be more precise, let u 6 C0
œ(Rn

+) and set 

dfc*. w —-> Dt
ku(x, 0). 

Extend it to all of W ^ C K ^ ) . Then we set 

TO—1 

-S = ^ Bk dk1 

where Bk is a continuous mapping 

Bk: Wm-k-1/2'2(Rn^) -> T. 

Assuming ^4(/?)(Z}x, Z>̂ ) has constant coefficients, 

where Am{^ r) is considered as a polynomial in r for each fixed £ and where 
^4+(£, r) contains the product of all zeros of AW(C, r) with positive imaginary 
part. 

Finally, C will denote a general constant which might be different for 
different formulas. 

2. Let A(D) be a homogeneous simple elliptic partial differential operator 
of order m = 2r. The main result of this section (Theorem 1) is the derivation 
of some sufficient condition (see Definition 2) for the boundary problem 
(A, By T) to be coercive. As a corollary we give a routine extension of this 
result to simple elliptic partial differential operators with variable coefficients, 
i.e. to operators of the form A(y,D) = A(D) + P(y,D), where A (D) is 
simple and P(y, D) is a partial differential operator of order at most m — 1 
with continuous coefficients uniformly bounded on Rn

+. Finally in Theorem 2 
we show that the usual local elliptic boundary conditions are included in our 
result. 
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The proof of Theorem 1 will be given in the partially Fourier transformed 
space Fx Wm"2(Rn

+). For this we need a certain amount of preparation. By 
definition, for each |£| = 1, A(£, r) has m simple roots, T I ( £ ) , . . . , TTO(£), 

r = tn/2 having positive and the rest negative imaginary parts. We might 
as well assume that Im Tjt({) > 0 for k = 1, . . . , r. Set 

(2) Ak&r)= A&r) 

r - r t(£) 

for £ y£ 0. Using this notation, define 

Wku = î(2ir)-1^i4Jttt> P , )" i ({ . 0) 

for & = 1, . . . , m and # Ç Co°°(-K»+). I t is clear that T*(£), k = 1, . . . , m, are 
homogeneous of degree one. Hence Ak(£, r) is homogeneous of degree m — 1 
for fe = 1, . . . , m. Therefore the mapping 

u —» (Wi u, . . . , WTu) = Wu 

defined for u £ Coœ(Rn
+) can be extended to a continuous map 

(3) wm-W) - 2 ; ©F, w172,2^-!) 

where the summation is r times. Let 

m— 1 

be the boundary operator associated with -4(2?). For w Ç Co°(Rn
+) set 

„/„ A _ iA(Dx,Dt)u(x,t), / > 0 , 
^ x ' ^ ~ \ 0, / < 0 . 

Now 5^d^ can be written as {BjF(~1){Fxdj). Since for ^ G C0°°(i^w
+), 

Fx dj u = d;- Fx u for such w, we have 

Bj dj u = (Bj Fc1) (y, Fx)u = (B, Fc'hj «i, 

where y^ = dj applied to #i(£, 0- Define the operator y^ by 

for #(#, /) € C0
œ(Rn

+) and set 

(£V(s) = {7^o l f ô ' |ê|>jK' 
Now 
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(4) (FrV^V)2»-,-^ 
2 

d£ 

< C\\g\\l < C||w||^ 

since A (£, r) is elliptic and homogeneous of order m as a consequence of which 

for some C > 0 independent of £. This shows that Ff^jJ-^Fx is a continuous 
operator on C0

œ(R^) in the TFW>2(^+) norm. Therefore F^y^Fx can be 
extended by continuity to all of Wm>2(Rn+). Thus 

TO— 1 TO—1 

•B-(x) = £ B/y^F, = £ -B,-(K> 

is a continuous operator on PFm,2(i^w
+) where we set 

BjJV = B/yjJ^Fx and 5 / = S , Fc1. 

Furthermore, (4) gives the estimate 

(5) \\B-mu\\T < C||g||0> u € C<T(R+). 

For « (= C o ™ ^ ) set 

UO„y /£\ _ iTj-Nltt). |£| >-K> 
T< M l ^ = l 0, I J | < X , 

and set 
TO—1 

Finally, define B+
{K) by 

JB+^w = Bmu - BJK)u, U £ Co00 (R?). 

Definition 2. Let A = A (D) be a homogeneous simple elliptic partial 
differential operator of order m = 2r. We say the boundary problem (A, B, T) 
satisfies Condition K for some K > 0 if 

Z f \i\\Wku\2di < CllV^I|r, « G C0
œ(^/) . 
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THEOREM 1. Let A(D) be a homogeneous simple elliptic partial differential 
operator of order m = 2r defined on Rn

+. Let B be a boundary operator such that 
(A, B, r ) satisfies Condition K for some K > 0. Then for all u G Wm'2(RÛ+) 
we have the coercive estimate 

IMU< C(||i4«||0+ ||B«||r+|M|o). 

COROLLARY. Let A = A(y,D) = A(D) + P(y, D) where A™ = A(D) is 
homogeneous and simple of order m — 2r and P(y, D) is of order at most m — 1 
with uniformly bounded continuous coefficients in Rn

+. If (A(p\ B, T) satisfies 
Condition K for some K > 0, then (A, B, T) is a coercive boundary problem on 
^ + . 

Proof. The inequality 

(6) \\u\\j<e\\u\\m + K(e)\\u\\o 

is well known to hold for all e > 0, j = 0, 1, . . . , m - 1 and u G Wm'2(R^) 
(cf. (5, p. 39)). Employing (6), we obtain 

| | i l ^ | | o < | | i 4 « | | o + | | P « | | o 

< | | i l t t | |o+ Ci(e|M|m + i£(e)|M|o). 

By the hypothesis, Theorem 1 can be applied if A = AiP). Hence 

IML< C2(||^
(^||o+ ||5«||r+ IMIo) 

< C2(||il«||o + ||P«||o + \\Bu\\T + |M|o) 

< C8(€)(||i4«||0 + | |S«| |r + IHIo) + Ci C2 e\\u\\m. 

Choose e > 0 such that d C2 e = 1/2. Then 

| H U < 2 C 8 ( c ) ( | | i l « | | o + | | B t t | | r + | M | o ) . 

This proves the corollary. 

In the rest of §2 we shall assume that A(DX, Dt) is a homogeneous simple 
elliptic partial differential operator of order m = 2r, i.e. A = A^p\ To simplify 
the proof of Theorem 1 we present some simple lemmas. 

LEMMA 1. To prove Theorem 1 it suffices to show that for u 6 Co°°(i^n+) 

(7) ||2fa||o < C(\\Au\\0 + \\Bu\\T + |M|o), 

where R(DX, Dt) is any homogeneous partial differential operator with constant 
coefficients of order m = 2r. 

Proof. Same as the proof of the corollary of Theorem 1. 

LEMMA 2. It is sufficient to prove (7) if R(DX, Dt) is of order at most m — \ 
in Dt. 

Proof. Suppose that we proved (7) if R is of degree < m — 1 in Dt. Since 
A{px, Dt) is elliptic, 
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Dt
mu = aA (Dx, Dt)u + R(DX, Dt)u, 

where R(DX1 Dt) is of order < w — 1 with respect to Dt. Therefore 

\\Dt
mu\\0< C\\Au\\Q + \\Ru\\o 

< C(||il«||o+ pw| | r + IHIo) 

îoru G Coœ(Rn
+)> This proves Lemma 2. 

From now on i?(£, r) denotes a homogeneous polynomial of order m — 2r 
in (J, T) which is of order at most m — 1 in r. Inequality (7) can be written as 

(8) f d£ r\R(Z,Dt)u1&t)\2dt<C(\\Au\\o+ \\Bu\\T + \\u\\0) 
*S Rn-l ^ 0 

for u G Co°°(^w+)- The following inequality can be proved easily (cf. (9; 11)) 

(CO\R(^Dt)u1^t)\2dt<CK r\A&Dt)u1fot)\2dt+ f°°|«ife/)|2d/ 
Jo t/o */o 

for all |£| < X where CK depends only on the coefficients of Dt
j, j = 0, 1, . . . , 

m — 1 in R(£,Dt) and -4 (Ç, 2?,) for |£| < K. K denotes the fixed number 
occurring in Condition K. From this we have 

(9) f di ("{Rift, Dt)ui(ïJ)\2dt < CK(\\Au\\o2 + |M|o2). 

LEMMA 3. To prove Theorem 1 it suffices to prove the following inequality: 

f dt f O ° | i e« ,23 l )« i (S ,0 r*< C(l |g | |o2+ \\Bu\\r
2+ \\u\\o2), 

•J\£\>K ^ 0 

where g{%, t) = A (Dx, Dt)u(x, t) for t > 0 and otherwise g = 0. 

LEMMA 4. Let u G C0°°(i^w
+). Then for 0 < j < m — 1, 

f (1 + | { | , ) - * - 1 / , P / ( « I - « i ( x ) ) ( 5 , 0 ) | 2 ^ < CK(\\Au\\l+ \\u\\l). 
*> Rn 

Proof. I t is easily seen that for j = 0, 1, . . . , m — 1 
m poo 

ID/im-ut^&O)? <CmZ \DAui-uiK))&t)fdt; 
j=0 J 0 

see, for example, Agmon (1, p. 198). Therefore 

f (i + l*l,)"-'-1/W(«i - «i(K))a, o)|2^ 
J Rn 

< C * f | Z > / « i & 0 ) | 2 ^ 

<CK'T, ft \D/Ul(ï,t)\
2dt. 
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Now we have the well-known inequality 

171 /*00 f*CO /*0O 

E \D?*i<&,t)\idt<CK" \ \A(it,Dt)Ul(lt,t)\
2dt+ \ {m&ttfdt, 

where C V depends only on the coefficients of Dt
k in A(£, Dt) for |£| < K; 

see, for example, Schechter (12, p. 265). Now integrating this over the domain 
|£| < K proves Lemma 4. 

Proof of Theorem 1. Let u(x, t) be a fixed function in Co°°(-Rw
+). Using the 

property of the Fourier transform 

[0 i« i (£ ,O] A = « i A (f ,r) + i (2 i r ) - 1 % 1 ( f , 0 ) > 

one easily derives the identity 

(10) giA (f, /) = (r - T*)[i4*(É, B ^ i f c 0 ] A + i(2T)-i*Ak& Dt)utâ 0) 

= (r - T4)[i4*(f,-Di)tti(f,0]A + W*« 

for & = 1, 2, . . . , m. Since i?(£, r) is of order <ra — 1 in r, we can expand it 
in partial fractions with respect to A (£, r) : 

i?fe r) _ A fr(g) , , n 

i4(€,r) " f e r - T ^ ) ' ^ U > 

where 

e.«).»fc,)U./[Mf£lL 
Clearly £&(£)> & = 1, . . . , w, is homogeneous of degree one. Similarly T*({), 

& = 1, . . . , m, is homogeneous of degree one and nowhere real. Thus 

i**te)i < c\t\, 
C ^ | $ | < | I m T , ( f ) | < C | { | 

forife = 1, . . . , m. Now 
m 

m 
, A __ 

* ^ 1 
[R(£, P,)«itt, 01 = Z «*ft)U*tt, 2?,)«i(É, 01' 

Therefore 

|[*tt,.D.)«itt,*)]A| < c { | g l
A t t , r ) | + l € l f - r ^ V f e i } -
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Squaring this inequality and integrating with respect to r gives 

rw.z>«)«itt,oi,<B 
< c{ r \gl

A&T)\*dT+I?I2S \wkU\* r -r—-^\ 
\ «'-co *=1 ^ - 0 0 \T — Tk(£)\ J 

<c{ C |fiAtt,r)|ï^+|eiÊ|Tr,«|,l. 
V « ' - c o k=l J 

Now we employ identity (10): 

(11) P g l ^'Jldr= ^ [Ak{t,Dt)Ul&t)]Adt 

+ i(2x)-1/2
 Ak{%, Dt)ui(i, 0) P dT ,,, 

= (ir/2)1/2Ak(£,Dt)Ul(lt,0) 

+ i(2x)-1/2 [At(£, Z),)«i]tt, 0)(i» sgn Im r*) 

_ i —2TriWku, k = r + 1,. . . ,m, 
~\ 0, A = 1 , . . . . r, 

where we used the well-known formula (cf. (14, p. 25)) 

«i(£,0) = (2/TT)1/2P.V. P «iA(f,r)dr. 
«'-co 

Therefore for k = r + 1, . . . , m 

J
œ n A (t \ I 2 

-co T — ï * ( £ j I 

< C\i\ r , J ; m | 2 f | f iA«,r) | ,dr 
«'-co P — m ç J l «'-co 

J CO 

|giA(?,r)|2Jr. 
-co 

Hence for |f| > X 

J o V t t . ^ i ) « i t t . O r * < c ( J " |g iA t t f r ) | 2Jr+ | £ | E |TF*«|2). 

£ f \k\\Wku\^<C\\B+
{K)u\\l 

Recall Condition K. 

which implies that 

]2dt f dl r\R^Dt)u1{ift)\
t 

•>\$\>K JO 

<c(( K r | g l
A fe r)\2dr + | |3+

(*Mlr) 
\*'\Z\>K «'-co / 

<C(\\g\\l+\\B+™u\\2
r). 

https://doi.org/10.4153/CJM-1968-066-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-066-0


DIFFERENTIAL OPERATORS 689 

\D 

Now recall (5), that is 

llsJ'Ml^ciigii.2. 
Finally, using (9), we obtain 

\\Ru\\l < C(\\g\\l + \\B+™u\\l + 

= C(\\g\\l+\\(B™-BJ*)u\\l+\\u\\l) 

<C(\\g\\î+\\B™u\\2r+\\u\\î) 

< C ( | | g | | 2 + | | B « | | î + | | « | | î ) , 

where the last inequality follows from Lemma 4, since 

\\Bmu\\r = 
m—1 

< ||5«||r + 
m—1 

j=0 I 

and 

E B/(y, - y,<*>)m 
j=0 I 

m—1 

< E I|5/(T.-T/K )KII 
j=0 

m—1 

< C E (Ff'D/im-u^)^ 
j=0 

m-j-l/2 

This proves Theorem 1. 
< CK(\\Au\\o+ \\u\\o). 

To show that this result is meaningful, we prove that the usual differential 
elliptic boundary-value problems are included in Theorem 1. For this we need 
the definition of covering. 

Definition 3 (Schechter (11)). Let A(Dx,Dt) be a homogeneous elliptic 
partial differential operator of order m = 2r with constant coefficients. Suppose 
that for all £, |£| = 1, A (£, r) = 0 has r roots n , . . . , rr with positive imaginary 
parts. Let Bu . . . , Br be a set of homogeneous differential operators of orders 
trtj < m, j = 1, . . . , r, with constant coefficients. Consider (A, B) on Rn+. 
The system J5 = (Bi, . . . , BT) is said to cover 4̂ if for all £ ^ 0, i?i(£, r ) , . . . , 
Br(%, T) a r e independent modulo A+(%, r ) . 

THEOREM 2. Le£ 4̂ (Z}x, Dt) be a homogeneous simple elliptic partial differential 
operator of order m = 2r. Let Bi, . . . , BT be homogeneous partial differential 
operators with constant coefficients of orders mi, . . . , mr < m such that Bi,.. . , Br 

cover A on Rn
+. Set 

r = Ê ®wm-mj~1/2'2' 
3=1 

\Rn-l). 

Then (A, B, T) satisfies Condition Kfor all K > 0. 
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Proof, Clearly 
B(*> = ( B ^ B r W), 

Let v(x, t) be an extension of u(x, i) to all of Rn such that v(x, t) is m times 
continuously differentiable with compact support. Set 

B/'&r) = IZl'-^iBj&T), 

j = 1, . . . , r. I t is easy to see that the set of polynomials B/' (£, r ) , j = 1 , . . . , r, 
is also linearly independent modulo -4+(J, r) for all £ ^ 0. 

Set 
3/'fcr) A gj>(£) 
4 ( £ , r ) fclT-r4tt)' 

Then 

S -2Tiqjk(k)Wk «(*) = £ S # (£) At(£, r ) ^ , r)dr 

= r5/'(£,T)l>lAa,T)rfT 
« / -oo 

= ( 2 x ) 1 / 2 5 / ' f e D > 1 f e O ) 

If |£| > X for some K > 0, using (11), we obtain 

- f to© r ? - ^ * -
m 

= £ -2«<tett)ÏF*«(É). 
Hence 

i(2*Tli*Bi+"{l,Dt)ui<£) = E g ^ t t ) T ^ « t t ) . 

Using Schechter's (12) argument, now it is easy to prove Theorem 2. For 
any r-tuple of numbers (wi, . . . , wr), 

r 

X) ffit Wk = 0, 1 < j < r =» wi = . . . = wr = 0. 

Otherwise there exist numbers (Xi, . . . , \r) such that 
T 

]C hQi* = 0, k = 1, . . . , r . 
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Then 
r r m ^ 

= S E A j Qjk 

which implies that 
k=r+l ;=1 T ~ Tk 

i - l 

is a multiple of ^4+(£, r ) . This contradicts the assumption that BJyj = 1, . . . , r, 
covers A. Therefore 

E Z) 2**(£)w* > C > 0 

for all |£| = l and 

E kl2 = i. 

Hence, using the homogeneity, we obtain 

r T T 

for all |£| > i£ > 0 and (wi, . . . , w r). Setting w* = J^*(£) = Wk «(£), 
k = 1, . . . , r, 

' 2 

El^*(£)l2<c*E 
* = 1 J = l 

E 2#ft)TT«tt) 

É f \t\\W*(0\2 dl; 

<c*E f I* d{ £ff#(E)W»tt) 
k=l I 

= c*E f |É||B«."G,i>«)«iG,o)r# 

= c*E f Ifl^^-'l^fePOttifeo)!1^ 

< CXE f (1 + |£|2r-""-1/2 |£j+(£, !),)«,& 0)|2^ 
; = 1 « / | Ç | > X 

where £+ (K) = (£i+ (*\ . . . , S ^ ) . This proves Theorem 2. 

3. All through this section we assume that A is a homogeneous simple 
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elliptic partial differential operator. In proving Theorem 1 we showed that for 
all functions u(x, t) G Coœ(Rn

+) 

\u™\n< C| | ( i4« | |o+| |5+
( J C )«| | r ) . 

I t is easy to see that Ui{K) (f, t) = 0 for |£| < K implies 

\\u(K)\\m<C\u™\mj u G C 0
œ ( ^ T ) , 

that is 

(12) ||t*<*>||M < C(\\Au\\0 + \\B+^u\\r) 

for all u G C*°(R+). 
In this section we discuss Condition K. We show (Theorem 6) that 

Condition K is actually necessary if we want {A, B, T) to satisfy (12) for some 
K > 0. The idea involved is simple and follows from the formal correspondence 

Ft[A (Dx, D,)u] = A ({, 2? ()«i& /), u € Wm'\R+). 

First we note that the mapping 

TK: Co~( ie) - • T i T ' 2 ( Ï Ô 
given by 

TKu(x,t) = Fc^ui^fat) = «<*>(*,*) 

is continuous in PPl ,2(i£n
+) norm. Therefore 7 ^ can be extended by continuity 

to all of Wm'2(Rn
+). Since A and B+{K) are continuous maps defined on 

^ • 2 ( ï ^ + ) , w e s e e t h a t (12) holds for all u G IFW ' 2(^+). Denote by WK
m'2(R^) 

the closure of the subspace ( M ^ ( X , 0 1 ^ 6 Co°°CR»+)} in TF*'2(-K»+). We can 
write (12) as 

(13) \\TKu\\m < C(\\Au\\0 + ||B+<*>«||r), 

where TK is the projection map onto WK
m'2(Rn

+). Set 

»*(£,*) = ^*tt)exp{ûr*(f)}, 

where F*(£) G C0
œ(^_i ( i i : )), É = 1, . . . , r, and 

«*(*,/) = (2TT)- (W-1) /2 I exp(ix.g)F,(?)exp{^r,($)}^. 

I t is clear that uk(%, t) G Wm'2(Rn
+). Therefore there is a sequence of functions 

*»(*, 0 G Co°°(^+) such that 

||% — 4>n\ \m —» 0, & = 1, . . . , f, 

as n —» oo. By taking partial Fourier transforms with respect to x we easily 
see that 

| |% — <t>n(K)\\m < | |% — <t>n\\m, U = 1, 2 , . . . . 

Hence uk(x, t) G WK
m'2(Rn+) and we have 
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(14) |k lL<C( | |^* | |o+P +
( K , «*l l r ) , 

k = 1, . . . , r. Naturally we can replace uk by 
T 

in (14). Furthermore 

^ ( l > * ) =0. 
Thus 

(15) 
1 r 

1 A ; = l h+Ksw*) lr 
We also have the estimate 

(16) ||V» (f)exp {•Ms)} \\m < C(^fc) W — J L/2 

Let us take (16) for granted for now; we shall return to it at the end of this 
section. Now (16) implies that we can extend (15) by continuity to all functions 

T 

u = X) «*» 
where 

(17) «*(*, 0 = FcWifàexpiitTtd;)}], 

where Vk 6 TF w - 1 / 2 ' 2 (^ - i ( ^) , k = 1, . . . , r. Thus we have proved 

THEOREM 3. Let {A, B, T) be a coercive boundary problem for which (12) holds 
for all u G Coœ(Rn+). Then 

|HU < C||B+<*>«||r 
for all 

where uk(x, i) is defined by (17). 

Le t^ € C0
œ (Rn

+). Consider 

(18) 

Clearly 

and we have 

vt
w&t) = 

V2T Wku
m(£) 

i Ak(rk) 
exp{#T*(£)}. 

Ak(rk) ç. wn-^-XR^n 

WW*>(£) = Wku™{£)-

Furthermore (16) implies that 
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J\Ï\>K 

<C f \t\\Wku\2dï 
J\Z\>K 

^ M \U\ \m, 

where we used (3). Now the above estimates imply 

THEOREM 4. The space MK spanned by 

Wu{K) = (Wi u{K\ ...,Wr uiK)), u 6 Wm'\Rnf)i 

for any K > 0 is also spanned by 

(Will!, . . . , WrUT), 

where 

uk(x,t) = Fr'lV^explitr^)}] 

with Vjc £ Wm~1/2,2(Rn-i
{K)) and the correspondence is given by (18). Therefore 

we have 
MK = Z ©r / 2 , 2 (4 - i ( I ) ) 

where the sum has r terms. 

Now by the continuity of the mapping W we have 

(Wu)l/2 s £ (Wtu)U < C\\u\\l u 6 VT-'iR^). 
k=l 

THEOREM 5. The mapping W is an isomorphism of the subspace of Wm,2{Rn
+) 

containing all functions 
r 

onto MK, where uk1 k = 1, . . . , r, is defined in Theorem 4. 

Proof. Theorem 5 follows from formal properties of the partial Fourier 
transform Fx. On the other hand, since our maps are defined by extension by 
continuity from a dense subspace, we have to be more careful. Theorem 5 will 
follow from 

LEMMA 5. Let 
r 

uk defined in Theorem 4. Then 

(19) \\u\\m < C(Wu)1/2. 
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Proof of Lemma 5. I t suffices to prove (19) for 

u(x, t) = uk(x, t) = F(-
l[Vk(e)exp{itTk(t)}] 

where 7 t({) € C V C ^ - i ^ ) , k = 1, . . . , r. Now 

W*(n(«)exp{*M*)}) = *'(27r)-1 /2n(|)^,(?, P,)[exp{**r*(É)}].-o 

Similarly 

|«p » - l « l [ ^ ( ? ) e X p{^ ( f )} ] = {«7,({)[r»(f)]-l«lexp{Ûr»(£)}, 

r\exp{itrk(0}\2dt = 2 [ Imr , ( | ) r 1 . 

Therefore 

r^DrM[Vk^)expli(rk(m\2dt 

= 2 | | | 2 | a | |F , t t ) | 2 | r*(?) | 2" I" 2 | a l[Imr,©r 1 

< C |S |M t ( r , ) | 2 | F , a ) | 2 < C\H\\Wk[Vk(0 exp{itTk(i;)}]\\ 

forO < |a| < m. 
Thus integrating with respect to £ for |£| > K and summing over all 

0 < \a\ < w, we obtain 

Since F*(£) = 0 for |£| < X, we have 

This proves Lemma 5. 

Remark. Theorem 5 implies Theorem 4 with the exception of relation (18), 
which is quite interesting by itself. 

Theorems 3 and 5 show that Condition K is actually necessary if we require 
that the boundary problem (A,B, V) satisfy (12). To be more precise we 
have 

THEOREM 6. Let (A,B, T) be a coercive boundary problem for which (12) 
holds for all u £ C0°°(^+). Then 

(20) (Wu)i,2 < C\\B^u\\v 

for all 
r 

where uk1 k = 1, . . . , r, is defined by uk(x, t) = Ff1 V*.(%)exp{itTk(£)} with 
VM e W^1/2'2(Rn-i

{K)), k = 1 , . . . , r. Hence, by Theorem 5, (20) holds for all 
u 6 C0

œ(Rn+). 
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We still have to prove (16), i.e. 

||F*(£)exp{^r*(£)}||m < C{Vk)m-i/2 

for Vk € C<T(Rn-i(K)). Consider 

Da
xDrMuk{x,t) = (2 i r)- ( n- 1 ) / 2Z)/Z)r l a l f «p(**.«74(f)exp{UT ttt)}d€ 

= (2x)- (K-1)/2 f exp(*x .£ ) ( rh t t ) ] - 1 - 1 Vk(£) exp{t*r»(É)} ) # . 
*J Rn-1 

Therefore 

fœ^ f |z)^r~laW(x,/)i2& 

< C f I S l ^ ' h t t ) ! 2 " 8 - 2 1 " 1 ! ^ © ! 2 ^ p e x p l - a i m n t t ) } * 

< C f |S|a,Œ,|rJt(€)|»*-s,- ||lmr*ft)r1|VJt(€)|2d£ 

< C(Vk) 
m—1/2» 

where we used Parseval's formula and interchanged the order of integration. 
Thus we have 

\Mk\m < C(Vjc)m-l/2 

and using \\uk\\m < C|^ |w , which is true since Vk(£) G Co°°(iC-i(K))> w e 

immediately obtain (16). 

Remark. When A(%, r) = 0 has multiple roots Tk(£), the situation becomes 
slightly more complicated. We hope to return to that problem elsewhere. 
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