A CONSTRUCTION FOR CERTAIN CLASSES OF SUPPLEMENTARY DIFFERENCE SETS

JOAN COOPER

(Received 1 December 1974)

Abstract

Let $v=e f+1$ be a prime power, and consider G the cyclic group of order $v-1$ with e cosets C. of order f defined as $C_{i}=\left\{x^{e i+i}: 0 \leqq j \leqq f-1\right\}$ and $0 \leqq i \leqq e-1$, where x is a primitive element of $G F\left(p^{\alpha}\right)$ and a generator of G. By using these cosets we give a simple construction for certain classes of Supplementary Difference Sets, Difference Sets, and Szekeres Difference Sets. These classes are not new, but the simple method of construction is original.

By using cosets of the cyclic group G of order $v-1$ (v a prime power) we give a simple construction for the following classes of Supplémentary Difference Sets, Difference Sets, and Szekeres Difference Sets.

Supplementary Difference Sets

$$
\begin{aligned}
& e-\{v ; f ; f-1\} \quad v=e f+1 \\
& e-\{v ; f+1 ; f+1\} \quad v=e f+1 \\
& \frac{e}{2}-\left\{v ; f ; \frac{f-1}{2}\right\} \quad v=e f+1, f \text { odd } \\
& \frac{e}{2}-\left\{v ; f+1 ; \frac{f+1}{2}\right\} v=e f+1, f \text { odd }
\end{aligned}
$$

Difference Sets

$$
\begin{aligned}
& \left(v, f, \frac{f-1}{2}\right) \quad v=2 f+1, f \text { odd } \\
& \left(v, f+1, \frac{f+1}{2}\right) v=2 f+1, f \text { odd. }
\end{aligned}
$$

$$
2-\left\{v ; f ; \frac{f-1}{2}\right\} v=2 f+1, f \text { odd. }
$$

These classes are not new (see Sprott, (1956)), however, the simple method of onstruction is original.

A set of k residues $D=\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}$ modulo v is called a (v, k, λ)lifference set if among the collection of elements $\left[a_{i}-a_{j}: i \neq j, 1 \leqq i, j \leqq k\right]$ each of the non-zero residues occurs precisely λ times.

Let $S_{1}, S_{2}, \cdots, S_{n}$ be subsets of V, an additive abelian group, containing ${ }_{c_{1}}, k_{2}, \cdots, k_{n}$ elements respectively. Write T_{i} for the totality of all differences ,etween elements of S_{i} (with repetitions) and T for the totality of elements of all he $T_{\text {l }}$. If T contains each non-zero element a fixed number of times, λ say, then he sets $S_{1}, S_{2}, \cdots, S_{n}$ will be called $n-\left\{v ; k_{1}, k_{2}, \cdots, k_{n} ; \lambda\right\}$ supplementary lifference sets, where v is the order of V.
$2-\{2 m+1 ; m ; m-1\}$ supplementary difference sets M and $N \in G$, an Idditive abelian group, are called Szekeres difference sets if $a \in M \Rightarrow-a \notin M$.

We will be using the parameter $v=e f+1=p^{\alpha}$ (a prime power) and the issociated cyclic group G, of order $v-1$, which is the multiplicative group of the ield $G F\left(p^{\alpha}\right)$. The cosets of G will be defined as

$$
C_{i}=\left\{x^{e e^{i+i}}: 0 \leqq j \leqq f-1\right\} \quad 0 \leqq i \leqq e-1,
$$

where x is a primitive element of $G F\left(p^{\alpha}\right)$ and a generator of G.
The basic concepts of group theory and linear algebra have been assumed. For any reference to group theory see M. Hall Jr. (1959).

We shall be concerned with collections in which repeated elements are :ounted multiply rather than with sets. If T_{1} and T_{2} are two collections (or sets), hen $T_{1} \& T_{2}$ will denote the adjunction of T_{1} to T_{2} with total multiplicities etained. We will use square brackets [] to denote collections and braces $\}$ to lenote sets.

Example. Let $S_{1}=\{1,2, x+1,2 x+2\}, S_{2}=\{0,1,2, x+1,2 x+2\}$ be two ;ets. Then

$$
S_{1} \& S_{2}=[0,1,1,2,2, x+1,2 x+2,2 x+2] .
$$

The class product of two collections (or sets) T_{1} and T_{2} will be denoted by $T_{1} \wedge T_{2}$ which is defined as

$$
T_{1} \wedge T_{2}=\left[x_{1}+x_{2}: x_{1} \in T_{1}, x_{2} \in T_{2}\right] .
$$

The transpose of a coset, C_{i}^{T}, will be defined as $-C_{i}$ where

$$
\begin{aligned}
-C & =-\left\{x^{e j+i}: 0 \leqq j \leqq f-1\right\} \\
& =\left\{-x^{e j+i}: 0 \leqq j \leqq f-1\right\} .
\end{aligned}
$$

In Storer (1967) p. 24 it is shown that

$$
-1=x^{e q+k} \text { where } 0 \leqq q \leqq k-1
$$

(1)

$$
\text { and } k=\left\{\begin{array}{l}
\frac{e}{2} f \text { odd } \\
0 f \text { even }
\end{array}\right.
$$

Thus

$$
C_{i}^{T}=\left\{x^{e(q+j)+i+k}: 0 \leqq j \leqq f-1\right\} .
$$

For proofs of the following four lemmas see Cooper (1972).
Lemma. 1. If C_{i} is a coset of the cyclic group G then

$$
\begin{aligned}
C_{i} \wedge C_{i}^{T} & =\left[x^{e j+i}+x^{e(q+t)+i+k}: 0 \leqq j, t \leqq f-1\right] \\
& =f\{0\} \&{ }_{s-0}^{e-1} a_{s} C_{s} \quad a_{s} \text { are integer }
\end{aligned}
$$

and

$$
\sum_{s=0}^{e-1} a_{s}=f-1 .
$$

Lemma 2. If C_{i} and C_{i} are cosets of the cyclic group G then

$$
C_{i} \wedge C_{j}={ }_{s=0}^{e-1} a_{s} C_{s} \quad\left(C_{j} \neq C_{i}^{T}\right)
$$

and

$$
\sum_{s=0}^{e-1} a_{s}=f
$$

then

$$
C_{i+1} \wedge C_{j+1}=\stackrel{e-1}{\&} a_{s=0} C_{s+1} .
$$

Lemma 4. If C_{i} is a coset of G then
(i) $C_{i}^{T}=C_{i}$ if f is even
(ii) $C_{i}^{T}=C_{i+\frac{5}{2}}$ if f is odd.
[Note: $\underset{s=0}{\underset{\sim}{-1}} C_{s}=G$.]
We will start by considering the collection of differences between the elements of C_{i}. This collection is given by

$$
\begin{align*}
& {\left[x^{\left.e e^{i+i}-x^{e t+i}: 0 \leqq j, t \leqq f-1, j \neq t\right]}\right.} \tag{2}\\
& =\left[x^{e i+i}+(-1) x^{e t i}: 0 \leqq j, t \leqq f-1, j \neq t\right] \\
& =\left[x^{e i+i}+x^{e q+k}\left(x^{e c+i}\right): 0 \leqq j, t \leqq f-1, j \neq t\right] \text { (from (1)) } \\
& =\left[x^{e i+i}+x^{e(q+i)+k+i}: 0 \leqq j, t \leqq f-1, j \neq t\right] . \tag{3}
\end{align*}
$$

Now equation (3) corresponds to $C_{i} \wedge C_{i}^{T}$ (see lemma 1) with the terms that add to zero excluded. Thus the collection of differences between the elements of any coset C_{i} will be given by

$$
\underset{s=0}{\substack{e-1}} a_{s} C_{s} \quad\left(\text { where } \sum_{s=0}^{e-1} a_{s}=f-1\right)
$$

(see Lemma 1).
We will talk about the collection of differences between elements of any coset C_{i} in terms of

$$
C_{i} \wedge C_{i}^{T}=\underset{s=0}{\substack{e}} a_{s} C_{s} \text { (terms adding to zero excluded). }
$$

Theorem 5. Let $v=e f+1=p^{\alpha}$ (a prime power) and G the associated cyclic group of order $v-1$. The set of e-disjoint cosets from the cyclic group G form

$$
e-\{v ; f ; f-1\} \text { supplementary difference sets. }
$$

Proof. The collection of differences from any coset is given by

Now the totality of differences from all cosets will be

$$
\begin{aligned}
& \underset{i=0}{e-1} C_{i+l} \wedge C_{i+1}^{T}=\underset{i=0}{e-1}\left(\underset{s=0}{e-1} a_{s}^{e-1} C_{s+i}\right) \quad \text { (see Lemma 3) }
\end{aligned}
$$

$$
\begin{aligned}
& ={\underset{s=0}{e-1} a_{s} G}^{c} \\
& =(f-1) G \quad \text { (see Lemma } 1 \text {). }
\end{aligned}
$$

Thus in the totality of differences from the cosets every non-zero elements occur $(f-1)$ times and the e cosets C_{i} of order f form

$$
e-\{v ; f ; f-1\} \text { supplementary difference sets. }
$$

Lemma. 6. If f is odd the first $\frac{1}{2} e$ cosets $C_{0}, C_{1}, \cdots, C_{\frac{1}{c}-1}$ form

$$
\frac{e}{2}-\left\{v ; f ; \frac{f-1}{2}\right\} \text { supplementary difference sets. }
$$

Proof. From the definition of C_{i}^{T} the collection of differences from C_{i}^{T} will be the same as that of $C_{\text {i }}$.

If f is odd $C_{i}^{T}=C_{i+\frac{5}{2}}$ (Lemma 4) and

$$
{ }_{i=0}^{\gtrless_{2}^{-1}} C_{i+1} \wedge C_{i+1}^{T}={\underset{s=\frac{2}{2}}{e-1} C_{i+1} \wedge C_{i+1}^{T} .}^{\text {. }}
$$

From Theorem $5, \underset{i=0}{e_{i=0}^{-1}} C_{i+i} \wedge C_{i+1}^{T}=(f-1) G$; thus for f odd

Lemma 7. If $v=2 f+1$ and f is odd, then C_{0} and C_{1} form
(a) $\left(v, f, \frac{f-1}{2}\right)$ difference sets, and
(b) 2-\{v;f;f-1\} Szekeres difference sets.

Proof. (a) Immediate from Lemma 6.
(b) As f is odd, $C_{i}^{T}=C_{i+\frac{\xi}{2}}$ and $C_{o}^{T}=C_{1}$.

Now if $a \in C_{0}$, $-a \in C_{1}$, from the definition of Szekeres difference sets, C_{0} and C_{1} form

$$
2-\{v ; f ; f-1\} \text { Szekeres difference sets. }
$$

Theorem 8. Let $v=e f+1=p^{\alpha}$ (a prime power) and G the associated cyclic group of order $v-1$. The e-sets $\{0\} \cup C$,

$$
\begin{aligned}
& i=0,1, \cdots, e-1, \text { where } C_{i} \text { are the cosets of } G_{i} \text {, form } \\
& \qquad e-\{e f+1 ; f+1 ; f+1\} \text { supplementary difference sets. }
\end{aligned}
$$

Proof. From Theorem 5 the collection of differences for any coset is expressed as

$$
{\underset{s=0}{e-1} a_{s} C_{s} .}^{2}
$$

It can easily be seen that the differences between the elements of C_{i} and $\{0\}$ will give C_{i} and $-C_{i}=C_{i}^{T}$.

Thus the collection of differences of $\{0\} \cup C_{i}$ will be given by

$$
{\underset{s=0}{e-1} a_{s} C_{s} \& C_{i} \& C_{i}^{T} . ~ . ~}_{\text {. }}
$$

Now the totality of differences from the set of cosets will be

$$
\begin{aligned}
& \underset{l=0}{e-1}\left(\underset{s=0}{e-1} a_{s} C_{s+l} \& C_{i+l} \& C_{i+1}^{T}\right) \\
& =(f-1) G \& G \& G=(f+1) G .
\end{aligned}
$$

As every non-zero element occurs $(f+1)$ times, we have

$$
e-\{v ; f+1 ; f+1\} \text { supplementary difference sets. }
$$

Lemma 9. Let $v=e f+1$ and f odd, then the sets $\{0\} \cup C_{i}, i=0,1, \cdots, \frac{e}{2}-1$ form

$$
\frac{1}{2} e-\left\{e f+1 ; f+1 ; \frac{f+1}{2}\right\} \text { supplementary difference sets. }
$$

The proof is similar to that for Lemma 6 and Theorem 8.
Lemma 10. If $v=2 f+1$ and f is odd then $\{0\} \cup C_{0}$ and $\{0\} \cup C_{1}$ form $\{v ; f+1 ;(f+1) /(2)\}$ difference sets.

The proof follows from Lemma 9.

Bibliography

Joan Cooper and Jennifer Wallis (1972), 'A construction for Hadamard arrays', Bull. Austral. Math. Soc. 7, 269-278.
Joan Cooper (1972), 'A binary composition for collections and sets', (Proceedings of the First Australian Conference on Combinatorial Mathematics, edited by J. and W. Wallis, T.U.N.R.A., 145-161, Newcastle, N.S.W., 1972).

Marshall Hall Jr. (1959), Theory of Groups, (MacMillan, New York, 1959).
D. A. Sprott (1956), 'Some series of balanced incomplete block designs', Sankhya Ser. A17, 185-192.
J. Storer (1967), Cyclotomy and Difference Sets, (Lectures in Advanced Mathematics, 2, Markham, Chicago, Illinois, 1967).
Jennifer Wallis (1972), 'On supplementary difference sets', Aequations Mathematicae, 8, 242-257.
W. D. Wallis, Anne Penfold Street, Jennifer Seberry Wallis (1972), Combinatorics: Room Squares, Sum-free Sets, Hadamard Matrices, (Lecture Notes in Mathematics, Vol. 292, SpringerVerlag, Berlin-Heidelberg-New York, 1972).

Mathematics Department
University of Newcastle
Newcastle, N.S.W. 2308
Australia.

