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X-chromosome inactivation (XCI) is the form of dosage compensation in mammalian female cells to balance X-linked gene
expression levels of the two sexes. Many diseases are related to XCI due to inactivation escape and skewing, and the symptoms and
severity of these diseases also largely depend on the status of XCI.-ey can be divided into 3 types: X-linked diseases, diseases that
are affected by XCI escape, and X-chromosome aneuploidy. Here, we review representative diseases in terms of their definition,
symptoms, and XCI’s role in the pathogenesis of these diseases.

1. X-Chromosome Inactivation, Escape,
and Skewing

During XCI, many epigenetic events take place and ensure the
compacted heterochromatin structure of the inactive X
chromosome (X inactive, Xi) to silence most genes on the
chromosome. XIST lncRNA is expressed and coats the Xi in
cis [1, 2], which starts a cascade of events including substi-
tution of macroH2A [3], the removal of active histone
modifications [4, 5], the addition of repressive histone
modifications [6–9], CpG islands methylation [10], and
heterochromatin protein recruitment [11, 12]. As a result, the
Xi is compacted into a rounder shape compared to the more
flat structure of the active X chromosome (X active, Xa) [13].

Not all genes on the Xi are in a repressed state. It is
estimated that about 15%–30% of all the genes on the Xi
escape gene repression and are expressed [14, 15]. For
different individuals, ages, and cell types, the gene escape
patterns are diverse [14, 16]. Some genes are found to be
escaping in most cell types, others are highly variable
depending on the origin of cells. -e occurrence of escaped
genes has been found to be essential in the pathogenesis of
many diseases including autoimmune diseases [17] and
cancer [18–21].

Skewed X-chromosome inactivation or X-chromosome
inactivation skewing describes the phenomenon when more
than 75% of cells in an individual chose the X chromosome
from one parent as the Xi. -is occurs since the choice of
which X chromosome to silence is random and it takes place
early in the gastrulation stage, so when the choice is at the tail
end of the normal distribution, or if alleles of specific genes
from one parent’s origin render the cells more robust, it may
lead to skewing of the X-chromosome inactivation, instead
of the 50% completely random choice [22, 23]. It is estimated
that 1.5%–23% of females have skewed X inactivation
[24–26]. -e direction and degree of XCI skewing may
influence the severity of some diseases including haemo-
philia B [27, 28], dyskeratosis congenita [29], Duchenne
muscular dystrophy [30], myotubular myopathy [31], and
Fabry disease (FD) [32, 33], which will be discussed more in
detail in this review.

Many diseases have been found to be related to the XCI
process. -ey can be roughly categorized to 3 types: (1)
X-linked gene diseases, whose severity is greatly influenced
by the direction and degree of X-inactivation skewing; here,
we review FD that can be categorized to this type; (2)
diseases that have higher occurrence in female population
due to the presence of an extra pair of X chromosome and
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the possibilities to have escaped gene expression from the Xi:
systemic lupus erythematosus (SLE) will be reviewed in this
paper as an example; (3) X-chromosome aneuploidy: Turner
syndrome (TS, 45, X), triple X syndrome (47, XXX), and
Klinefelter syndrome (47, XXY) belong to this type. -ese
diseases will be reviewed in terms of their clinical symptoms,
pathogenic mechanism, and the role of XCI in the clinical
presentation.

2. XCI-Related Diseases

2.1. X-Linked Diseases. For almost all X-linked diseases,
clinical manifestation is more severe in males than in fe-
males. Female carriers are either asymptomatic or show
milder phenotypes compared to males. Sex differences in
these X-linked diseases are due to XCI [34]. Males are
hemizygous formost X-linked genes; thus, a male carrier of a
mutant allele is usually affected with full presentation of the
disease clinical features. Females have two types of cells in
terms of their XCI status: those whose maternal X is active
and those whose paternal X is active. -erefore, even if a
female carries one copy of mutant allele, she probably still
does not have full clinical presentation because a portion of
the female cells has the mutant X inactivated. Data from
OMIM show that there are more than 500 X-linked diseases
that affect males more severely. X-linked retinitis pigmen-
tosa [35, 36], Duchenne muscular dystrophy [37], FD, and
fragile X syndrome all belong to this category.

Among those X-linked diseases with higher male sus-
ceptibility, some rarely affect females, whereas others can
present severe symptoms in female heterozygotes. -ere are
mainly two factors behind whether female heterozygotes will
have clinical manifestation: protein transfer and cell selec-
tion [38]. Protein transfer is the process when variant cells
could not make functional proteins but wildtype cells can
transfer functional proteins into those deficient cells to make
up for the loss. Cell selection is the process when there is a
growth advantage for either the wildtype cells or mutant cells
because of the mutant phenotype, the other cell population
dies off gradually, making disease manifestation not evident
or very severe, respectively.

Hunter syndrome and FD are both X-linked lysosomal
enzyme diseases. Hunter syndrome rarely affects females
[39], whereas FD can present severe symptoms in female
patients. -e difference in female susceptibility lies in the
different ability for cells to share the lysosomal enzyme [40].
-e enzyme iduronic sulfatase loss in Hunter syndrome can
be readily supplied by nearby wildtype cells, whereas the
mature form of ɑ-galactosidase A (ɑ-GAL A) is hard to
uptake for mutant cells in FD [41].

-ere are X-linked diseases that only or mainly affect
females. -ose disease variants usually cause loss of an
essential protein completely, so that males are lethal in
utero, leaving females to be the major sex to be afflicted with
these diseases. Cornelia de Lange 2 (with SMC1A trun-
cating variants) [42] and CHILD syndrome [43] only affect
females since male carriers are lethal in utero. Other dis-
eases affect some males due to a milder form of mutant or
mosaic. Rett syndrome [44], incontinentia pigmenti type 2

[45], and focal dermal hypoplasia [46] all belong to this
type.

In the next part, FD will be discussed in detail as an
example to show how XCI is involved in the pathogenesis of
X-linked diseases. FD is caused by mutations in the GLA
gene which codes for the ɑ-GAL A enzyme. ɑ-GAL A breaks
down globotriaosylceramide and glycosphingolipids in the
lysosome for recycling in cell metabolism, and decreased
activity or loss of ɑ-GAL A leads to buildup of those
molecules in the lysosome which can cause multisystemic
effects in patients [47]. ɑ-GAL A is abundant in the kidney
and vascular tissues, and key manifestation of FD includes
malfunction of the kidney and heart. -e estimated inci-
dence of FD is 1 in 117,000 [48].

-e disease phenotype depends on residual enzyme
activity: less than 1% of normal activity results in classic FD,
and levels between 1% and 30% leads to atypical forms of FD
(also called late-onset FD). Classic FD mainly affects males.
Classic FD patients usually present symptoms early in
childhood that include acute pain in extremities and fatigue,
hypohidrosis [49], neuropathic pain in the hands and feet,
angiokeratomas in the lower abdomen and bathing trunk
area [50], gastrointestinal problems, and cornea verticillata
[51, 52]. Because of the residual ɑ-GAL A activity, atypical
FD patients develop symptoms much later in life. Some
develop multiple symptoms as young adults, while others
only show signs of FD in specific organs such as the heart
and kidneys. Heterozygous females have 0–100% of normal
plasma ɑ-GAL A activity and can have symptoms that range
frommild to severe depending on their skewing of XCI [53].

Males are usually severely affected, whereas clinical
presentation in female patients is more variable [53, 54].
Females usually develop symptoms in their adulthood which
is much later than males, and symptoms are usually milder
[55]. -is can lead to misdiagnosis in female patients. Since
male has one copy of X chromosome, defect in the GLA gene
can cause FD in males, whereas female has two X chro-
mosomes and depending on X chromosome being inacti-
vated and skewing of XCI, female mutant gene carriers can
have a spectrum of clinical presentation from completely
nonsymptomatic to severe symptoms as seen in males [56].

In female FD patients, both random XCI and skewed
XCI are observed. In a study that evaluated XCI pattern of
four different tissues from female FD patients, random XCI
is observed in 71% of samples and skewed XCI in 29% of
samples [56]. Other studies have found similar ratios
[33, 57]. For patients with random XCI, disease presentation
usually worsens severely with age, which is partially due to
inefficient protein transfer between wildtype and affected
cells. For patients with skewed XCI, predominant expression
of the mutant GLA allele usually results in early onset and
rapid progression in FD, whereas the favored expression of
the wildtype GLA allele is associated with mild phenotype
and little progression over time.

For male patients, diagnosis can be confirmed by low ɑ-
GAL A activity in leukocytes, whereas for female patients, ɑ-
GAL A activity can range from very low to normal levels.
-erefore, gene sequencing is the gold standard for diagnosis
in females [58]. It has been shown that level of ɑ-GAL A
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cannot predict the severity of symptoms well in female
patients, and some researchers argue that the enzyme de-
ficiency may result in other pathogenetic mechanisms
[59–61].

It was believed that skewed XCI is the main reason for
phenotype variability in female heterozygotes
[32, 33, 56, 62], but recently some studies have come at the
conclusions that skewed XCI could not explain all cases of
severe FD and is not the main factor in the variable clinical
presentation of FD in females [57, 63, 64].

One factor that might have complicated the results is the
tissues chosen for analyzing the XCI skewing. Most studies
chose easily accessible leukocytes, urinary cells, and buccal
epithelia, rather than the tissues from affected organs, such
as cardiac and renal tissues. Also, XCI skewing pattern could
be different in different tissues from the same subject [65].
Examining samples from affected tissues would give the best
perspective on XCI skewing’s role in phenotype variability in
female patients, but would require invasive biopsies.

Since some female patients with severe symptoms have
randomXCI, it points to factors other than XCI skewing that
contribute to FD disease severity in heterozygous females.
-e nature of mutation could be essential in determining
disease severity. Mutations that result in complete loss of the
functional protein result in severe phenotypes, whereas
missense mutations could result in mild phenotype or late-
onset presentation. Even for family members with the same
mutation, there could be vastly different clinical expression
[61, 66]. It is likely that besides XCI skewing and nature of
mutation, the variability in female patients is dependent on
other genetic, epigenetic, and environment factors as well
[58].

2.2. Diseases /at Are Affected by XCI Escape or X-Chro-
mosome Dosage Effect. Another type of diseases that are
affected by XCI are due to X-inactivation escape. -e escape
and thus overexpression of some genes in female cells could
be related to disease presentation and sex bias in those
diseases. -ese include autoimmune diseases (SLE and
autoimmune thyroid diseases [67, 68]) and some psychiatric
disorders (bipolar disorder and major depression [69]).

Here, SLE will be discussed in detail as an example to
show how XCI is involved in the pathogenesis of diseases
affected by XCI escape and X-chromosome dosage effect.
Many autoimmune diseases have sex bias where number of
female patients is significantly higher than that of male
patients. Many factors contribute to the sex bias including
difference in innate immunity, immune response intensity
[70], and hormones [71]. Many genetic risk loci have been
discovered to be associated with SLE predisposition, some of
which are X-linked. -e extra pair of X chromosome, the
possibility for these genes to escape, and a higher amount of
the gene product in females thanmales contribute to sex bias
of this disease.

SLE is a chronic autoimmune disease which leads to
variable clinical presentations depending on the major organ
affected. -e word erythematosus refers to the rash that
patients usually have on their skin. SLE incidence ranges

from 2.2 to 23.1/100,000 person-years globally [72, 73], with
the highest estimated incidence in North America. Women
have higher prevalence of SLE [74, 75], and people of African
ethnicity have higher incidence and prevalence than Cau-
casians [76].

For people with predisposition for SLE, antinuclear
antibodies are produced and form immune complexes with
nuclear antigen, which then deposit in tissues and cause
inflammation. Antibodies against red blood cells and white
blood cells could also be produced and result in type II
hypersensitivity. -ere are more than 80 genetic predispo-
sitions that have been discovered to date, such as TREX1
[77], C8orf13-BLK [78], ITGAM-ITGAX [78], IL10 [79],
TNIP1 [79], and IKZF1 [80] (the abovementioned gene loci
are not X-linked). For most patients, SLE is caused by
mutations in several genes rather than a single locus.

Besides genetic factors, there are also epigenetic factors
that are essential in the disease pathogenesis.-ere is around
70%–75% discordance of SLE incidence between identical
twins [81, 82]; this could be due to the different epigenetic
landscape for these twins and also different X-inactivation
pattern [83]. X-linked genes that are related to onset of SLE
might be differentially inactivated among different cells,
tissues, and individuals, contributing to the different onset of
SLE in identical twins [84].

Symptoms of SLE include fatigue, fever, painful joints,
rashes (especially butterfly-shaped rash on the cheek), and
sensitivity to sun [85]. Since there are a variety of general and
specific symptoms, diagnosis of SLE is difficult. Patients are
diagnosed by adding scores from 10 clinical domains:
constitutional, cutaneous, arthritis, neurological, serositis,
haematological, renal, antiphospholipid antibodies, com-
plement proteins, and highly specific antibodies [86]. SLE is
characterized by periods of flare-ups and remittance, and
treatments mainly involve immunomodulation and im-
munosuppression drugs and are targeted at preventing and
limiting the severity of flare-ups.

Ratio of women with SLE to men is estimated to be 9 :1
to 11 :1. -ere could be several factors that contribute to the
gender difference in disease susceptibility. -ese factors are
hormones [87, 88], X-chromosome dosage factor, and
X-linked gene overexpression.

It is shown that sex steroids can regulate autoimmune
regulator (AIRE) locus expression, which in turn affects
susceptibility to autoimmunity diseases [89, 90]. -e fact
that there is big increase of SLE incidence and prevalence in
postpubertal females than males and prepubertal females
also implies that sex hormones play an important role in the
onset of SLE [91, 92].

-e hypothesis that X-chromosome dosage is a con-
tributing factor in SLE sex bias comes from the observations
of SLE incidence in X-chromosome aneuploidies. Women
with TS (45, X) are underrepresented compared to karyo-
typically normal women (46, XX) in SLE [93]. -e risk of
SLE in Klinefelter syndrome (47, XXY) males is 14-fold
higher than karyotypically normal men (46, XY) [94]. -e
estimated prevalence of SLE in women with (47, XXX) is 2.5
times higher than women with normal karyotype and is 25
times higher than men [95], suggesting that dosage of X
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chromosome could be related to disease pathogenesis. Ev-
idence from mouse models also indicates that an extra X
chromosome is an important contributing factor in female
bias in autoimmunity [96, 97]. It is important to note that
chromosome dosage factor could be in part due to X-linked
gene escape [98], which is the factor that is discussed next.

Overexpression of several X-linked genes has been
shown to be involved in SLE pathogenesis, such as CD40LG
[99], CXCR3 [100], KDM6A [101], CXorf21 [98], MECP2
[102, 103], IRAK1 [75, 103], TLR7(Toll-like receptor 7)
[104, 105], GPR173 [106], and PRPS2. Several of them are
immunity genes, including CD40LG, CXCR3, CXorf21,
IRAK1, and TLR7. -ere could be 3 different scenarios of
these X-linked gene overexpression, whether transcription
from the active X allele is enhanced or there is escape from
the inactive X allele or both. For the scenarios where XCI
escape is involved in overexpression, it contributes to sex
bias. Females by having the extra X chromosome have
chances of XCI escape, whereas males do not.

Several studies have looked at the overexpression origin.
TLR7 binds RNA in endosomes and activates the interferon
response. TLR7 overexpression is observed in male patients,
which is due to a SNP that increased transcription of the
gene on the active X chromosome [104]. Another study
found that there is biallelic expression of TLR7 in both
female normal and SLE patient B cell lines, which means
TLR7 is an escape even in healthy individuals [17]. -e
abovementioned studies show that TLR7 overexpression can
come from both enhancing Xa allele expression and escape
from Xi. CXorf21 is another immunity-related gene that
shows XCI escape and has female-biased expression [98].
-ese are two examples of X-linked immunity gene escape
contributing to sex bias in SLE.

A few other of these X-linked genes show overexpression
only in female SLE patients but not in males, such as
CD40LG [107, 108] and CXCR3 [108], which means the
overexpression comes from the Xi, rather than Xa. Deme-
thylation of the promoter region is also observed, which
suggests that overexpression originates from XCI escape.

It has recently been observed that inactive X chromo-
some in SLE patient B cells have dramatic reduction in
heterochromatic modifications, predisposing X-linked im-
munity gene escape [109]. -is has provided further
mechanistic insight as to how X-linked genes might con-
tribute to SLE pathogenesis and sex bias.

2.3. X-Chromosome Aneuploidy. X-chromosome aneu-
ploidy results in disease phenotypes in human: TS (45, X),
Klinefelter syndrome (47, XXY), and triple X syndrome (47,
XXX). For both Klinefelter syndrome and triple X syn-
drome, only one X chromosome remains active and all extra
pairs of X chromosomes are inactivated. It is hypothesized
that overexpression of escape genes results in the phenotypic
abnormalities seen in those diseases [110]. -e expression
would be lower in TS due to haploinsufficiency. Indeed,
SHOX gene, which escapes XCI, has been associated with tall
stature in Klinefelter syndrome and triple X syndrome and
short stature in TS [111, 112]. On the other hand, increased

expression is also observed for some X-linked genes with
decreasing X-chromosome dosage [113], indicating a
compensatory mechanism in the complex relationship be-
tween X-chromosome dosage and X-linked gene expression
level.

-ere is complex and diverse comorbidity associated
with X-chromosome aneuploidy diseases, and identifying
causal genes for different phenotypes has been difficult [114].
However, recent studies of genome-wide DNA methylation
profile and transcriptome in patients revealed that there is
DNA hypermethylation associated with Klinefelter syn-
drome and DNA hypomethylation associated with TS,
which also shed light upon several candidate genes
[114, 115].

3. Future Directions

X-linked diseases affect female patients differently resulting
in a wide range of phenotype depending on their X-chro-
mosome inactivation pattern. As seen in the review above,
most of the studies mentioned are case studies and larger
sample size could benefit exploration of the relationship
between skewed X inactivation and phenotype severity. It is
also important to note the cell type used when analyzing XCI
skewing pattern, since it varies between different cell types
even in the same individual. Also, it would be the best to
analyze samples from affected organs to explore the rela-
tionship between XCI skewing and phenotype severity in
female heterozygotes. Targeted reactivation of normal allele
on the Xi could be further explored to support the devel-
opment of more treatment options, as shown in studies in
rodent models and cell lines [116, 117].
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[87] S. Laffont and J.-C. Guéry, “Deconstructing the sex bias in
allergy and autoimmunity: from sex hormones and beyond,”
Advances in Immunology, vol. 142, pp. 35–64, 2019.

[88] I. Sekigawa, T. Naito, K. Hira et al., “Possible mechanisms of
gender bias in SLE: a new hypothesis involving a comparison
of SLE with atopy,” Lupus, vol. 13, no. 4, pp. 217–222, 2004.

[89] N. Dragin, J. Bismuth, G. Cizeron-Clairac et al., “Estrogen-
mediated downregulation of AIRE influences sexual di-
morphism in autoimmune diseases,” Journal of Clinical
Investigation, vol. 126, no. 4, pp. 1525–1537, 2016.

[90] M.-L. Zhu, P. Bakhru, B. Conley et al., “Sex bias in CNS
autoimmune disease mediated by androgen control of au-
toimmune regulator,” Nature Communications, vol. 7, no. 1,
Article ID 11350, 2016.

[91] F. Rees, M. Doherty, M. Grainge, G. Davenport, P. Lanyon,
and W. Zhang, “-e incidence and prevalence of systemic
lupus erythematosus in the UK, 1999-2012,” Annals of the
Rheumatic Diseases, vol. 75, no. 1, pp. 136–141, 2016.

[92] L. Arnaud, J.-P. Fagot, A. Mathian, M. Paita, A. Fagot-
Campagna, and Z. Amoura, “Prevalence and incidence of
systemic lupus erythematosus in France: a 2010 nation-wide
population-based study,” Autoimmunity Reviews, vol. 13,
no. 11, pp. 1082–1089, 2014.

[93] C. M. Cooney, G. R. Bruner, T. Aberle et al., “46, X, del (X)
(q13) Turner’s syndrome women with systemic lupus
erythematosus in a pedigree multiplex for SLE,” Genes &
Immunity, vol. 10, no. 5, pp. 478–481, 2009.

[94] R. H. Scofield, G. R. Bruner, B. Namjou et al., “Klinefelter’s
syndrome (47, XXY) in male systemic lupus erythematosus
patients: support for the notion of a gene-dose effect from the
X chromosome,” Arthritis & Rheumatism, vol. 58, no. 8,
pp. 2511–2517, 2008.

[95] K. Liu, B. T. Kurien, S. L. Zimmerman et al., “X chromosome
dose and sex bias in autoimmune diseases: increased prev-
alence of 47, XXX in systemic lupus erythematosus and
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