A CHARACTERIZATION OF DETERMINANTS OVER TOPOLOGICAL FIELDS

by R. W. K. ODONI

(Received 1 November, 1972)

0. Introduction. Let K be a topological field. On introducing the vector-space topology on the $n \times n$ matrices over K, it becomes clear that the determinant map φ enjoys the following properties:

(A) φ is a continuous surjective homomorphism from $GL_n(K)$ to K^* ,

(B) $\varphi(\mu \mathbf{a}) = \mu^n \varphi(\mathbf{a})$, for each non-zero μ in K, and all \mathbf{a} in $GL_n(K)$.

It is known [1] that, when, in (A), the requirement that φ be a continuous surjection is replaced by the requirement that $\varphi(\mathbf{a})$ be a polynomial in the elements of \mathbf{a} , then condition (B) is enough to characterise φ as the determinant; the purpose of this paper is to examine the extent to which conditions (A) and (B) suffice to imply that φ is the determinant map. More precisely, let us say that K is *n*-determinant characterised if (A) and (B) imply that φ is the determinant. We shall, in fact, find all solutions φ of (A) and (B) for a wide class of fields K, namely, all K whose completions L are local fields, in the sense of [2]; the latter are precisely the locally compact, non-discrete fields. The basic result, on which all else depends, is

THEOREM 1. Let K be any topological field, and suppose that (A) and (B) are satisfied by φ . Then φ is 1 on $SL_n(K)$, and induces a continuous epimorphism φ^* : $GL_n(K)/SL_n(K) \to K^*$; in the same way, the determinant induces a continuous isomorphism α : $K^* \to GL_n(K)/SL_n(K)$. The composite map $\varphi^* \circ \alpha$ is a continuous surjective endomorphism of K^* which also fixes the nth powers pointwise.

This theorem is proved in 1; in 2, we derive two straightforward corollaries of Theorem 1, which we state as lemmas.

LEMMA 2.1. Any field K for which L is \mathbb{R} or \mathbb{C} is n-determinant characterised for each natural number n.

LEMMA 2.2. Let K be any topological field, and suppose that n is coprime to t, the order of the torsion subgroup T of K^* . Then K is n-determinant characterised.

The main complication arises when (n, t) > 1. The result for dense subfields K of local fields L is that the general solution of (A) and (B) is the determinant, multiplied by roots of unity associated in a natural way with the norm residue symbols of certain extensions. The precise statements are given in §3; an added bonus is another proof of Lemma 2.1, as a detail of a general result on local fields.

1. Proof of Theorem 1.. We consider first the effect of restricting φ to the subgroup $SL_n(K)$; the centre Z of $SL_n(K)$ consists of all matrices $\alpha \mathbf{1}$, where $\alpha^n = 1$. In view of condition (B), the kernel of φ contains Z. Thus φ induces a homomorphism $\varphi^{**}: PSL_n(K) \to K^*$. The kernel of φ cannot be trivial for n > 1, as the domain is not abelian; hence, as $PSL_n(K)$ is

simple, ker φ^{**} is the whole group. It follows that the kernel of φ contains $SL_n(K)$; since the latter is a closed normal subgroup of $GL_n(K)$, φ induces a continuous epimorphism $\varphi^*: GL_n(K)/SL_n(K) \to K^*$. The determinant maps $GL_n(K)$ onto K^* , with kernel $SL_n(K)$, so that there is an induced continuous isomorphism $\alpha: K^* \cong GL_n(K)/SL_n(K)$. Then the composite map $f = \varphi^{*} \circ \alpha$ is a continuous surjective endomorphism $K^* \to K^*$. Since both the determinant and φ satisfy (B), it follows that $f(\mu^n) = \mu^n$ for all μ in K^* .

2. Since everything in C is an *n*th power, Lemma 2.1 is now immediate when $L = \mathbb{C}$. The same is true when $L = \mathbb{R}$ and *n* is odd. When *n* is even, we note that *f* fixes at least the positive reals, and is also surjective; hence it must be the identity. Lemma 2.2 is readily proved by observing that, for all μ in K^* , $f(\mu)/\mu$ must be an *n*th root of unity, hence 1, since *n* is coprime to *t*.

3. The twisting factors. We now stipulate that K be discrete, with locally compact completion L. Thus L is one of the following:

(i) the real field \mathbb{R} ;

(ii) the complex field \mathbb{C} ;

(iii) the completion of an algebraic number field with respect to an archimedean valuation and thus a finite extension of a *p*-adic completion \mathbb{Q}_p of the rational field \mathbb{Q} ;

(iv) the completion of a finite algebraic function field in one variable over a finite constant field and thus a field of formal power series F((T)), where F = GF(q).

Let us write s = (n, t); then f, of Theorem 1, fixes nth powers if and only if it fixes sth powers. From the equation $f(\mu^s) = \mu^s$, we deduce that $f(\mu) = \mu \cdot \varepsilon^{\sigma(\mu)}$, where $\sigma \colon K^* \to \mathbb{Z}_s$ is a continuous homomorphism; writing $\sigma(K^*) \cong \mathbb{Z}_r$, where r divides s, we may assume that ε is a primitive rth root of 1. All relevant maps extend uniquely to the completion L; hence we can say that $L^*/\ker \sigma \cong \mathbb{Z}_r$, so that ker σ is a closed normal subgroup of finite index in L^* . Hence there exists a unique cyclic field extension F/L such that ker $\sigma = N_{F/L}(F^*)$, and, further,

$$\mathbb{Z}_{r} \cong L^{*}/\ker \sigma = L^{*}/N_{F/L}(F^{*}) \cong \operatorname{Gal} F/L.$$
(3.1)

(See [3], especially pp. 153–154 and 159–161.) The right-hand isomorphism in (3.1) is induced by the norm-residue map $\alpha \mapsto (\alpha, F/L)$. If we choose a specific isomorphism $h: \operatorname{Gal} F/L \to \mathbb{Z}_r$, the norm-residue symbol induces a homomorphism $L^* \to L^*$ by $\alpha \mapsto \varepsilon^{h((\alpha, F/L))}$. As h differs from σ by at most an automorphism of \mathbb{Z}_r , we may suppose ε chosen to make $f(\mu) = \mu \cdot \varepsilon^{h((\alpha, F/L))}$. The condition that f be surjective is satisfied if and only if $1 + h((\varepsilon F/L))$ is coprime to r, that is, if and only if $(\varepsilon, F/L) = \gamma \delta^{-1}$, where both γ and δ generate Gal F/L. This can give rise to nontrivial f, as when, e.g., r is odd, $\varepsilon^{1/r} \notin L$, and $F = L(\varepsilon^{1/r})$. Here ε is a norm, so that $(\varepsilon, F/L) =$ identity.

Since \mathbb{C}^* contains no proper closed subgroups of finite index (for \mathbb{C}^* is homeomorphic to $\mathbb{R} \oplus \mathbb{R}/\mathbb{Z}$), we obtain another proof that \mathbb{C} is *n*-determinant characterised for all *n*. Further, \mathbb{R}^* has only the positive reals as a norm subgroup, corresponding to the extension field \mathbb{C} , and then the corresponding *f* is $x \mapsto x . (\operatorname{sgn} x)^m$, for some integer *m*. Surjectivity implies that *m* is even; so we have Lemma 2.1 again. The formal power-series and *p*-adic cases admit pathological solutions φ as above because, essentially, they are far from being algebraically closed.

https://doi.org/10.1017/S0017089500002123 Published online by Cambridge University Press

R. W. K. ODONI

REFERENCES

1. K. Hensel, Über den Zusammenhang zwischen den Systemen und ihren Determinanten, J. Reine Angew. Math. 159 (1928), 240–254.

2. E. Artin and J. T. Tate, Class-field theory (New York, 1967), p. xi.

3. J. Neukirch, Klassenkörpertheorie (Mannheim, 1969).

UNIVERSITY OF GLASGOW GLASGOW G12 8QQ

62