HIGH LUMINOSITY F-K STARS MOTIONS AND H α EMISSIONS

J. Smolinski, J.L. Climenhaga, and B.L. Harris Department of Physics, University of Victoria Victoria, B.C., Canada

Abstract

Changes and differences in radial velocities between neutral and ionized metals have been found for three F5-type supergiants: HD 231195, HD 10494, and HD 17971. Fifteen high dispersion coudé spectrograms (6 Å/mm) were used and 33 to 165 lines were measured on each. Semi-regular time variations up to about 8 km s⁻¹ in radial velocity have been found. In addition, H α line profiles for 8 high luminosity F-K stars have been analyzed. All of the stars show H α emissions, variable in time, which is probably a common phenomenon in very luminous stars. Metallic emission lines with low excitation potentials, in particular the Ca I 6572.8 and the Fe I 6574.2 lines, are present in 5 of these stars.

TURBULENCE IN THE ATMOSPHERE OF B-TYPE STARS

Keiichi Kodaira Department of Astronomy, University of Tokyo Bunkyo-ku, Tokyo, Japan

Abstract

The stationary turbulent surface layer, whose depth is of the order of the pressure scale height in the subphotospheric layer, was investigated for B-type stars, using the momentum and the continuity equations with the inertia term neglected but the turbulence-viscosity term included. The mean velocity field is dominated by the horizontal component of the meridional circulation, driven by the pressure-density unbalance in the radiative envelope of the rotating star, and the differential rotation induced by the Coriolis force.

The model calculation for a B3IV-V star with the equatorial rotational velocity

of 200 km/s led to the conclusions that the velocity field due to the differential rotation is of the order of 0.1-1 km/s, the velocity field of the meridional circulation itself is negligible, the velocity field of the three-dimensional shear turbulence is of the order of 0.1 km/s, and its scale is comparable to or less than the pressure scale height, the velocity field of the horizontal two-dimensional turbulence is of the order of 1-10 km/s, and its maximum scale ranges from a few times the pressure scale height to one-fiftieth of the stellar radius. If the index of the energy density law is close to 3.5, the turbulent surface layer may be dominated by the large scale (two-dimensional) barotropic eddies whose energy is fed by the small scale (three-dimensional) baroclinic turbulence in a way similar to the planetary atmospheres. In this case we may expect the tangential macroturbulence of the order of 1-10 km/s, though the interaction between this and the small-scale three-dimensional turbulence still remains to be investigated.