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Abstract

We combine the ideas of a Harish-Chandra–Howe local character expansion, which
can be centred at an arbitrary semisimple element, and a Kim–Murnaghan asymptotic
expansion, which so far has been considered only around the identity. We show that,
for most smooth, irreducible representations (those containing a good, minimal K-
type), Kim–Murnaghan-type asymptotic expansions are valid on explicitly defined
neighbourhoods of nearly arbitrary semisimple elements. We then give an explicit,
inductive recipe for computing the coefficients in an asymptotic expansion for a tame
supercuspidal representation. The only additional information needed in the inductive
step is a fourth root of unity, which we expect to be useful in proving stability and
endoscopic-transfer identities.
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1. Introduction

1.1 Motivation
According to Harish-Chandra’s Lefschetz principle, by analogy with the situation for real
groups, the character tables of representations of p-adic groups are expected to carry significant
information about harmonic analysis on those groups. For example, in [DS16], DeBacker and the
author used the character computations of Adler and the author [AS09] to show that a certain
natural candidate for an L-packet, constructed and shown to satisfy many of the necessary
properties by Reeder [Ree08], satisfied stability conditions. Actually, a slight modification to
the construction of Yu [Yu01], on which the conjecture is built, was necessary; see [DS16,
Definition 5.4] and, from a different perspective, our discussion of Weil representations in § 5.3.
It is not clear that the appropriate modification could easily have been seen from ‘first principles’,
but it essentially popped out of the explicit character formulae of [AS09]. These investigations
have been generalised, and put in a broader setting related to the local Langlands correspondence,
by Kaletha in [Kal13, Kal15, Kal16], the last of which seems to represent the current state of
the art in extracting such information from character formulae.

In [Kal16, Corollary 4.10.1], Kaletha shows that the character formula [DS16, Theorem 4.28],
which is stated by DeBacker and the author only for supercuspidal representations attached to
data satisfying a compactness condition, is valid on regular, topologically semisimple elements
for the so-called regular supercuspidal characters, even if they do not satisfy the compactness
condition. In [Kal16, Corollary 4.7.2], he also reinterprets the roots of unity in [DS16, § 4.3]
in such a way that they make sense on the dual-group side, even without the fine structure
theory of p-adic groups. This allows him to construct L-packets [Kal16, Proposition 5.2.4], and
to prove stability [Kal16, Theorem 6.3.2] and endoscopic-transfer identities [Kal16, Theorem
6.3.4] as a consequence of the reinterpreted character formulae (in particular, globally for
toral supercuspidal characters, and on the regular, topologically semisimple set for all regular
supercuspidal characters). In order to extend the range of validity of these identities, some
generalisation of the character formula is needed.

One immediate obstruction is the fact that the compactness assumption in [AS09,
Theorem 6.4] is not just an artefact of the proof; it is needed even to state the result, by
guaranteeing the finite-dimensionality of some representations and so allowing us to view
their characters as, not merely densely defined via the intricate Harish-Chandra machinery
of representing functions ([Har70, § 6, p. 60, Theorem 12] and [Har80, § 4, p. 99, Corollary to
Theorem 2]), but actually globally defined objects. Indeed, [AS09, Theorem 7.1] is stated in
terms of the values Θπ′0

(γ′0) of a character π′0 at a possibly singular, topologically semisimple
(modulo centre) element γ′0, and it is not clear how to assign sensibly a numerical value to this
symbol in all cases if π′0 is infinite dimensional, so that the operator π′0(γ′0) is not trace class.

The work of Kim and Murnaghan [KM03, KM06] on asymptotic expansions, similar to the
local character expansion but phrased in terms of non-nilpotent orbits, suggests one way forward.
Indeed, [AS09, Corollary 6.7] shows that the formulae of [AS09] specialise near the identity to the
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simplest case of such an asymptotic expansion (in terms of a single, semisimple orbital integral).
Unfortunately, this can only give information near the identity. Here we turn to the work of Adler
and Korman [AK07], which follows DeBacker [DeB02] and Kim and Murnaghan in proving
quantitative results for asymptotic expansions centred at non-identity elements. The Adler–
Korman results concern the local character expansion, in terms of nilpotent orbital integrals. We
view these two programmes as suggesting a middle ground: a Kim–Murnaghan-type asymptotic
expansion, but centred around arbitrary semisimple points.

This gives an idea for the shape of a general character formula, but there is one important
piece of information missing: namely, the coefficients in the asymptotic expansions. In [DS16,
Theorem 4.28], DeBacker and the author rewrite the character formulae of [AS09] in a form
that seems more amenable to use in computational harmonic analysis. In this paper we give
an explicit inductive recipe, inspired by the rewritten characters of [DS16], for computing the
relevant coefficients when the representation being considered is tame supercuspidal (i.e., arises
from Yu’s construction [Yu01]). In future joint work with DeBacker and Kaletha, we will explore
the consequences of these results for the endoscopic-transfer identities of [Kal16] for non-toral,
regular supercuspidal representations.

1.2 Structure of the paper
One surprising aspect of this paper is that, although our goal is explicit character computations,
we do not even mention representations except in §§ 4.4 and 5.3. It turns out that much of the
machinery that we need can be constructed in the setting of general invariant distributions.
We hope that this extra generality will be useful in future applications.

In § 2, we lay out the standard notation that we will use. §§ 2.4 and 2.5 are indices of
notation and terminology, respectively. In § 3.1, we briefly recall the Bruhat–Tits theory of
groups associated to concave functions [BT72, Proposition 6.4.9], and use Yu’s approach to their
structure theory [Yu01, § 2] to do a few calculations. In § 3.2, we modify the theory to handle
a class of compact, open subgroups whose definition involves reductive, algebraic subgroups
that need not have full rank. In previous work [AS08, AS09, DS16], we have often needed to
impose considerable tameness hypotheses in order to handle such groups. Although we are not
yet ready completely to discard such hypotheses, we can at least isolate exactly the parts that
we need. Namely, we have Hypotheses 4.3.1, 4.3.4, and 5.1.6, which deal with the group itself;
Hypotheses 3.2.2, 3.2.8, and 4.4.2, which concern the element γ about which we centre our
asymptotic expansions; and Hypotheses 4.1.1 and 4.4.6, which concern the K-types contained
in the representations whose characters we want to compute, and are automatically satisfied
for Yu’s tame supercuspidal representations. (There are also Hypotheses 4.1.5 and 5.1.7, which
need not be explicitly imposed for the main results, where they are automatically satisfied.)
All of these are known to hold in many cases; we discuss sufficient conditions for each as it is
introduced.

We have also avoided as long as possible assuming that our group is connected (or that the
automorphism of its identity component induced by the element γ of § 3.2 is inner). Although we
eventually do inherit this assumption from [Yu01] in § 5.3, we have laid enough of the groundwork
by that point that we hope it can serve as a starting point for investigating asymptotic expansions
related to twisted characters and base change.

Although our final result provides explicit computations only for tame supercuspidal
representations, it turns out that the asymptotic-expansion machinery built by DeBacker in
[DeB02], and later generalised by Kim and Murnaghan in [KM03, KM06] and Adler and Korman
in [AK07], is sufficiently general that it can handle our recentred existence results for most
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smooth, irreducible representations. In § 4.1, we recall the now-standard properties of ‘good’

elements, slightly generalised to the non-connected setting. Our goal is to use this machinery to

describe the good minimal K-types, but, before we do so, it turns out to be convenient to take a

detour in § 4.2 to do some abstract-algebraic computations that allow us to define a ‘perpendicular

group’, in some sense analogous to the groups J and J+ of [Yu01, § 9], that will be useful in

our later computation of Gauss sums (§ 5.1). In §§ 4.3 and 4.4, we describe the K-types that we

consider. Our first main result, Theorem 4.4.11, shows that the character of a representation

containing one of these K-types has Kim–Murnaghan-style asymptotic expansions, on explicitly

described neighbourhoods, about (nearly) arbitrary semisimple elements, not just the identity.

In § 5, we build to a quantitative version of the qualitative results of § 4. Inevitably (see

[AS09], and the historical discussion there), explicit calculations in p-adic harmonic analysis

seem to involve certain fourth roots of unity known as Gauss sums. In [Kal16, §§ 4.6–4.7], Kaletha

shows that these fourth roots of unity are actually indirectly predicted by the local Langlands

correspondence, since they occur in the definition of the transfer factor. In § 5.1, we follow

Waldspurger [Wal95] in interpreting these roots of unity as Weil indices. We expect that the

recent work of Kottwitz [Kot16], which has already been used in [Kal15, Theorem 4.10] and

[Kal16, Corollary 4.7.2], will continue to be helpful in translating these fourth roots of unity into

a form suited to stability and endoscopic-transfer calculations.

Our work in § 5.1 falls into two parts. The easy part is to define a Weil index using the Lie

algebra (Notation 5.1.2); the hard part is to show that this index actually arises in computations

on the group. We do the latter in Proposition 5.1.8. This section is the analogue of [AS09, § 5.2].

We have managed to avoid the ‘centrality assumption’ [AS09, Hypothesis 2.3] there by working

as much as possible directly on the group (which behaves well under tame base change), rather

than with values of linear characters (which need not extend). We hope that the occasionally

hairy computations are justified by what we see as increased clarity of the underlying concepts.

The heart of this paper is § 5.2. As mentioned above, although our final goal is to compute

characters, it turns out that many of the tools along the way—particularly vanishing results,

which cut down on the support of a character, or on the domain over which an integral must

be extended—work just as well for arbitrary invariant distributions. In particular, we have

isolated a key part of [AS09, Proposition 4.3] as Lemma 5.2.3; and translated the crux of [AS09,

Proposition 5.3.2] to the setting of general invariant distributions, as Proposition 5.2.6. With

these tools in hand, we can prove the main result of the section, Theorem 5.2.8, which is a

descent result that allows us to relate the coefficients in asymptotic expansions on a group G

and a twisted Levi subgroup G′. We show again here the inspiration that we have drawn from the

work of Kim and Murnaghan; our Theorem 5.2.8 is very reminiscent of the descent arguments

appearing in [KM06, §§ 6.2, 7.2].

Of course, some compatibility condition is necessary between the distributions on G and G′.

We have phrased it in a way that, we believe, suggests a Hecke-algebra isomorphism crying out

to be discovered. We are not yet able to prove the existence of such an isomorphism, but the first

main result of § 5.3, Theorem 5.3.8, describes a crude but suitable substitute in the setting of Yu’s

construction of tame supercuspidal representations. Combining this with Theorem 5.2.8 allows

us to deduce the main result of the paper, Theorem 5.3.11, which gives an explicit, inductive

description of the coefficients in the asymptotic expansion, centred around a (nearly) arbitrary

semisimple point, of the character of a positive-depth, tame supercuspidal representation.
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2. Notation and definitions

2.1 Representations and function spaces

Most of the notation below is standard, but we point out two important points that might

be unexpected. First, the function [K, f ] depends on the Haar measure dg on G, although the

measure [K, f ] dg does not. Second, we have followed [Yu01, § 17] in using the notation of [BK93,

§ 4.1], which builds in a contragredient to the definition of the Hecke algebra H(G//K, ρ).

If V is a vector space over any field F , then we denote by 〈·, ·〉 the pairing between the dual

space V ∗ := HomF (V, F ) and V , so that, for v∗ ∈ V ∗ and v ∈ V , we write 〈v∗, v〉 in place of

v∗(v).

If ρ is a representation of a group G on the C-vector space V such that point stabilisers are

open, then we temporarily write ρ∗ for the dual representation of G on the complex dual space

V ∗, given by 〈ρ∗(g)v∗, v〉 = 〈v∗, ρ(g)−1v〉 for all v ∈ V , v∗ ∈ V ∗, and g ∈ G; and then write V ∨

for the space of smooth vectors (those with open stabilisers) in V ∗, which is a ρ∗-stable subspace

of V ∗, and ρ∨ for the restriction of ρ∗ to V ∨, which is called the contragredient representation

to ρ. If γ : G′ → G is a homomorphism from some other group G′, then we write ργ for the

representation ρ ◦ γ of G′.

If X is an l-space in the sense of [BZ76, § 1.1]—i.e., a Hausdorff topological space for which

every point has a neighbourhood system consisting of open and compact sets—then we write

H(X) for its Hecke algebra, which is, by definition, the C-vector space of locally constant,

compactly supported, C-valued functions on X. If

– V is a finite-dimensional C-vector space,

– K1 (respectively, K2) is a compact group acting on X on the left (respectively, right), and

– ρi is a representation of Ki on V with open point stabilisers for i ∈ {1, 2},

then we write H((K1, ρ1)\X/(K2, ρ2)) for the subspace of those functions f ∈ H(X)⊗EndC(V ∨)

such that f(k1xk2) = ρ∨1 (k1)f(x)ρ∨2 (k2) for all g ∈ X, k1 ∈ K, and k2 ∈ K2. If ρ1 or ρ2 is the

trivial representation, then we may omit it, writing, for example, H(K1\X/K2). If K1 equals K2

and ρ1 equals ρ2, then we may write H(X//K1, ρ1).

If G is a topological group acting on X on the left (respectively, right), then we denote the

left (respectively, right) regular action of G on H(X) simply by juxtaposition. Specifically, for

f ∈ H(X) and g1, g2 ∈ G, we define g1fg2 ∈ H(X) by (g1fg2)(g1xg2) = f(x) for all x ∈ X (so

that we have simultaneously defined left and right actions of G on H(X)).

Now suppose that X is, in addition to being an l-space, a regular measure space. If K is

a compact, open subset of X and f belongs to H(K), then we write [K, f ] for the element of

H(X) obtained by extending meas(K)−1f by 0. If f is the constant function 1, then we may

omit it and write just [K]. With the obvious notation, we have g1[K, f ]g2 = [g1Kg2, g1fg2]. We

write
ffl
K f(x) dx for

´
X [K, f ](x) dx.

2.2 Algebraic varieties and algebraic groups

Let k be a field, and G a smooth group variety over k. (We shall soon impose additional

assumptions on both.) We say just ‘variety’ for ‘smooth variety over k’, and ‘group’ for ‘smooth

group variety over k’. The exception to the implicit use of the modifier ‘over k’ is that we want

to discuss mostly, but not only, complex vector spaces; so we refer to a ‘C-vector space’ in that

case, and, when necessary, to a ‘k-vector space’.

We denote varieties by boldface letters, and their sets of rational points by the corresponding

italic letters; so, for example, G is the group of rational points of G. We denote the identity
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component of an algebraic group with a following superscript circle, the Lie algebra by the
corresponding Fraktur letter or by ‘Lie’, and the dual by ‘Lie∗’; so, for example,

– G◦ is the identity component of G,

– Lie(G) or g stands for the Lie algebra of G,

– Lie∗(G) or g∗ for its dual,

– Lie(G) or g for its space of rational points, and

– Lie∗(G) or g∗ for the space of rational points of its dual (or, equivalently, the dual of its
space of rational points).

We always use G◦ for (G◦)(k), not necessarily (G(k))◦, which is a singleton when k is totally
disconnected. We write

Int : G → Aut(G)◦,

Ad : G → AutLie(Lie(G)),

Ad∗ : G → Autk(Lie∗(G)),

ad : Lie(G) → Der(Lie(G)),

and

ad∗ : Lie(G) → Endk(Lie∗(G))

for the interior-automorphism, adjoint, and related maps.
If E/k is an extension, then we say that a torus T in G is maximally E-split if it contains

a subtorus S such that SE is a maximal (E-)split torus in GE . It is possible a priori that there
is no torus rational over k that becomes maximal split after base change, but see § 2.3 for a
discussion of the specific case that we use.

We write DG for the derived group of G; and, if ~G = (G0, . . . ,G` = G) is a collection of
subgroups of G, then we write

Lie(~G) for (Lie(G0), . . . ,Lie(G`)),

Lie∗(~G) for (Lie∗(G0), . . . ,Lie∗(G`)),

and

D ~G for (DG` ∩G0, . . . ,DG` ∩G`−1,DG`).

We always use DG for (DG)(k), not necessarily D(G(k)), which may be smaller.
If V is a representation of G, then we write DV for the function G → GL1 given by g 7→

detV(g − 1). If X is a pointed, smooth variety on which G acts, preserving the preferred point
x, and V is the tangent space to X at x, with the induced action of G, then we may write DX,
or even just DX , in place of DV. As in [DS16, Definition 2.11], we write Dred

G for the functions
on G and its Lie algebra given by Dred

G (g) = DG/CG(gss)(g) and Dred
G (Y ) = DLie(G)/Lie(CG(Y ss))(Y ),

respectively.
We write Grss for the set of regular, semisimple elements of G.

2.3 Algebraic groups over non-Archimedean fields, and subgroups associated to
concave functions

For the entire paper, we require that the field k be complete with respect to a non-trivial discrete
valuation ord, for which the residue field f is finite. We assume throughout the paper that the
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residual characteristic of f is odd. (This is needed anyway to use the Weil representation appearing
in [Yu01], but we also need to use it again in our discussion of the Weil index in § 5.1, and, in
particular, in Proposition 5.1.8.) Fix a separable closure ksep/k, and let ktame be the maximal
tame extension of k inside ksep. For any algebraic extension E/k, we will denote the unique
extension of ord to a valuation on E again by ord.

Throughout the paper, we fix a complex character Λ of the additive group k that is non-trivial
on the ring of integers in k, but trivial on its unique maximal ideal. We will denote the induced
character of f also by Λ. If V is a vector space and X∗ is an element of the dual space, then we
write ΛX∗ for the character Λ ◦X∗ of V .

Also for the entire paper, we require that G be a reductive, but not necessarily connected,
algebraic group over k. We write B(G) for the enlarged Bruhat–Tits building of G over k, and
let x 7→ x be the projection from the enlarged to the reduced building. We will always equip G
(respectively, Lie(G)) with Waldspurger’s canonical Haar measures [Wal01, § I.4], which assign
mass |Lie(K)|−1/2 to the pro-unipotent radical K+ of a parahoric subgroup K (respectively, to
the pro-nilpotent radical Lie(K+) of its Lie algebra) with reductive quotient K; see [DR09, § 5.1,
p. 835]. Our results are usually stated in such a way that we need not make any reference to a
specific choice of measure, but this specific choice is important in, for example, Theorem 5.2.8.

As remarked in § 2.2, for a general extension E/k, there need not exist any (k-rational) torus
in G that becomes maximal (E-)split after base change to E. By [BT84, Corollaire 5.1.12], there
does exist such a torus, even a maximally (k-)split one, when E = kun. Since Gkun is quasi-split,
there also exists such a torus whenever E is an extension of kun. Since we will need to consider
maximally E-split tori only for E = ktame (see Lemmas 3.1.1 and 3.1.2), there is no concern
about whether such tori exist.

If S is a subset of Lie∗(G), then we write OG(S) for the collection of (rational) coadjoint
orbits of G on Lie∗(G) that intersect every neighbourhood (in the analytic topology) of S. Thus,
OG(0) is the analogue of the set of nilpotent orbits in the Lie algebra ([Kem78, Corollary 4.3] and
[AD02, Lemma 2.5.1]). Occasionally, we find it convenient to use slightly generalised notation;
for example, in Theorem 4.4.11, we refer, in the notation of that result, to OH◦(Ad∗(G)Z∗o ). Here
Ad∗(G)Z∗o is not a subset of Lie∗(H), but rather of a larger space Lie∗(G); and we are simply
using the abbreviated notation as shorthand for OH◦(Ad∗(G)Z∗o ∩ Lie∗(H)). In particular, if
Ad∗(G)Z∗o does not intersect Lie∗(H), then OH◦(Ad∗(G)Z∗o ) is empty.

If V is a finite-dimensional k-vector space, then the Fourier transform f̂ of f ∈ H(V ) is the
element of H(V ∗) given by

f̂(v∗) =

ˆ
V
f(v)Λ(〈v∗, v〉) dv for all v∗ ∈ V ∗.

Similarly, for f∗ ∈ H(V ∗), we define

f̌∗(v) =

ˆ
V ∗
f∗(v∗)Λ(〈v∗, v〉) dv∗ for all v ∈ V.

Note that this depends on the choice of Haar measure dv∗. There is a unique choice, called the

dual Haar measure to dv, so that
ˇ̂
f equals f for all f ∈ H(V ). Technically speaking, since we have

not specified a choice of dv, the functions f̂ and f̌∗ are not well defined, although the measures
f̂(v∗) dv∗ and f̌∗(v) dv are. In practice, V will be the Lie algebra of a reductive p-adic group,
equipped with its canonical measure, so that this ambiguity will not cause a problem; and then
we will equip the Lie-algebra dual V ∗ with the dual measure.
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Definition 2.3.1. As in [DS16, Definition 4.6], if π is an admissible representation of G, then
we write Θπ for the scalar character of π, which is the function on Grss that represents the
distribution character in the sense that

trπ(f) equals

ˆ
G

Θπ(g)f(g) dg

for all f ∈ H(G) [AK07, Proposition 13.1]; and Φπ for the function g 7→ |Dred
G (g)|1/2Θπ(g) on

Grss. Similarly, if Z∗ is an element of Lie∗(G) that is fixed by the coadjoint action of some
maximal torus T in G, and O belongs to OG(Z∗), then we write µGO for the orbital-integral
distribution on Lie∗(G) given by integration against some invariant measure on O, and µ̂GO for
the function on Lie(G)rss that represents its Fourier transform, in the sense that

µGO(f̂) equals

ˆ
Lie(H)

µ̂GO(Y )f(Y ) dY

for all f ∈ H(Lie(G)rss); and ÔGO for the function Y 7→ |Dred
G (Y )|1/2|Dred

G (Z∗)|1/2µ̂GO(Y ) on

Lie(G)rss. We sometimes write µGS in place of µGO, and similarly for µ̂ and Ô, if S is a non-empty
subset of O. As in [DS16, Remark 2.12], we have written Dred

G (Z∗) for the product
∏
〈Z∗,dα∨(1)〉

over all weights α of Tksep on Lie(Gksep) for which the multiplicand is non-zero. (For now we are
just establishing notation, so we ignore questions about convergence of the orbital integral; but
see the discussion preceding Theorem 4.4.11.)

Remark 2.3.2. Note that the distribution character f 7→ Θπ(f) on H(G) depends on the choice
of Haar measure on G, but the scalar character g 7→ Θπ(g) on Grss does not. The distribution
f 7→ µ̂GO(f) on H(Lie(G)) depends on the choice of invariant measure on O, which is determined
by a Haar measure on G and one on the centraliser in G of an element of O. A canonical choice is
described in [MW87, § I.8] (see also [DeB02, § 3.4, p. 410]). The representing function Y 7→ µ̂GO(Y )
on Lie(G)rss depends on both these, and a Haar measure on Lie(G).

As in [AS08, § 3.1, p. 8], we put R̃ = R t R+ t {∞}. We define (r+)+ = r+ for all r ∈ R,
and ±∞+ = ±∞. We define r̃ = (−r)+ and r̃+ = −r for all r ∈ R, and ±̃∞ = ∓∞. We extend
addition on R to R̃t{−∞} by putting r+s+ = (r+)+s = (r + s)+ for all r, s ∈ R; r+(−∞) =

−∞+ r = −∞ and r+∞ =∞+ r =∞ for all r ∈ R̃ with r <∞; and −∞+ (−∞) = −∞ and
±∞+∞ =∞+ (±∞) =∞. We extend subtraction on R to a partial operation on R̃ t {−∞}
by putting (r+)− s = (r − s)+ for all r, s ∈ R; r − (±∞) = ∓∞ for all r ∈ R̃ with r <∞; and
±∞− (∓∞) = ±∞.

We follow a suggestion of Cheng-Chiang Tsai and, for (x, r) ∈ B(G)×R>0, replace the usual
notation Gx,r and Gx,r+ for Moy–Prasad subgroups ([MP94, §§ 2.6, 3.2, 3.5] and [MP96, §§ 3.2,
3.3]) by Gx>r and Gx>r, respectively. For convenience, we make the convention that Gx>r+ means
Gx>r. Note that, by definition, Gx>r equals G◦x>r. We use similar notation for groups associated
to concave functions [BT72, § 6.4.3], as in [AS08, Definition 5.14], and for the Lie algebra, where
we can drop the requirement that r be non-negative (respectively, that the relevant function be
concave); and in Definition 3.2.4, where we define an analogous class of groups.

These conventions inevitably suggest the notation Gx=r for Gx>r/Gx>r; we adopt this
and obvious variants, even though they are a bit misleading in the case where k has mixed
characteristic. In particular, we write k>r = {t ∈ k | ord(t) > r}, and similarly for other notation
related to the filtration on k; so, for example, f equals k=0 = k>0/k>0.
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2.4 Index of notation

B(G), 2311

Bγ , 2332

bX∗,γ , 2350

C
(<i)
G (γ), 2318

C
(<i)
G (γ±1), 2318

C
(<i)
G′ (γ), 2319

C
(<i)
G′ (γ±1), 2319

χ, 2366

[K], 2309

[K, f ], 2309

DG, 2310

DG, 2310

D(H ∩ ~G, ~G)x>(~a+,~a)+r, 2336

D ~G, 2310

DG/H , 2310

Dred
G , 2310

e, 2337

ex=~, 2354

f+, 2320

f−, 2320

f̌∗, 2311

f1 ∨ f2, 2322

f1 o f2, 2322

f1 ./ f2, 2322

f, 2310

f̂ , 2311

f c, 2320

fd, 2320

fn, 2320

G, 2311

g, 2310

γ, 2317, 2327, 2351, 2356

GG(X∗, γ), 2350

GG(O′, γ), 2350

G◦, 2310

G′, 2327, 2351, 2356, 2366

Grss, 2310

~Gx>~a, 2317

Gx>f , 2312

~Gx>f , 2320

Gx>f , 2312

Gx=r, 2312

H, 2322, 2327, 2354, 2356

H((K1, ρ1)\X/(K2, ρ2)), 2309

H(K1\G/K2), 2309

H(X), 2309

H(X �K1, ρ1), 2309

H′, 2328, 2354, 2356

(H ∩ ~G, ~G)x>(~a+,~a)+r, 2336 
K

f(x) dx, 2309

J , 2368

Jo, 2367

J+, 2368

Jo,+, 2367

J ′, 2368

J ′o, 2367

K, 2368

k, 2310

Ko, 2367

K ′, 2368

K ′o, 2367

ksep, 2311

ktame, 2311

Λ, 2311

ΛX∗ , 2311

Lie(C
(<i)
G (γ))⊥, 2319

Lie(G), 2310

Lie∗(C
(<i)
G (γ))⊥, 2319

Lie(C
(<i)
G′ (γ)), 2319

Lie(~G)x>~a, 2317

Lie∗(~G)x>~a, 2317

Lie(~G)x>f , 2320

Lie∗(~G)x>f , 2320

Lie(~G), 2310

Lie∗(~G), 2310

log, 2337

M, 2318

µGO, 2312

µ̂GO, 2312

N±, 2318

o, 2343, 2366

ÔGO, 2312

OG(S), 2311

ord, 2311

P±, 2317

Φπ, 2312

φ, 2354, 2356, 2368

φo, 2343, 2366

φ̂, 2354, 2356, 2368

φ̂o, 2343, 2367

φ̃, 2368

φ̃+, 2368

π, 2367

π′, 2366

qG, 2357

Qγ , 2332

qX∗,γ , 2350

R̃, 2312

r, 2318, 2326, 2351, 2356, 2366

ργ , 2309

ρ∨, 2309

r̃, 2312

s, 2318

Θπ, 2312

Θ̌π,γ,Z∗o
, 2343

Θ̌π,γ , 2343

X∗, 2328, 2351, 2356, 2368

x, 2311

x, 2322, 2327, 2351, 2356, 2368

Z∗o , 2326, 2367
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2.5 Index of terminology

depth matrix, 2320
grouplike, 2320

depth vector, 2317
concave, 2317
grouplike, 2317

dual
blob, 2338
Haar measure, 2311

Hecke algebra, 2309

Levi subgroup
tame, twisted, 2317
tame, twisted sequence, 2317

contains, 2317

Weil index, 2350

3. Compact, open subgroups

3.1 Groups associated to concave functions

In Definition 3.2.4, we define a class of compact, open subgroups related to those constructed in

[AS08, Definition 5.14]. For technical reasons involving the presence of algebraic subgroups that

are not of full rank in G, we work mostly with ‘depth vectors’ (see Definition 3.2.1) and ‘depth

matrices’ (see Definition 3.2.4), rather than concave functions as in [AS08]; but we do need to

consider such functions for two technical results.

Lemma 3.1.1 is mostly a straightforward generalisation of part of [AS08, Proposition 5.40],

with essentially the same proof. We use it only in the proof of Lemma 5.3.5, where we need an

additional technical fact, an analogue of [AS08, Lemma 5.29]; so, for convenience, we state both

facts together.

Working with groups associated to arbitrary concave functions rather than depth matrices

allows us to ‘move’ a group Gx>f to another point, by writing it as Gy>f+(y−x). The condition

on f ∨ f in Lemma 3.1.1 is needed to use [AS08, Proposition 5.39], but it is just for maximal

generality; for us, it suffices to know that it is satisfied whenever f is a translate by a linear

function of an everywhere positive, concave function. Lemma 3.1.1 relies on [AS08, Hypothesis D],

but this is automatically satisfied when G is ktame-split, which will be the case when we use the

result (in Lemma 5.3.5).

In the notation stabG′(E)(x) and stabG′(x), note that the symbol x stands for a point in the

reduced building of G′(E) or G′, not necessarily of G(E) or G. The lemma relies crucially on

the good descent properties of full stabilisers of points in the building; it would not work, for

example, if we replaced stabG′(E)(x) and stabG′(x) by their parahoric subgroups G′(E)x>0 and

G′x>0.

Lemma 3.1.1. Suppose that

– [AS08, Hypothesis D] holds,

– G′ is the centraliser in G◦ of a ktame-split torus,

– T is a maximally ktame-split, maximal torus in G′,

– x is a point of B(T ),

– E/k is a tame extension, and

– f1 and f2 are R̃-valued, Galois-invariant, concave [BT72, § 6.4.3] functions on the set

Φ̃(Gksep ,Tksep) of weights of Tksep on Lie(Gksep) satisfying fj(0)> 0 and fj(α)< (fj∨fj)(α)

[AS08, Definition 3.2.6] whenever α ∈ Φ̃(Gksep ,Tksep) is such that fj(α) <∞, for j ∈ {1, 2}.
Then

stabG′(x)Gx>f1 ∩Gx>f2 equals G′x>max{0,f2} ·Gx>max{f1,f2}
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and

stabG′(E)(x)G(E)x>f1 ·G(E)x>f2 ∩G equals stabG′(x)Gx>f1 ·Gx>f2 .

Proof. The first statement is proven, just as in [AS08, Lemma 5.29], by reducing to [AS08,
Lemmas 5.22 and A.14]; the crucial point is that stabG′(x)Gx>f1 is contained in the product of
G′ with the root groups corresponding to roots of T in G.

For the second statement, let g1 and g2 be any concave functions satisfying the analogues of
the conditions imposed on f1 and f2. By the first statement (applied to G(E)), we have that

stabG′(E)(x)G(E)x>g1 ∩G(E)x>g2 equals G(E)x>g,

where

g(α) =

{
max{0, g2(α)} α ∈ Φ̃(G′ksep ,Tksep),

max{g1(α), g2(α)} otherwise,

hence by [AS08, Proposition 5.39] that the cohomology

H1(E/k, stabG′(E)(x)G(E)x>g1 ∩G(E)x>g2)

is trivial. (This is where we use the hypotheses about gj ∨ gj , and also where we require [AS08,
Hypothesis D].) Thus, considering the short exact sequence in cohomology associated to the
exact sequence of pointed sets

1 → stabG′(E)(x)G(E)x>g1 ∩G(E)x>g2
→ stabG′(E)(x)G(E)x>g1 ×G(E)x>g2
→ stabG′(E)(x)G(E)x>g1 ·G(E)x>g2 → 1,

and using [AS08, Lemma 5.33], we see that the sequence

1 → stabG′(E)(x)G(E)x>g1 ∩Gx>g2
→ (stabG′(E)(x)G(E)x>g1 ∩G)×Gx>g2
→ stabG′(E)(x)G(E)x>g1 ·G(E)x>g2 ∩G → 1

(∗)

of Galois-fixed points remains exact.
Applying (∗) with g1 = ∞, so that G(E)x>g1 equals {1}, and g2 = f1, and using that

stabG′(E)(x)∩G equals stabG′(x), shows that

stabG′(x)Gx>f1 equals stabG′(E)(x)G(E)x>f1 ∩G.

Then applying (∗) again, with gj = fj for j ∈ {1, 2}, shows that

stabG′(x)Gx>f1 ·Gx>f2 = (stabG′(E)(x)G(E)x>f1 ∩G)Gx>f2

equals stabG′(E)(x)G(E)x>f1 ·G(E)x>f2 ∩G, as desired. 2

Lemma 3.1.2 is a slightly stronger version of [AS08, Lemma 5.17], adapted to take into
account the depth of commutators in DG (not just in G). Again, we find it convenient to state it
in terms of concave functions, for which we can use the result from [AS08] to bootstrap, rather
than necessarily the depth matrices appearing in Definition 3.2.4 below. Having done so, however,
we use it only to prove Lemma 3.2.7 (which does concern groups and Lie algebras associated to
depth matrices).
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Lemma 3.1.2. Suppose that

– T is a maximally ktame-split, maximal torus in G,

– x is a point of B(T ),

– f1 and f2 are (R̃ ∪ {−∞})-valued, Galois-invariant functions on the set of weights of Tksep

on Lie(Gksep).

If, for j ∈ {1, 2},

– gj belongs to Gx>fj ,

– Yj to Lie(G)x>fj , and

– X∗j to Lie∗(G)x>fj

then

– ad(Y1)Y2 belongs to Lie(DG)x>f1./f2 and

– ad∗(Y1)X∗2 to Lie∗(DG)x>f1./f2 .

If, further, f1 is concave, then

– (Ad(g1)− 1)Y2 belongs to Lie(DG)x>f1of2 and

– (Ad∗(g1)− 1)X∗2 belongs to Lie∗(DG)x>f1of2 .

If both f1 and f2 are concave, then

– [g1, g2] belongs to DGx>f1∨f2 .

Here, f1 ∨ f2 is the function defined by

(f1 ∨ f2)(α) = inf∑
ai+

∑
bj=α

∑
f1(ai) +

∑
f2(bj)

in [AS08, Definition B.1], and f1 ./ f2 and f1 o f2 are its analogues defined by

(f1 ./ f2)(α) = inf
a+b=α

f1(a) + f2(b)

and

(f1 o f2)(α) = inf∑
ai+b=α

∑
f1(ai) + f2(b),

for all weights α of Tksep on Lie(Gksep).

Proof. We only prove the statement about commutators in the group; the others are easier.
We may, and do, assume, upon passing to a tame extension, that T is contained in a Borel

subgroup of G. Then we have that any group of the form Gx>f is generated by T>f(0) and the
various Bx>f , where B is a Borel subgroup of G containing T; and similarly for DGx>f . (In fact,
we need only take two opposite Borel subgroups.) In particular, we have that Gx>f is generated
by T>f(0) and DGx>f .

We use the basic fact that, if G is a subgroup of G that normalises DGx>f1∨f2 , and S is a
subset of G, then {g ∈ G | [g, h] ∈ DGx>f1∨f2 for all h ∈ S} is a subgroup of G. We temporarily
introduce the notation CommG(S) for this subgroup.

For this paragraph, fix j ∈ {1, 2}. By [AS08, Lemma 5.17] (applied to DG), we have that
DGx>fj normalises DGx>f1∨f2 , and that T>fj(0) normalises Ux>f1∨f2 for the unipotent radical U
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of any Borel subgroup B of G containing T; so, since of course T>fj(0) normalises any subgroup
of T , we have that Gx>fj normalises DGx>f1∨f2 . Thus, the notation CommGx>fj

(S) makes sense.

For this paragraph, fix a Borel subgroup B of G containing T, and let U be its unipotent
radical. By another application of [AS08, Lemma 5.17], we have that the commutator of T>f1(0)

with Bx>f2 belongs to Ux>f1∨f2 ⊆ DGx>f1∨f2 . Thus, since Ux>f2 is contained in DGx>f2 , we have
that CommT>f1(0)

(Bx>f2) equals T>f1(0), and that CommGx>f1
(Ux>f2) contains both T>f1(0) and

DGx>f1 , hence equals Gx>f1 . Thus

CommGx>f2
(T>f1(0)) contains Bx>f2 , (∗)

and
CommGx>f2

(Gx>f1) contains Ux>f2 . (∗∗)

Symmetric results also hold.
By (∗) (applied to a pair of opposite Borel subgroups), we have that CommGx>f2

(T>f1(0))
equals Gx>f2 , hence that CommGx>f1

(Gx>f2) contains T>f1(0). By (∗∗) (or, rather, its analogue
with the indices j = 1 and j = 2 switched), we have that CommGx>f1

(Gx>f2) also contains Ux>f2
whenever U is the unipotent radical of a Borel subgroup B of G containing T. It follows that
CommGx>f1

(Gx>f2) equals Gx>f1 , as desired. 2

3.2 Groups associated to depth matrices
In Definition 3.2.4, we use Hypothesis 3.2.2 to build a class of compact, open subgroups of G
generalising those constructed in [AS08, Definition 5.14]. Definition 3.2.1 begins to set up that
generalisation.

Definition 3.2.1. A subgroup G′ of G is called a tame, twisted Levi subgroup if G′ktame is a
Levi subgroup of Gktame , in the sense of [DM94, Définition 1.4].

A collection ~G = (G0, . . . ,G` = G) of subgroups of G is called a tame, twisted Levi sequence
if each Gj is a tame, twisted Levi subgroup of G, and there is a maximal ktame-split torus S in G
that contains the maximal ktame-split torus in each Z(Gj ◦). We write B(~G) for

⋂`
j=0 B(Gj) (the

intersection taken inside B(G), in which each individual building embeds), and say that
the sequence contains an element γ ∈ G exactly when γ belongs to

⋂`
j=0G

j .

For this definition, put T = CG◦(S), and write Φ̃ for the collection of weights of Tksep on
Lie(Gksep).

A depth vector (for ~G) is a vector ~a = (a0, . . . , ad) with entries in R̃ ∪ {−∞}. We define the
function f~G,~a on Φ̃ by putting f~G,~a(α) = aj if α is a weight of CG(S)ksep on Lie(Gj

ksep), but

not on Lie(G
j−
ksep) for any 0 6 j− < j. For any x ∈ B(T ), we define Lie(~G)x>~a and Lie∗(~G)x>~a

to be
∑

Lie(~G)x>f and
∑

Lie∗(~G)x>f , where the sums run over all Galois-invariant, R̃-valued

functions f on Φ̃ for which the inequality f~G,~α 6 f is satisfied.
We say that ~a is concave if the inequality 2aj+ > aj− holds for all 0 6 j− 6 j+ 6 `, and

that it is grouplike if, further, a0 is positive. In this case, for any x ∈ B(T ), we define ~Gx>~a to

be
〈⋃ ~Gx>f

〉
, where the union runs over all Galois-invariant, R̃-valued, concave [BT72, § 6.4.3]

functions f on Φ̃ for which the inequality f~G,~α 6 f is satisfied. (The notation is as in [AS08,

Definition 5.14].)

The non-full-rank subgroups that arise in Definition 3.2.4 depend on a semisimple element
γ of G (not necessarily G◦). Choose such an element, and write P− (respectively, P+) for the
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parabolic subgroup of G dilated (respectively, contracted) by γ [Del76, § 1, p. 155], and N−

(respectively, N+) for its unipotent radical. Write M for P− ∩P+.

Let r be a non-negative real number, and put s = r/2.

In [AS08, Definition 6.4], Adler and the author defined a family (C
(<i)
G (γ))

i∈R̃
06i6r

of connected,

full-rank subgroups of G associated to an element γ of G◦ satisfying certain tameness hypotheses.

(The groups defined there are always connected, whereas we allow the groups in Hypothesis 3.2.2

to be disconnected; but Hypothesis 3.2.8 involves only the identity components of the various

C
(<i)
G (γ), so that the difference does not matter.) It turns out to be convenient for us to extend

the definition to handle also the case where i < 0. When we do so, we actually define two groups,

a reductive group C
(<i)
G (γ±1) and a parabolic subgroup C

(<i)
G (γ) of it. (For i > 0, these notations

coincide; in that case, the parabolic subgroup C
(<i)
G (γ) of C

(<i)
G (γ±1) is actually the whole group.)

With an eye towards future applications, including particularly removing the requirement

that γ belong to the identity component, and possibly the tameness requirement, we state very

precisely the properties that we need in Hypothesis 3.2.2.

Hypothesis 3.2.2 always holds for γ an element of a tame torus satisfying [AS08,

Definition 6.3], as long as [AS08, Hypotheses A–D] are satisfied (see [AS08, Proposition 4.6,

Lemmas 8.1 and 6.5]). (Actually, those results require that γ be compact modulo centre; but we

may reduce to that case by working inside M.)

Although we allow the groups C
(<i)
G (γ) to be disconnected, Hypothesis 3.2.2 is phrased in

such a way that we may replace each C
(<i)
G (γ) by its identity component.

Hypothesis 3.2.2. There is a decreasing sequence of (possibly disconnected, possibly

non-full-rank) reductive subgroups (C
(<i)
G (γ±1))

i∈R̃∪{−∞}
i6r

of G such that the following

hold for all i. We write C
(<i)
G (γ) (respectively, C

(<i)
G (γ−1)) for the parabolic subgroup

of C
(<i)
G (γ±1) dilated (respectively, contracted) by γ [Del76, § 1, p. 155].

(i) – C
(<−∞)
G (γ±1)◦ equals G◦,

– C
(<0)
G (γ)∩G◦ equals M◦,

– C
(60)
G (γ)∩G◦ is the centraliser in G◦ of the absolutely-semisimple-modulo-Z(M◦) part

of γ [Spi08, Definition 2.15], and

– C
(<r)
G (γ) contains CG(γ).

(ii) The Lie algebra Lie(C
(<i)
G (γ)ksep) is the sum of the weight spaces for the action of γ on

Lie(Gksep) corresponding to weights λ ∈ ksep\ksep
>0 for which the inequality ord(λ − 1) > i

holds, and similarly for γ−1.

(iii) If G′ is a subgroup of G that is normalised by γ, then C
(<i)
G (γ)◦ ∩G′ and C

(<i)
G (γ±1)◦ ∩G′

are smooth. If, in addition,

– S′ is a ktame-split torus centralising G′ ◦,

– G′ · S′ is a tame, twisted Levi subgroup of G containing γ, and

– γ normalises both S′ and G′,

then (C
(<i)
G (γ±1)◦ ∩G′)(C

(<i)
G (γ±1)◦ ∩S′) is a tame, twisted Levi subgroup of C

(<i)
G (γ±1)◦.

(iv) If ~G = (G0, . . . ,G` = G) is a tame, twisted Levi sequence in G such that γ belongs to G0
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(hence to each Gj), then there is a commutative diagram of embeddings of buildings

B(C
(<i1)

Gj1
(γ±1)) //

��

B(C
(<i2)

Gj1
(γ±1))

��

B(C
(<i1)

Gj2
(γ±1)) // B(C

(<i2)

Gj2
(γ±1))

(for all 0 6 j1 6 j2 6 ` and i2 6 i1 6 r) such that, if

– i ∈ R̃ ∪ {−∞} satisfies i 6 r,

– x is a point of B(C
(<i)
G0 (γ±1)), and

– ~a is a depth vector,

then we have that

~Gx>~a ∩ C
(<i)
G (γ±1) equals (C

(<i)
G0 (γ±1), . . . ,C

(<i)

G`
(γ±1))x>~a,

and similarly for the Lie algebra.

Remark 3.2.3 discusses the descent properties of tame, twisted Levi subgroups.

Remark 3.2.3. If G′ is a Levi subgroup of G, then G◦ ∩G′ equals CG◦(Z(G′ ◦)) and so is a Levi
subgroup of G◦. In particular, it is connected, so it equals G′ ◦.

If (L,G′,G) is a tame, twisted Levi sequence in G, then L contains the maximal ktame-split
subtorus S′ of Z(G′ ◦). Recall [DM94, Définition 1.4] that G′ equals NG(G′ ◦,Q◦), where Q◦

is a parabolic subgroup of G◦ with Levi component G′ ◦. Let λ0 be a cocharacter of S′ so
that Q◦ equals PG◦(λ0), in the notation of [Spr98, § 13.4.1]. We have that G′ equals NG{λ ∈
X∗(S

′) | PG◦(λ) = Q◦}, so that L∩G′ equals NL{λ ∈ X∗(S
′) | PG◦(λ) = Q◦} ⊆ NL(CL◦(S

′),
PL◦(λ0)).The reverse containment is obvious, so we have equality. In particular, L∩G′ is a tame,
twisted Levi subgroup of L.

Our insistence on referring only to identity components in Hypothesis 3.2.2 makes
Hypothesis 3.2.2(iii) somewhat awkward. Using the notation there, we allow ourselves to write

something like C
(<i)
G′ (γ) for C

(<i)
G (γ)∩G′, as long as it is understood that we are speaking only of

its identity component. For example, we may refer to Lie(C
(<i)
G′ (γ)), or use C

(<i)
G′ (γ±1) as a term

in a tame, twisted Levi sequence C
(<i)
~G

(γ±1) := (C
(<i)
G0 (γ±1), . . . ,C

(<i)

G` (γ±1)) in C
(<i)
G (γ±1) (as

in Hypothesis 3.2.2(iv)), even though we have not guaranteed that it is actually a tame, twisted

Levi subgroup of C
(<i)
G (γ±1), because a group such as C

(<i)
~G

(γ±1)x>~r depends only on the identity

components of the groups in the vector C
(<i)
~G

(γ±1).

By Hypothesis 3.2.2(ii), there is a canonical C
(<i)
G (γ)-stable complement Lie(C

(<i)
G (γ))⊥

to Lie(C
(<i)
G (γ)) in Lie(G) (namely, the sum of the other weight spaces for γ). We

identify Lie∗(C
(<i)
G (γ)) with the subset of Lie∗(G) that annihilates Lie(C

(<i)
G (γ))⊥, and write

Lie∗(C
(<i)
G (γ))⊥ for the subset of Lie∗(G) that annihilates Lie(C

(<i)
G (γ)).

Definition 3.2.4 is closely related to [AS08, Definition 5.14]. Our condition ‘grouplike’ is more
restrictive than the analogous condition ‘admissible’ of [AS08, Definition 5.8]. If we are dealing
with tame, compact-modulo-centre elements γ in the identity component of G, so that the groups
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C
(<i)
G (γ) have full rank, then the group γ

~Gx>f is a special case of the groups defined in [AS08,

Definition 5.14]. The point of Definition 3.2.4 is to handle the case where the groups C
(<i)
G (γ±)

may not have full rank in G.

Definition 3.2.4. Suppose that ~G is a tame, twisted Levi sequence in G containing γ. Let

f =
(

(fn
i )

i∈R̃
06i6r

, (fd
i , f

c
i )i∈R̃∪{−∞}

i<0

)
be a collection of depth vectors. The entire ensemble f is called a depth matrix (for ~G). We read
the superscripts ‘n’, ‘d’, and ‘c’ as shorthand for ‘neutral’, ‘dilated’, and ‘contracted’, referring
to the action of γ [Del76, § 1, p. 155]. We occasionally write f− = (fn, fd) and f+ = (fn, f c).

For any x ∈ B(~G), we write γ Lie(~G)x>f for⊕
06i6r

Lie(C
(6i)
G (γ))⊥ ∩ Lie(C

(<i)
~G

(γ))x>fni

⊕
⊕
i<0

Lie(C
(6i)
G (γ±1))⊥ ∩ (Lie(C

(<i)
~G

(γ))x>fdi
⊕ Lie(C

(<i)
~G

(γ−1))x>fci ),

and similarly for γ Lie∗(~G)x>f . (The notation Lie(C
(<i)
~G

(γ)) here, and C
(<i)
~G

(γ) in the group case,

is Definition 3.2.1.)
We say that f is grouplike if

– fn
r is grouplike;

– for each index i, the depth vectors fn
i , fd

i , and f c
i are concave;

– the inequality f−i− > f−i+ holds for all i− 6 i+ < 0 and all 0 6 i− 6 i+ 6 r, and similarly for

f+; and

– the inequality fd
i−j−

+ f c
i−j+

> fn
i+j+

holds for all i− < 0 6 i+ 6 r and 0 6 j− 6 j+ 6 `.

In this case, for any x ∈ B(~G), we write γ
~Gx>f for〈 ⋃

06i6r

C
(<i)
~G

(γ)x>fni ∪
⋃
i<0

(C
(<i)

N− ∩ ~G
(γ)x>fdi

∪ C
(<i)

N+ ∩ ~G
(γ)x>fci )

〉
.

The element γ will usually be clear, and so will be omitted from the notation.
We will occasionally want to enforce an inequality involving depth matrices, but only for

certain arguments. See, for example, Lemma 3.2.11(ii), where we require that (in the notation of

that result) the inequality F− > f− + ordγ holds outside C
(<r)
G (γ). What we mean here is that

the depth vector F−i majorises the depth vector f−i for all i < r, but not necessarily for i = r.
Similarly, in Lemma 4.1.6(ii), where we require that (in the notation of that result) the inequality
F > f − r holds outside G′, we mean that F±i` > f±i` − r for all i 6 r, but not necessarily that
F±ij > f±ij − r for any i when 0 6 j < `. (Here, we are dealing with a tame, twisted Levi sequence

(G0, . . . ,G`−1 = G′,G` = G).)

Remark 3.2.5. Note that, when −∞ occurs in a depth vector, the resulting group or Lie algebra
includes everything from the corresponding entry in the tame, twisted Levi sequence (resulting
in a non-compact subgroup); and, when ∞ occurs in a depth vector, the resulting group or Lie
algebra includes nothing from the corresponding entry in the sequence (resulting in a non-open
group). Thus, for example, Lie(G′, G)x>(∞,−∞) stands for Lie(G′)⊥. Note also that the notation
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is ‘left biased’; so, for example, Lie(C
(<r)
G (γ), G′, G)x>(0,∞,−∞) stands for Lie(C

(<r)
G (γ))x>0 +

Lie(G′)⊥, whereas Lie(G′,C
(<r)
G (γ), G)x>(∞,0,−∞) stands for Lie(G′)⊥ ∩ (Lie(C

(<r)
G (γ))x>0 +

Lie(C
(<r)
G (γ))⊥).

We have that

Lie∗(~G)x>f equals {Y ∗ ∈ Lie∗(G) | 〈Y ∗, Y 〉 ∈ k>0 for all Y ∈ Lie(~G)x>f̃}.

We use certain shortcuts for Definition 3.2.4, whose meaning we hope is apparent. For
example, we write ordγ (respectively, ordγ±1) for the depth matrix f with f−ij = i and f c

ij = 0

(respectively, f−ij = i and f+
ij = i) for all i and j. (If γ belongs to a maximal torus T in G,

then this notation is analogous to the use in [DS16, Definition 2.10], where ordγ(α) is defined

to be ord(α(γ) − 1) for α ∈ Φ(G,T).) Thus the notation Lie(C
(<r)
G (γ), G)x>(0+,(r−ordγ±1 )/2) in

Proposition 5.1.3 stands for Lie(G)x>f , where

fn
r equals 0+,

fn
i equals (r − i)/2 for 0 6 i < r,

and

fd
i = f c

i equals (r − i)/2 for i < 0;

and the notation (C
(<r)
G (γ),C

(<0)
G′ (γ),C

(<0)
G (γ))x>(0+,r−ordγ ,(r−ordγ)/2) in Proposition 4.2.4 stands

for (G′, G)x>f , where

fn
r equals (0+, 0+),

fn
i equals (r − i, (r − i)/2) for 0 6 i < r,

and

fd
i = f c

i equals (∞,∞) for i < 0.

Definition 3.2.6 is a modification of [AS08, Definition B.1], used to describe commutator
relationships among groups associated to concave functions. Our depth matrices are used to

handle analogues when some of the groups involved (our C
(<i)
G (γ)) do not have full rank, so that

it does not make sense to speak of weights on the Lie algebra of the larger group occurring in
the Lie algebra of the smaller one; but the philosophy is still that the multi-cased definition of
f1 ./ f2 is, in essence, keeping track of the many ways that a sum of weights might be a weight

on Lie(C
(<i)

Gj (γ)ksep).

Definition 3.2.6. Suppose that f1 and f2 are depth matrices. We temporarily put

(f1∗./ f2)n
ij = inf

i−6i6i+
j−6j6j+

min {(fn
1 )ij + (fn

2 )i+j− , (f
n
1 )ij− + (fn

2 )i+j , (f
n
1 )ij+ + (fn

2 )i+j+ ,

(f±1 )i−j + (f∓2 )i−j− , (f
±
1 )i−j+ + (f∓2 )i−j+}

and

(f1∗./ f2)d
ij = inf

i−6i6i+
j−6j6j+

min {(f−1 )ij + (f−2 )i+j− , (f
−
1 )ij− + (f−2 )i+j , (f

−
1 )ij+ + (f−2 )i+j+ ,

(fd
1 )i−j + (fd

2 )i−j− , (f
d
1 )i−j+ + (fd

2 )i−j+},
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and similarly for (f1∗./ f2)c
ij . With this provisional (asymmetric) definition in place, we make

the symmetric definition f1 ./ f2 = min{f1∗./ f2, f2∗./ f1}, and then put

f1 o f2 = sup{F | F 6 f1 ./ f2 and F 6 f1 ./ F}

and
f1 ∨ f2 = sup{F | F 6 f1 o f2 and F 6 F ./ f2}.

A grouplike depth matrix f satisfies f 6 f ∨ f ; and, if f1 and f2 are grouplike, then so is
f1 ∨ f2.

Lemma 3.2.7 is an adaptation to our situation of [AS08, Lemma 5.17]. The proof follows

from a routine application of Lemma 3.1.2 to groups of the form C
(<i)
~G

(γ)x>fi . We omit it,
but the interested reader may see a detailed example of the relevant reasoning in the proof of
Proposition 4.2.3.

Lemma 3.2.7. Let

– ~G be a tame, twisted Levi sequence in G,

– x a point of B(~G), and

– f1 and f2 depth matrices.

Then the following properties hold.

(i) If Yj belongs to Lie(~G)x>fj for j ∈ {1, 2}, then [Y1, Y2] belongs to Lie(D ~G)x>f1./f2 .

(ii) If, in addition to (i), we have that f1 is concave and g1 belongs to ~Gx>f1 , then (Ad(g1)−1)Y2

belongs to Lie(D ~G)x>f1of2 ; and analogously on the dual Lie algebra.

(iii) If, in addition to (ii), we have that f2 is concave and g2 belongs to ~Gx>f2 , then [g1, g2]

belongs to D ~Gx>f1∨f2 .

Lemma 3.2.7 can be applied only when we know the depths of the elements in a commutator.
We would like to apply similar results to commutators involving γ, but we do not have any
information about its depth. The idea of Hypothesis 3.2.2 is that γ is supposed informally to

‘live at depth i modulo Z(C
(<i)
G (γ))’. We make this precise in Hypothesis 3.2.8 (and later state

an analogous dual-Lie-algebra condition in Hypothesis 4.1.5).

In the remainder of this section, we write H for C
(<r)
G (γ); but we caution the reader that, in

Proposition 5.1.3, the symbol H will be used for a different group.
Hypothesis 3.2.8 involves a point x in B(G) (eventually, in B(H)), which we now fix. We note

that the hypothesis may hold for some points of B(H), and not for others. The set of points for
which it holds is analogous to the set Br(γ) of [AS08, Definition 9.5].

Suppose for this paragraph that [AS08, Hypotheses A–D] are satisfied, and γ is a
compact-modulo-centre element of a tame torus satisfying [AS08, Definition 6.3]. Then
Hypothesis 3.2.8(ii, iv) is an easy generalisation of [AS08, Lemmas 5.30 and 7.2] (using
Lemma 3.1.2 in place of [AS08, Lemma 5.17] to make sure that commutators land in the derived
group). Hypothesis 3.2.8(v) follows from [AS08, Lemma 7.1, Corollary 4.8 (and Definition 6.4),
and Lemma 8.1].

Hypothesis 3.2.8. Let ~G be a tame, twisted Levi sequence in G containing γ, such that x
belongs to B(~G), and let ~a be a depth vector. The following hold for any i ∈ R̃ ∪ {−∞} with
i 6 r.
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(i) The point x belongs to B(C
(<r)
G (γ)).

(ii) The map Ad(γ)−1 carries Lie(C
(<i)
~G

(γ±1))x>~a into Lie(C
(<i)

N+ ∩ ~G
(γ−1),C

(<i)

DG∩ ~G
(γ±1))x>(~a,~a+i),

and induces an isomorphism

Lie(C
(<i)
~G

(γ±1))x=~a/Lie(C
(6i)
~G

(γ±1))x=~a

∼= Lie(C
(<i)

N+ ∩ ~G
(γ−1),C

(<i)
~G

(γ±1))x=(~a,~a+i)/

Lie(C
(<i)

N+ ∩ ~G
(γ−1),C

(6i)
~G

(γ),C
(<i)
~G

(γ))x=(~a,~a+i,(~a+i)+).

The analogous result for γ−1 also holds.

(iii) Hypothesis 3.2.2 also holds for γ2, and C
(<r)
G (γ2)∩ C

(60)
G (γ) equals C

(<r)
G (γ). The map

Ad(γ) − Ad(γ−1) carries Lie(C
(<i)
~G

(γ±2))x>~a into Lie(C
(<i)

DG∩ ~G
(γ±2))x>~a+i, and induces an

isomorphism

Lie(C
(<i)
~G

(γ±2))x=~a/Lie(C
(6i)
~G

(γ±2))x=~a

∼= Lie(C
(<i)
~G

(γ±2))x=~a+i/Lie(C
(6i)
~G

(γ±2))x=~a+i.

(iv) If i is non-negative and ~a is grouplike, then the map [γ, ·] carries C
(<i)
~G

(γ)x>~a into

C
(<i)

DG∩ ~G
(γ)x>~a+i, and induces a bijection

C
(<i)
~G

(γ)x=~a/C
(6i)
~G

(γ)x=~a
∼= C

(<i)
~G

(γ)x=~a+i/C
(6i)
~G

(γ)x=~a+i;

and, if i is negative and ~a + i is grouplike, then the same map carries C
(<i)

N− ∩ ~G
(γ)x>~a into

C
(<i)

N− ∩ ~G
(γ)x>~a+i, and induces a bijection

C
(<i)

N− ∩ ~G
(γ)x=~a/C

(6i)

N− ∩ ~G
(γ)x=~a

∼= C
(<i)

N− ∩ ~G
(γ)x=~a+i/C

(6i)

N− ∩ ~G
(γ)x=~a+i.

The analogous result for γ−1 also holds.

(v) If g ∈ C
(<i)
G (γ±1)x>0 is such that

Int(g)(C
(6i)
G (γ−1)x>i · γ C

(6i)
G (γ)x>i)∩ C

(6i)
G (γ−1)x>i · γ C

(6i)
G (γ)x>i

is non-empty, then g belongs to C
(6i)
G (γ±1)x>0.

Remark 3.2.9. Hypotheses 3.2.2 and 3.2.8 become weaker if we decrease r, so we may cite all
results for smaller values of r if desired. For example, we do so in the proof of Proposition 5.2.7,
when we wish to use Lemma 4.4.3 for r = 0.

Remark 3.2.10. Since the filtration on the dual Lie algebra is defined in terms of the filtration
on the Lie algebra (Remark 3.2.5), Hypothesis 3.2.8(ii) implies the analogous hypothesis on the
dual Lie algebra.

Lemma 3.2.11 states some consequences of Hypothesis 3.2.8, phrased in terms of groups and
Lie algebras associated to depth matrices (rather than just depth vectors, as in Hypothesis 3.2.8).
The only place that we need to know that the commutator in Lemma 3.2.11(i) belongs to D ~Gx>F ,

rather than just ~Gx>F , is in Proposition 4.2.4. Note that Lemma 3.2.11(iii) involves C
(<r)
G (γ2),

not C
(<r)
G (γ).
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As with Lemma 3.2.7, the proof of Lemma 3.2.11 follows from a routine application of

Hypothesis 3.2.8 to groups of the form C
(<i)
~G

(γ)x>~a, together with ‘successive approximation

arguments’, as, for example, in [Adl98, Lemma 2.3.2], to lift results about finite quotients to
results about the ambient groups. We omit it.

Lemma 3.2.11. Let ~G be a tame, twisted Levi sequence in G containing γ, with x ∈ B(~G), and
let f and F be depth matrices.

(i) If the inequalities F− 6 f− + min{ordγ , r} and F c 6 f c hold, then Ad(γ) − 1 carries

Lie(~G)x>f into Lie(D ~G)x>F . If, further, f and F are grouplike and satisfy F 6 f ∨F , then

[γ, ·] carries C
(<−∞)
~G

(γ)x>f into C
(<−∞)

D ~G
(γ)x>F .

(ii) If the inequalities F− > f− + ordγ and F c > f c hold outside C
(<r)
G (γ), then the pre-image

of Lie(~G)x>F under Ad(γ) − 1 is contained in Lie(C
(<r)
G (γ), ~G)x>(−∞,f). If, further, f and

F are grouplike and satisfy F 6 f ∨ F , then the pre-image in Mx>0 of Mx>F under [γ, ·] is

contained in (C
(<r)
G (γ),M ∩ ~G)x>(0+,f).

(iii) If the inequalities F∓ > f∓+ ordγ±1 hold outside C
(<r)
G (γ2), then the pre-image of

Lie(~G)x>F under Ad(γ)−Ad(γ)−1 is contained in Lie(C
(<r)
~G

(γ2), ~G)x>(−∞,f).

(iv) If the inequalities F∓ > f∓+ ordγ±1 hold outside C
(<r)
G (γ), then Int(Gx>f )(C

(<r)
~G

(γ)x>F ·hγ)

contains ~Gx>F · hγ ~Gx>F for any h ∈ C
(<r)
~G

(γ)x>f .

(v) If g ∈ Gx>0 is such that

Int(g)(γ C
(<r)
G (γ)x>r)∩ γ C

(<r)
G (γ)x>r

is non-empty, then g belongs to C
(<r)
G (γ)x>0.

The result [DS16, Proposition 4.12] is stated for a group associated to a very particular
concave function, but its proof applies much more generally. We isolate one general consequence
here; the proof is identical.

Lemma 3.2.12 [DS16, Proposition 4.12]. Suppose that ~G is a tame, twisted Levi sequence in G
containing γ, such that x belongs to B(~G), and f1 and f2 are grouplike depth matrices satisfying
f1 6 f2 and (f1)i 0 = (f2)i 0 for all 0 6 i 6 r. Then we have that

[~Gx>f1 : ~Gx>f2 ] equals [Lie(~G)x>f1 : Lie(~G)x>f2 ].

The conditions in Lemma 3.2.12 require that we quotient out by the ‘troublesome’ part
of the Moy–Prasad group, which is to say the part corresponding to a maximal torus. Thus,
we may apply Lemma 3.2.12 to compute [Gx>0 : (G′, G)x>(0+,s)] in the proof of Lemma 5.2.1,
because G′ there has full rank; but not to compute [(H,M,G)x>(0+,(r−ordγ)/2,s) : (H,M,
G)x>(0+,s,(r−ordγ±1 )/2)] in Lemma 3.2.14, because H need not have full rank.

Lemma 3.2.13 is used in our explicit ‘constant term (about γ)’ calculations in Lemma 4.4.3.

Lemma 3.2.13. Suppose that

– K0 is a compact, open subgroup of M that is normalised by γ,

– K± is a compact, open subgroup of N± such that Int(γ±1)K± is contained in K±, and

– K = K−K0K+ is a subgroup of G.

Then [K : K ∩ Int(γ)K] equals δP−(γ).
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Proof. Note that K ∩ Int(γ)K equals K−K0 · Int(γ)K+, so that the desired index is [K+ :
Int(γ)K+]. Choose d ∈ R so that K+ contains N+

x>d. Then we have that [K+ : Int(γ)K+]

equals [K+ : N+
x>d] · [N

+
x>d : Int(γ)N+

x>d] · [Int(γ)K+ : Int(γ)N+
x>d]

−1 = [N+
x>d : Int(γ)N+

x>d]. By

Lemma 3.2.12, we have that [N+
x>d : Int(γ)N+

x>d] equals [Lie(N+)x>d : Ad(γ) Lie(N+)x>d], which

equals detLie(N+)(Ad(γ)−1) = detLie(N−)(Ad(γ)) = δP−(γ). 2

Lemma 3.2.14 states a useful analogue of [DS16, Proposition 4.12], also proven using
Lemma 3.2.12. It accounts for the appearance of factors involving discriminants in Proposition
5.2.6. As mentioned after Lemma 3.2.12, the necessity to deal with a quotient of indices, rather
than a single index, comes from the fact that H need not have full rank. If it happened that
H did have full rank, then reduction to the Lie algebra would allow us to compute [(H,M,
G)x>(0+,(r−ordγ)/2,s) : (H,M,G)x>(0+,s,(r−ordγ±1 )/2)] itself, giving the expected answer.

Lemma 3.2.14. If G′ is a tame, twisted Levi subgroup of G containing γ, with x in B(G′), and
r is positive, then we have that

[(H,M,G)x>(0+,(r−ordγ)/2,s) : (H,M,G)x>(0+,s,(r−ordγ±1 )/2)]

[(H ′,M ′, G′)x>(0+,(r−ordγ)/2,s) : (H ′,M ′, G′)x>(0+,s,(r−ordγ±1 )/2)]

equals

|(H,G)x=(0+,(r−ordγ±1 )/2)|−1/2

|(H ′, G′)x=(0+,(r−ordγ±1 )/2)|−1/2
·
|DG/H(γ)|−1/2δP−(γ)1/2

|DG′/H′(γ)|−1/2δP ′ −(γ)1/2
· [Gx=s :Hx=s]

−1/2

[G′x=s :H ′x=s]
−1/2

.

Proof. For the proof, we write sγ±1 in place of (r − ordγ±1)/2.
Lemma 3.2.12 gives that

[Gx=s :Hx=s]

[G′x=s :H ′x=s]
= [Gx>s : (G′, H,G)x>(s,s,s+)]

equals

[Lie(G)x>s : Lie(G′, H,G)x>(s,s,s+)],

and similarly for
[(H,M,G)x>(0+,s−γ ,s)

: (H,M,G)x>(0+,s,s−
γ±1 )]

[(H ′,M ′, G′)x>(0+,s−γ ,s)
: (H ′,M ′, G′)x>(0+,s,s−

γ±1 )]
.

Thus we may, and do, work on the Lie algebra.
We have that [Lie(H,M,G)x>(0+,sγ ,s) : Lie(H,M,G)x>(0+,s,sγ±1 )] equals both

[Lie(H,M,G)x>(0,sγ ,s) : Lie(H,M,G)x>(0,s,sγ±1 )]

and

[Lie(H,M,G)x>(0+,sγ ,s) : Lie(H,M,G)x>(0,sγ ,s)]

× [Lie(H,M,G)x>(0,sγ ,s) : Lie(H,M,G)x>(0,s,sγ±1 )]

× [Lie(H,M,G)x>(0+,s,sγ±1 ) : Lie(H,M,G)x>(0,s,sγ±1 )]
−1
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= |Lie(H,M,G)x=(0+,sγ ,s)|
× [Lie(H,M,G)x>(0,sγ ,s) : Lie(H,M,G)x>(0,s,sγ±1 )]

× |Lie(H,M,G)x=(0+,s,sγ±1 )|.

Since

|Lie(H,M,G)x=(0+,sγ ,s)| · |Lie(H,M,G)x=(0+,s,sγ±1 )|

equals

|Lie(H,M,G)x=(0+,sγ ,sγ±1 )| · |Lie(H,M,G)x=(0+,s,s)|
= |Lie(H,G)x=(0+,sγ±1 )| · |Lie(H,G)x=(0+,s)|,

and similarly for G′, and since

Lie(H,G)x=(0+,s)

Lie(H ′, G′)x=(0+,s)
equals

[Lie(G)x=s : Lie(H)x=s]

[Lie(G′)x=s : Lie(H ′)x=s]
,

we have by [DS16, Corollary 3.15] that the left-hand side equals

|Lie(H,G)x=(0+,sγ±1 )|−1/2

|Lie(H ′, G′)x=(0+,sγ±1 )|−1/2
· [Lie(G)x=s : Lie(H)x=s]

−1/2

[Lie(G′)x=s : Lie(H ′)x=s]
−1/2

times

[Lie(H,M)x>(0,r−ordγ) : Lie(H,M)x>(0,r)]
1/2

[Lie(H ′,M ′)x>(0,r−ordγ) : Lie(H,M)x>(0,r)]
1/2︸ ︷︷ ︸

(I)

×
[Lie(N+)x>(0,r) : Lie(N+)x>(0,r−ordγ−1 )]

1/2

[Lie(N ′+)x>(0,r) : Lie(N ′+)x>(0,r−ordγ−1 )]
1/2︸ ︷︷ ︸

(II+)

times
[Lie(N−)x>(0,r) : Lie(N−)x>(0,r−ordγ)]

1/2

[Lie(N ′ −)x>(0,r) : Lie(N ′ −)x>(0,r−ordγ)]
1/2︸ ︷︷ ︸

(II−)

.

We have that the numerator of (I) equals |detLie(M)/Lie(H)(γ − 1)|−1/2 = |DM/H(γ)|−1/2, while

the numerator of (II±) equals |detLie(N±)(γ)|1/2 = δP±(γ)1/2; and similarly for the denominator.

Since |DM/H(γ)|δP+(γ)−1 equals |DG/H(γ)|, and similarly for G′, we are done. 2

4. Existence of asymptotic expansions

4.1 Good, and nearly good, elements
The main result of § 4, Theorem 4.4.11, is the analogue of [KM03, Theorem 5.3.1]. That result
is stated in terms of a so-called good minimal K-type, which in turn is defined in terms of an
element Γ satisfying properties analogous to the genericity assumptions [Yu01, § 8, p. 596, GE].

We fix an element Z∗o in Lie∗(G), which will be the analogue of Kim and Murnaghan’s
element Γ. We require that it satisfy similar genericity assumptions, slightly upgraded to handle
the possible disconnectedness of G, which we state as Hypothesis 4.1.1. Recall that we fixed a
non-negative real number r in § 3.2.
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Hypothesis 4.1.1. There is a tame, twisted Levi subgroup G′ of G such that the following
properties hold.

(i) The element Z∗o is fixed by the coadjoint action of G′.

(ii) The element Z∗o satisfies [Yu01, § 8, p. 596, GE1] (relative to G′).

(iii) If g ∈ G is such that

Ad∗(g)−1(Z∗o + Lie∗(G′)>−r)∩ (Z∗o + Lie∗(G′)>−r)

is non-empty, then g belongs to G′.

This section analyses the properties of Z∗o and nearby elements. Note that the subgroup G′

in Hypothesis 4.1.1 is uniquely determined, and that, if Z∗o has depth −r (which it need not; for
example, it could be 0), then it is good of that depth, in the sense of [KM03, Definition 2.1.1(2)].

Remark 4.1.2. The hypotheses on Z∗o (relative to G′) imply the analogous hypotheses for
Ad∗(g)−1Z∗o (relative to Int(g)−1G′), for any g ∈ G.

We now recall, in addition to the non-negative real number r, the

– element γ ∈ G, with its associated groups P∓ = C
(<−∞)
G (γ±1), N∓, M = C

(<0)
G (γ), and

H = C
(<r)
G (γ), and

– point x ∈ B(H),

satisfying Hypotheses 3.2.2 and 3.2.8, from § 3.2. These hypotheses say nothing about the
relationship between γ and Z∗o . Lemmas 4.1.3 and 4.1.4 discuss conditions under which some
such relationship can be deduced.

Lemma 4.1.3. If o ∈ B(G′) and X∗ ∈ Lie∗(H)x>−r are such that

(X∗ + Lie∗(G)x>−r)∩ (Z∗o + Lie∗(G)o>−r)

is non-empty, then x belongs to B(G′) and Z∗o to Lie∗(G′)x>−r, and there is an element g of
(Gx>0 ∩Go>0)Gx>0 such that

(X∗ + Lie∗(G′)x>−r)∩ Ad∗(g)−1(Z∗o + (Lie∗(G′)x>−r ∩ Lie∗(G′)o>−r))

is non-empty.

Proof. By [KM03, Lemma 2.3.3], we have that x belongs to B(G′). Then, by Hypothesis 4.1.1(i, ii),
we have that Z∗o belongs to Lie∗(G′)x>−r. It follows that

(X∗ + Lie∗(G)x>−r)∩ (Z∗o + (Lie∗(G)x>−r ∩ Lie∗(G)o>−r))

is non-empty, so

X∗ belongs to Z∗o + (Lie∗(G)x>−r ∩ Lie∗(G)o>−r) + Lie∗(G)x>−r.

The result now follows from the dual-Lie-algebra analogue of [AS08, Lemma 7.4]. 2

Lemma 4.1.4. If γ centralises H◦ and

Lie∗(H)∩ (Z∗o + Lie∗(G′)>−r)

is non-empty, then γ belongs to G′, and Z∗o to Lie∗(C
(<r)
G′ (γ)).
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Proof. Any element of Lie∗(H)∩ (Z∗o + Lie∗(G′)−r>) is fixed by Ad∗(γ), so Hypothesis 4.1.1(iii)
implies that γ belongs to G′, and then Hypothesis 4.1.1(i) that γ centralises Z∗o . In particular,
since the action of γ on Lie(H)⊥ is fixed-point-free, we have that Z∗o annihilates that space, so

belongs to Lie∗(H) = Lie∗(C
(<r)
G (γ)), hence to Lie∗(C

(<r)
G′ (γ)). 2

Until § 4.2, we assume that γ belongs to G′. (Lemma 4.1.4 shows that this is automatic if
we require γ to centralise H◦, as we do in Hypothesis 4.4.2.) We use primes (the punctuation
marks, not the integers) to denote the analogues in G′ of constructions in G, so, for example,

H′ stands for C
(<r)
G′ (γ) (subject to the proviso in Remark 3.2.3, that we may refer directly only

to the identity component of H′). We remind the reader that, in Proposition 5.1.3, the symbol
H will be used for a different group.

In order to prove the existence of asymptotic expansions in Theorem 4.4.11, we need to
consider, not just good elements such as Z∗o , but elements of Lie∗(H) close to them. These
‘nearly good’ elements X∗ enjoy weakened versions of many of the same properties as Z∗o ,
which nonetheless suffice for the explicit calculations in § 5. See Remark 4.1.7. We isolate these
properties in Hypothesis 4.1.5, so that they may be used without explicit reference to Z∗o . Note,
however, that the hypothesis does depend on the element γ ∈ G, the point x ∈ B(H), and the
subgroup G′.

Hypotheses 3.2.8 and 4.1.5 bear a close resemblance, the idea being that G′ plays the

role of C
(6−r)
G (X∗); but they are not literal translations. For example, the similar-appearing

Hypotheses 3.2.8(v) and 4.1.5(v) are subtly different. We genuinely need the extra strength of
the latter, for example in Lemma 5.2.2, and can get away with assuming it because G◦ ∩G′ is
automatically connected (Remark 3.2.3), whereas G◦ ∩H need not be.

Hypothesis 4.1.5. Suppose that γ belongs to G′. Let (G′, ~G) be a tame Levi sequence
containing X∗, such that x belongs to B(~G), and let ~a be a depth vector.

(i) The point x belongs to B(G′).

(ii) The element X∗ belongs to Lie∗(H ′)x>−r.

(iii) The map ad∗(·)X∗ carries Lie(~G)x>~a into Lie∗(~G)x>~a−r, and induces an isomorphism

Lie(~G)x=~a/Lie(G′ ∩ ~G)x=~a
∼= Lie∗(~G)x=~a/Lie∗(G′ ∩ ~G)x=~a−r.

(iv) If ~a is grouplike, then the map (Ad∗(·)− 1)X∗ carries (M ∩ ~G)x>~a into Lie∗(M ∩ ~G)x>~a−r,
and induces a bijection

(M ∩ ~G)x=~a/(M
′ ∩ ~G)x=~a

∼= Lie∗(M ∩ ~G)x=~a−r/Lie∗(M ′ ∩ ~G)x=~a−r.

(v) If g ∈ G◦ is such that

Ad∗(g)(X∗ + Lie∗(G′)x>−r)∩X∗ + Lie∗(G′)x>−r

is non-empty, then g belongs to G′.

Lemma 4.1.6. Suppose that X∗ satisfies Hypothesis 4.1.5 for G. Then it also satisfies the

analogous hypothesis for C
(<i)
G (γ±1) for any i 6 r.

Let ~G be a tame, twisted Levi sequence in G containing X∗, with x ∈ B(~G), and let f and
F be depth matrices.

2328

https://doi.org/10.1112/S0010437X18007364 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007364


Explicit asymptotic expansions for tame supercuspidal characters

(i) If the inequality F 6 f + min{ordX∗ , (−r)+} holds, then ad∗(·)X∗ carries Lie(~G)x>f into

Lie∗(~G)x>F . If, further, f is grouplike and satisfies F 6 f oF , then (Ad∗(·)− 1)X∗ carries
(M ∩ ~G)x>f into Lie∗(~G)x>F .

(ii) If the inequality F > f − r holds outside G′, then the pre-image of Lie∗(~G)x>F under
ad∗(·)X∗ is contained in Lie∗(G′, ~G)x>(−∞,f). If, further, f is grouplike and satisfies F 6

f o F , then the pre-image in Mx>0 of Lie∗(M ∩ ~G)x>F under (Ad∗(·)− 1)X∗ is contained
in (M ′,M ∩ ~G)x>(0+,f).

(iii) If the inequality F > f − r holds outside G′, and f is grouplike and satisfies F 6 f o F ,
then Ad∗((M ∩ ~G)x>f )(X∗ + Lie∗(G′)x>F ) contains X∗ + Lie∗(M ∩ ~G)x>F .

Proof. As with Lemmas 3.2.7 and 3.2.11, it suffices simply to apply Hypothesis 4.1.5 repeatedly

to groups of the form C
(<i)
~G

(γ)x>~a, once we show the claimed heredity. Hypotheses 4.1.5(i, ii, v)

are automatic, so we need only consider Hypotheses 4.1.5(iv, iii). The calculations below are
lengthy, but routine. The idea is that, if we know something about (Ad∗(g)− 1)X∗ relative to γ,
then we can use it to learn something about (Ad∗([g, γ]) − 1)X∗, so that Hypothesis 4.1.5(iv)
(for G) gives us information about [g, γ], and then Lemma 3.2.11(ii) gives us information about
g itself. Similarly, if we know something about ad∗(Y )X∗ relative to γ, then we can use it to
learn something about Ad∗((Ad(γ)− 1)Y )X∗.

For Hypothesis 4.1.5(iii), note that Lie(C
(<i)
~G

(γ±1))x=~a/Lie(C
(<i)

G′ ∩ ~G
(γ±1))x=~a sits naturally

inside ~Gx=~a/(G
′ ∩ ~G)x=~a, and similarly for Lie∗(C

(<i)
~G

(γ±1))x=~a−r/Lie∗(C
(<i)

G′ ∩ ~G
(γ±1))x=~a−r, and

that the image of the former is contained in the latter (all by Hypotheses 3.2.2(iv) and 4.1.5).

Thus, it suffices to show that, if Y ∈ ~Gx>~a is such that ad∗(Y )X∗ belongs to Lie∗(C
(<i)
~G

(γ))x>~a−r,

then Y belongs to Lie(G′,C
(<i)
~G

(γ), ~G)x>(~a,~a,~a+). In this case, with the clumsy notation X∗γ−1 :=

(Ad∗(γ)−1−1)X∗, which belongs to Lie∗(H)x>0 (by Hypothesis 4.1.5(ii) and Remark 3.2.10), and

X∗Y := ad∗(Y )X∗, which belongs to Lie∗(C
(<i)
~G

(γ))x>~a−r (by assumption), we have by Lemmas

3.2.7(i) and 3.2.11(i) that

ad∗((Ad(γ)− 1)Y )X∗ = ((Ad∗(γ)− 1) ad∗(Y ) + ad∗(Y ))X∗γ−1 + (Ad∗(γ)− 1)X∗Y

belongs to

Lie∗(H ∩ ~G,N+ ∩ ~G, ~G)x>(~a+r,~a,~a+ordγ) + Lie∗(~G)x>~a + Lie∗(C
(<i)
~G

(γ))x>~a−r+i

= Lie∗(H ∩ ~G,M ∩ ~G, ~G)x>(~a+r,~a,~a+ordγ±1 ) + Lie∗(C
(<i)
~G

(γ))x>~a−r+i

⊆ Lie∗(M ∩ ~G, ~G)x>(~a−r+i,~a+ordγ±1 ).

Then Hypothesis 4.1.5(iii) gives that (Ad(γ)− 1)Y belongs to

Lie(G′,M ∩ ~G, ~G)x>(−∞,~a+i,~a+r+ordγ±1 ),

and Lemma 3.2.11(ii) gives that Y belongs to

Lie(G′,C
(6i)
~G

(γ),C
(<i)
~G

(γ),M ∩ ~G,N+ ∩ ~G, ~G)x>(−∞,−∞,~a,~a+,~a+r+ordγ−1 ,~a+r)

⊆ Lie(G′,C
(6i)
~G

(γ),C
(<i)
~G

(γ), N+, ~G)x>(−∞,−∞,~a,−∞,~a+).

If we write Y = Y −+Y +, with Y − ∈ Lie(G′,C
(6i)
~G

(γ),C
(<i)
~G

(γ), ~G)x>(~a,~a,~a+) and Y + ∈ Lie(N+),

then we see that ad∗(Y )X∗−ad∗(Y −)X∗ belongs to Lie∗(P−) by assumption, but, since it equals
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ad∗(Y +)X∗, also to Lie∗(P+); so that it equals 0, and hence (by Hypothesis 4.1.5(iii) again) that

Y + belongs to Lie(G′). Thus, we have shown that Y ∈ Lie(~G)x>~a belongs to Lie(G′,C
(6i)
~G

(γ),

C
(<i)
~G

(γ), N+, ~G)x>(−∞,−∞,~a,∞,~a+), hence to Lie(G′,C
(<i)
~G

(γ), ~G)x>(~a,~a,~a+), as desired.

Similarly, we reduce Hypothesis 4.1.5(iv) to showing that, if ~a is grouplike, i ∈ R>0 satisfies

i < r, and g ∈ C
(<i)
~G

(γ)x>~a is such that (Ad∗(g) − 1)X∗ belongs to Lie∗(C
(6i)
~G

(γ))x>~a−r, then g

belongs to (M ′,C
(6i)
G (γ),M)x>(~a,~a,~a+).

In what follows, we use Lemmas 3.2.7(ii) and 3.2.11(i) repeatedly, without explicit mention.

Note that g normalises Lie∗(C
(<i)
~G

(γ))x>~a−r (since we have the inequality ~a ∨ (~a − r) > ~a − r),
so that Ad∗(γg)−1X∗ belongs to

Ad∗(g)−1(X∗ + Lie∗(H)x>0)

⊆ X∗ + Lie∗(C
(6i)
~G

(γ))x>~a−r + Lie∗(H,C
(<i)
~G

(γ))x>(0,~a)

= X∗ + Lie∗(H)x>0 + Lie∗(C
(6i)
~G

(γ),C
(<i)
~G

(γ))x>(~a−r,~a).

Thus (Ad∗(γ)− 1) Ad∗(γg)−1X∗ belongs to

Lie∗(H)x>0 + Lie∗(H)x>r + Lie∗(C
(6i)
~G

(γ),C
(<i)
~G

(γ))x>((~a−r+i)+,~a+i)

⊆ Lie∗(H)x>0 + Lie∗(C
(<i)
~G

(γ))x>~a−r+i,

and (Ad∗(g)− 1) Ad∗(γg)−1X∗ belongs to

Lie∗(C
(6i)
~G

(γ))x>~a−r + Lie∗(C
(<i)
~G

(γ))x>~a + Lie∗(C
(6i)
~G

(γ),C
(<i)
~G

(γ))x>(~a−r,~a)

⊆ Lie∗(C
(<i)
~G

(γ))x>~a−r,

so
(Ad∗([g, γ])− 1)X∗ = [Ad∗(g)− 1,Ad∗(γ)− 1] Ad∗(γg)−1X∗

belongs to

(Lie∗(C
(<i)
~G

(γ))x>~a + Lie∗(C
(<i)
~G

(γ))x>~a−r+i) + Lie∗(C
(<i)
~G

(γ))x>~a−r+i

= Lie∗(C
(<i)
~G

(γ))x>~a−r+i.

Now we have by Hypothesis 4.1.5(iv) that [g, γ], which certainly belongs to Mx>0, in

fact belongs to (G′,M)x>(0,~a+i); hence by Lemma 3.2.11(ii) that g belongs to (G′,C
(6i)
G (γ),

M)x>(0+,~a,~a+). Since we already know that g belongs to C
(<i)
~G

(γ)x>~a, it belongs to (G′,C
(6i)
G (γ),

C
(<i)
~G

(γ))x>(~a,~a,~a+), as desired. 2

So far, we have discussed the consequences of Hypothesis 4.1.5 abstractly, without any
reference to the element Z∗o . Although we still do not require that the element X∗ of
Hypothesis 4.1.5 is close to Z∗o , we observe in Remark 4.1.7 that choosing such nearby elements
is one way to satisfy the hypothesis.

Remark 4.1.7. Suppose that X∗ is an element of Lie∗(H)∩ (Z∗o + Lie∗(G′)>−r). In particular,
X∗ belongs to Lie∗(G′).

Hypothesis 4.1.5(i) follows from [KM03, Lemma 2.3.3]. Hypothesis 4.1.5(ii) is built
into our choice of X∗. By Lemma 4.1.4, we have that Z∗o belongs to Lie∗(G′)x>−r, so,
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since X∗ does as well, we have that X∗ − Z∗o belongs to Lie∗(G′)x>−r ∩ Lie(G′)>−r. Since
(Lie∗(G′)x>−r ∩ Lie∗(G′)>−r) + Lie∗(G′)x>−r is contained in Lie∗(G′)x>−r ∩ Lie∗(G′)>−r, we
have that

X∗ + Lie∗(G′)x>−r is contained in Z∗o + (Lie∗(G′)x>−r ∩ Lie∗(G′)>−r).

In particular, Hypothesis 4.1.5(iii, iv) is proven as in [KM03, Lemma 2.3.4], and Hypothesis 4.1.5(v)
follows from the dual-Lie-algebra analogue of [KM03, Lemma 2.3.6].

In Lemma 4.1.8, we lay the groundwork for the proof in Lemma 4.4.14 that only certain
orbits need to be considered when checking the correctness of a possible asymptotic expansion.

Lemma 4.1.8. If X∗ belongs to Lie∗(H)∩ (Z∗o + Lie∗(G′)>−r) and g ∈ G is such that the
intersection

OH′ ◦(Ad∗(H◦)(X∗ + Lie∗(H)x>−r))∩OH
′ ◦

(Ad∗(g)−1(Z∗o + Lie∗(G′)>−r))

is non-empty, then G′gH◦ is the trivial (G′, H◦)-double coset, and the intersection equals
OH′ ◦(X∗ + Lie∗(H ′)x>−r).

Proof. Let O′ be an element of the intersection.
Remark 4.1.7 gives that Hypothesis 4.1.5 is satisfied. By assumption, there is an element

h ∈ H◦ so that Ad∗(h)(X∗ + Lie∗(H)x>−r) intersects O′. By Lemma 4.1.6(iii), upon adjusting
h on the right by an element of Hx>0, we may, and do, assume that Ad∗(h)(X∗+ Lie∗(H ′)x>−r)
intersects O′. Upon adjusting h on the left by an element of H ′ ◦, we may, and do, assume that
Ad∗(h)(X∗ + Lie∗(H)x>−r)∩O′ intersects Ad∗(g)−1(Z∗o + Lie∗(G′)>−r).

Since X∗+ Lie∗(H ′)x>−r is contained in Z∗o + (Lie∗(G′)x>−r ∩ Lie∗(G′)>−r) (Remark 4.1.7),
we have by Hypothesis 4.1.1(iii) that gh belongs to G′, so that G′gH◦ is the trivial double coset.

Therefore, upon adjusting g on the left by an element of G′ (which does not affect the
hypothesis, since Z∗o is fixed by the coadjoint action of G′), we may, and do, assume that
it belongs to H◦. Thus h′ := gh belongs to G′ ∩H◦, which equals H ′ ◦ by Remark 3.2.3. In
particular, Ad∗(h′)−1O′ equalsO′; so, since X∗+Lie∗(H)x>−r intersects Ad∗(h′)−1O′ ⊆ Lie∗(H ′),
and since (X∗ + Lie∗(H)x>−r)∩ Lie∗(H ′) equals X∗ + Lie∗(H ′)x>−r, we are done. 2

Remark 4.1.9. Suppose Z∗o belongs to Lie∗(H), and put U ′ ∗ = Z∗o + Lie∗(H ′)>−r and U∗ =
Ad∗(H◦)U ′ ∗. Then U∗ is a neighbourhood of Z∗o in Lie∗(H), by Lemma 4.1.6(iii). In particular,
O′ 7→ Ad∗(H◦)O′ defines a map OH′ ◦(U ′ ∗) → OH◦(U∗); and, if O belongs to OH◦(U∗), then
O∩ U ′ ∗ is non-empty, hence by Hypothesis 4.1.1(iii, i) is a single H ′ ◦-orbit, necessarily lying
in OH′ ◦(U ′ ∗). We frequently use the resulting bijection OH◦(U∗) → OH′ ◦(U ′ ∗) without further
explicit mention.

4.2 A group analogue of a quadratic form
In § 4.4, we express distributions on the group (eventually, characters, in Theorem 4.4.11) in
terms of distributions on the Lie algebra (Fourier transforms of orbital integrals). This requires
some way of passing between the two. In Hypothesis 4.3.1, we choose a ‘mock’ exponential
map that we will use to move from a neighbourhood of 0 in Lie(H) to a neighbourhood of the
identity in H, but we still face the problem of extracting information about distributions on
G. The ‘perpendicular group’ (H,G)x>(r+,r) in Lemma 4.2.5 is an important tool, but a bit of
machinery is necessary before we can define it.
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We recall the

– non-negative real number r,

– element γ ∈ G, with associated groups M = C
(<0)
G (γ) and H = C

(<r)
G (γ), and

– point x ∈ B(H)

from § 3.2. Although we will soon (in Proposition 4.2.4) need r to be positive, there is no harm
in avoiding that assumption for a little bit. We do not need explicitly to mention the element
Z∗o or the group G′ of § 4.1 in this section.

Notation 4.2.1 defines Qγ and Bγ , which are multiplicative analogues of a quadratic and a
bilinear form, respectively. Indeed, we have chosen the notation to parallel the quadratic form
qX∗,γ and the bilinear form bX∗,γ that are introduced in Notation 5.1.2. The main use of our
multiplicative analogues is in Proposition 5.1.8, where we show that a certain integral appearing
in a Frobenius-type formula (see Proposition 5.2.6) may be rewritten as a Weil index. We have
moved these results from §§ 5.1 to 4.2 so that they can be used in Lemma 4.2.5.

Notation 4.2.1. Put

Qγ(v) = [v, γ] and Bγ(v1, v2) = [v1,Qγ(v2)]

for all v, v1, v2 ∈ G.

As preparation for the bi-multiplicativity results of Proposition 4.2.3, we note in Lemma 4.2.2
a few basic algebraic identities involving Qγ and Bγ .

Lemma 4.2.2. We have that

Qγ(v1v2) equals Bγ(v1, v2)Qγ(v2)Qγ(v1), (1)

Bγ(v1w1, v2) equals Int(v1)Bγ(w1, v2) ·Bγ(v1, v2), (2)

Bγ(v1, v2w2)Bγ(v2, w2) equals

Int(v1)Bγ(v2, w2) ·Bγ(v1, w2) · Int(Qγ(w2))Bγ(v1, v2), (3)

and

Bγ(Int(γ)v1, v2) equals

Int(Qγ(v1))−1Bγ([v1, v2] · v2, v1) ·Bγ([v1, v2], v2) Int(Qγ(v2))Qγ([v1, v2]), (4)

for all v1, w1, v2, w2 ∈ G.

Proof. These are all direct computations. The last is the Hall–Witt identity[
[γ, v1], Int(v1)v2

]
·
[
[v1, v2], Int(v2)γ

]
·
[
[v2, γ], Int(γ)v1

]
= 1,

rewritten as [
Int(γ)v1, [v2, γ]

]
= Int([v1, γ])−1

[
Int(v1)v2, [v1, γ]

]
·
[
[v1, v2], [v2, γ] · γ

]
and then translated to our notation. 2
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We think informally of Qγ and Bγ as being something like a quadratic and a bilinear
form, respectively. We justify the latter claim in Proposition 4.2.3, by showing that Bγ is
bi-multiplicative, up to an error term, on an appropriate domain; and then the former in
Proposition 4.2.4. Note that Proposition 4.2.3 concerns the values of Qγ and Bγ only on M , not
on all of G. The restriction comes mainly from the fact that our reasoning requires at least that
each (f2)i + i is concave, and that is true ‘for free’ only if i is non-negative.

Proposition 4.2.3. Suppose that

– ~M is a tame, twisted Levi sequence in M containing γ, such that x is in B( ~M), and

– f1, f2, gq, and gb are grouplike depth matrices satisfying

gq 6 min{f2 + ordγ , f2 ∨ gq},
gb 6 min{f1 ∨ (f2 + ordγ), g},

and

g 6 min{f1 ∨ gb, gb ∨ (f2 + ordγ), gb ∨ gb}.

Then

– on ~Mx>f2 , Qγ is D ~Mx>gq -valued, and

– on ~Mx>f1 × ~Mx>f2 ,

* Bγ is D ~Mx>gb-valued and

* Bγ is bi-multiplicative modulo D ~Mx>g on the same domain.

Suppose further that f1 equals f2, and that the inequality g 6 (f1 ∨ f2) + ordγ holds. Then

Bγ(Int(γ)v1, v2) is congruent to Bγ(v2, v1)

modulo D ~Mx>g for all v1, v2 ∈ ~Mx>f1 = ~Mx>f2 .

A certain amount of circuitousness in our argument is necessitated by the fact that we have
to deal with the vector f2 + ordγ in our bounds, rather than gq. The obvious solution seems to
be simply to take gq to be f2 + ordγ , but that need not be grouplike; hence the contortions.

Proof. The statement about the values of Qγ is a special case of Lemma 3.2.11(i).
In what follows, we use Lemma 3.2.7(iii) repeatedly, without further mention.
We prove the statement about the values of Bγ , and about its bi-multiplicativity,

simultaneously. Write S for the set

{(v1, v2) ∈ ~Mx>f1 × ~Mx>f2 |Bγ(v1, v2) ∈ D ~Mx>gb}.

Since g is bounded above by gb ∨ gb, the values of Bγ on S commute modulo D ~Mx>g. By
Lemma 4.2.2(2) and the fact that g is bounded above by f1∨gb, we have that Bγ is multiplicative

modulo D ~Mx>g in its first variable on S.

We have already shown that, if i belongs to R̃>0 and w2 to C
(<i)
~G

(γ)x>(f2)i , then Qγ(w2)

belongs to C
(<i)
~G

(γ)x>(f2)i+i; so Lemma 4.2.2(3), and the fact that g is bounded above by (f1∨gb)
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and gb ∨ (f2 + ordγ), give that, if (v1, v2) belongs to S, then Bγ(v1, v2w2) is congruent to Bγ(v1,

v2)Bγ(v1, w2) modulo D ~Mx>g. In particular, (v1, v2w2) belongs to S.
Now suppose, as in the second part of the statement, that f1 equals f2, and put f = f1 = f2

and F = f1 ∨ f2. Note that g is bounded above by

f ∨ gb 6 f ∨ g 6 F ∨ g

and

gb ∨ (f + ordγ) 6 (f ∨ (f + ordγ)) ∨ (f + ordγ) 6 F ∨ (f + ordγ).

By Lemma 3.2.11(i), we have that γ normalises ~Mx>f . Note that [v1, v2] belongs to ~Mx>F . Since
g is bounded above by min{F + ordγ , F ∨ g}, we have already shown that Qγ([v1, v2]) belongs

to D ~Mx>g ⊆ ~Mx>gb ; and, since g is bounded above by F ∨ (f + ordγ), that Bγ([v1, v2], v1)

and Bγ([v1, v2], v2) belong to D ~Mx>g ⊆ ~Mx>gb . If we make the trivial observations that Qγ(v1)

and Qγ(v2) belong to ~Mx>f , and that the commutator of ~Mx>f with ~Mx>gb belongs to D ~Mx>g

(because g is bounded above by f ∨ gb), then we see that the claimed twisted symmetry follows
from Lemma 4.2.2(4) (and bi-multiplicativity). 2

Proposition 4.2.4 justifies our claim that Qγ is an analogue of a quadratic form by showing
that it is given by using the analogue Bγ of a bilinear form to pair group elements with
themselves. We use it in Proposition 5.1.8 to show that Gauss sums occur when computing
the values of invariant distributions at certain test functions. It allows us to avoid the centrality
assumption imposed, in an analogous situation, in [AS09, Hypothesis 2.3].

Proposition 4.2.4. Suppose that r is positive. For any tame, twisted Levi subgroup G′ of G
containing γ, such that x belongs to B(G′), we have that

Qγ(v)2 is congruent to Bγ(v, v)

modulo D(H ′,C
(60)
G′ (γ),C

(60)
G (γ))x>(r+,r,s+) for all

v ∈ (H,C
(60)
G′ (γ),C

(60)
G (γ))x>(0+,r−ordγ ,(r−ordγ)/2).

Proof. We may, and do, assume, upon passing to a suitable tame extension, that G′ ◦ is a Levi
subgroup of G◦.

Put

V⊥ = (H,C
(60)
G′ (γ),C

(60)
G (γ))x>(0+,r−ordγ ,(r−ordγ)/2)

and

V⊥+ = (H,C
(60)
G′ (γ),C

(60)
G (γ))x>(0,r−ordγ ,(r−ordγ)/2).

Write Qγ and Bγ for the compositions of Qγ and Bγ , respectively, with the projection G →

G/D(H ′, G′, G)x>(r+,r,s+).
We would like to apply Proposition 4.2.3, which requires specifying depth matrices f , f1, f2,

gq, gb, and g. Note that the depth matrices

f = f1 = f2 = max{(0+, 0+), (r − ordγ , (r − ordγ)/2)}
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give rise to the group (H,C
(60)
G′ (γ),C

(60)
G (γ))x>(0+,r−ordγ ,(r−ordγ)/2) = V⊥; the depth matrices

gq = gb = (r, s+)

give rise to the group (C
(60)
G′ (γ),C

(60)
G (γ))x>(r,s+); and the depth matrix g, where

gi = (r, s+), for 0 < i < r,

and

gr = (r, s)+,

gives rise to the group (H ′,C
(60)
G′ (γ),C

(60)
G (γ))x>(r+,r,s+). Then applying Proposition 4.2.3 gives

that

– the values of Qγ on V⊥, and of Bγ on V⊥ × V⊥, belong to the image of (C
(60)
G′ (γ),

C
(60)
G (γ))x>(r,s+), which is Abelian by Lemma 3.2.7(iii);

– Bγ is bi-multiplicative on V⊥ × V⊥;

– Int(γ)v1 = v1Qγ(v−1
1 ) is congruent to v1 modulo (C

(60)
G′ (γ),C

(60)
G (γ))x>(r,s+) ⊆ V⊥+ for all

v1 ∈ V⊥; and

– Bγ(Int(γ)v1, v2) equals Bγ(v2, v1) for all (v1, v2) ∈ V⊥ × V⊥.

In fact, applying the same result, with (f1, f2, gq, gb, g) replaced by (f1+, f2, gq, g, g) or (f1, f2+,
gq, g, g) (where fj has been replaced by fj+ for some j ∈ {1, 2}, and gb has been replaced by
g), gives that Bγ is trivial on V⊥ × V⊥+ and V⊥+ × V⊥, which means (in light of the above) that
actually Bγ is symmetric on V⊥ × V⊥.

In particular, since the value of Qγ at the identity is 1, we have by Lemma 4.2.2(1) that

Qγ(v)Qγ(v−1) equals Bγ(v, v−1)−1 = Bγ(v, v)

for all v ∈ V⊥. It thus suffices to show that the set

I := {v ∈ V⊥ |Qγ(v) = Qγ(v−1)}

equals V⊥. Note that I is a group, since it clearly contains the identity; and since, for v1, v2 ∈ I,
we have by bi-multiplicativity and symmetry, and Lemma 4.2.2(1), that Qγ(v1v

−1
2 ) equals

Qγ(v1)Qγ(v−1
2 )Bγ(v1, v

−1
2 )

= Qγ(v−1
1 )Qγ(v2)Bγ(v−1

1 , v2)

= Qγ(v−1
1 )Qγ(v2)Bγ(v2, v

−1
1 )

= Qγ(v2v
−1
1 ),

it follows that v1v
−1
2 belongs to I.

Remember that we have passed to a tame extension, and so arranged that G′ ◦ is a Levi
subgroup of G◦. By Proposition 4.2.3, applied to the restrictions of the depth matrices (f1, f2,
gq, g, g) (not (f1, f2, gq, gb, g)) to a parabolic subgroup Q◦ of G◦ with Levi component G′ ◦, we

have that Qγ is trivial on (C
(<r)
Q (γ),C

(60)
G′ (γ),C

(60)
Q (γ))x>(0+,r−ordγ ,(r−ordγ)/2), so that that group

is contained in I. (The point of restricting to a parabolic subgroup is, informally speaking, that,
because no two weights on Lie(Q) but outside of Lie(G′) sum to a weight on Lie(G′), we can
get away with a stricter bound on the values of Qγ .) Since Q◦ was any parabolic subgroup of
G◦ with Levi component G′ ◦, it follows (say, by taking two opposite such subgroups) that I
contains V⊥, as desired. 2
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Our conditions on depth matrices in Definition 3.2.4 mean that we have not yet defined

notation like (H,G)x>(r+,r) for a ‘perpendicular group’ to Hx>r in Gx>r. We define such a

complement in Lemma 4.2.5. It is meant primarily to be used in Lemma 4.4.3, our main tool for

moving from distributions on G to distributions on H, but we also use it to define the notion of

a dual blob (Definition 4.3.2).

Lemma 4.2.5. For any

– tame, twisted Levi sequence ~G in G containing γ, such that x is in B(~G), and

– concave depth vector ~a,

we have that

D(H ∩ ~G, ~G)x>(~a+,~a)+r := D ~Gx>~a+r ·Qγ((H ∩ ~G,M ∩ ~G)x>(~a+,~a+r−ordγ))

is a subgroup of D ~Gx>~a+r such that

(H ∩ ~G)x>~a+r · D(H ∩ ~G, ~G)x>(~a+,~a)+r equals ~Gx>~a+r

and

(H ∩ ~G)x>~a+r ∩D(H ∩ ~G, ~G)x>(~a+,~a)+r equals C
(<r)

D ~G
(γ)x>~a+r.

Analogous properties hold for the group

(H ∩ ~G, ~G)x>(~a+,~a)+r := ~Gx>~a+r · D(H ∩ ~G, ~G)x>(~a+,~a)+r.

Proof. For this proof, put

H = (H ∩ ~G,M ∩ ~G)x>(~a+,~a+r−ordγ) and H+ = (H ∩ ~G,M ∩ ~G)x>(~a,~a+r−ordγ).

It follows from Proposition 4.2.3 that Qγ is C
(<0)

D ~G
(γ)x>~a+r-valued, and multiplicative modulo

C
(<0)

D ~G
(γ)x>~a+r, on H; and C

(<0)

D ~G
(γ)x>~a+r-valued on H+. In particular, D(H ∩ ~G, ~G)x>(~a+,~a)+r is

a group.

By Lemma 3.2.11(iv), for any g ∈ (M ∩ ~G)x>~a+r, there are h ∈ (H ∩ ~G)x>~a+r and v ∈ H so

that Int(v)(hγ) equals gγ. Then g equals h · [h−1, v] ·Qγ(k), which, by Lemma 3.2.7(iii), belongs

to h·(H ∩ ~G, ~G)x>(~a+,~a)+r. Since (H ∩ ~G, ~G)x>(~a+,~a)+r contains N±x>~a+r, we have the first equality.

If v ∈ H and g ∈ ~Gx>~a+r are such that h := g · Qγ(v) belongs to (H ∩ ~G)x>~a+r, then, in

particular, g belongs to (M ∩ ~G)x>~a+r; and Int(v)γ equals g−1hγ. By Lemma 3.2.11(iv), there

is k ∈ H+ so that Int(k)(g−1hγ) belongs to γ(H ∩ ~G)x>~a+r. By Lemma 3.2.11(v), we have that

kv ∈ H belongs to Hx>0, hence to (H ∩ ~G)x>~a ⊆ H+. Thus, v itself belongs to H+, hence

Qγ(v) to C
(<0)

D ~G
(γ)x>~a+r; and finally, g ·Qγ(v) ∈ (H ∩ ~G)x>~a+r belongs to C

(<0)

D ~G
(γ)x>~a+r, hence

to C
(<r)

D ~G
(γ)x>~a+r. 2

Remark 4.2.6. The proof of Lemma 4.2.5 actually shows that Qγ induces an isomorphism

(H ∩ ~G,M ∩ ~G)x=(~a+,~a+r−ordγ)
∼= ~Gx=~a+r/(H ∩ ~G)x=~a+r.
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4.3 Dual blobs
We recall the

– non-negative real number r,

– element γ ∈ G, with associated groups M = C
(<0)
G (γ) and H = C

(<r)
G (γ), and

– point x ∈ B(H)

from § 3.2.
We are now ready to set up our tool for moving between Lie(H) and H, to be used primarily

in Theorem 4.4.11. The most natural candidate is the exponential map, but this is only defined
if the characteristic of k is 0, and even then may have a very small radius of convergence. It
turns out that all we need is a ‘mock’ exponential map satisfying certain (near-)equivariance
properties, which we state in Hypothesis 4.3.1. The hypothesis will not be satisfied unless we
assume that r is positive, so we do so now.

Hypothesis 4.3.1(i) is a strengthening of [DeB02, Hypothesis 3.2.1(1)]. Hypothesis 4.3.1(ii)(a)
is implied by [DeB02, Hypothesis 3.2.1(2)], and Hypothesis 4.3.1(ii)(b) is satisfied if the multiset
of depths (in the multiplicative filtration) of eigenvalues of e(Y ) coincides with the multiset
of depths (in the additive filtration) of eigenvalues of Y . In particular, the exponential map
itself, the Cayley transform, and the ‘1+’ map, as discussed in [DeB02, Remark 3.2.2], all satisfy
Hypothesis 4.3.1(ii)(b).

Hypothesis 4.3.1. There is a homeomorphism e : Lie(H)>r → H>r, whose inverse we denote
by log, satisfying the following properties.

(i) For all tame Levi sequences ~H in H with x ∈ B( ~H), we have that

(a) e(Lie( ~H)x>~a) equals ~Hx>~a for all grouplike depth vectors ~a > r, and

(b) e(Y1)e(Y2) belongs to e(Y1 +Y2)Hx>~a1∨~a2 for all grouplike depth vectors ~a1,~a2 > r and
elements Yj ∈ Lie(H)x>~aj , for j ∈ {1, 2}.

(ii) For all Y ∈ Lie(H)>r, we have that

(a) CH(e(Y ))◦ equals CH(Y )◦ and

(b) |Dred
H (Y )| equals |Dred

H (e(Y ))|.

Definition 4.3.2. By Hypothesis 4.3.1(i)(a, b), if

– ~G = (G0, . . . ,G` = G) is a tame, twisted Levi sequence containing γ such that x is in B(~G),

– ~a is a concave depth vector,

– ~b is a grouplike depth vector satisfying ~b 6 (~a+ r)+ and (~a+ r) ∨~b > ~a+ r, and

– X∗ belongs to
⋂`
j=0 Lie∗(Gj)∩ Lie∗(H)

x>~̃b,

then ΛX∗ ◦ log is a character of (H ∩ ~G)
x=min{~a+r,~b}, which may be extended trivially across

(H ∩ ~G, ~G)x>(~a+,~a)+r · ~Gx>~b to a character of ~G
x>min{~a+r,~b}. We say that this character has dual

blob X∗ + Lie∗(~G)
x>min{~a+r,~b}∼ .

Remark 4.3.3. With the notation and terminology of Definition 4.3.2, a character of
(H ∩ ~G)

x>min{~a+r,~b} has a dual blob if and only if it is trivial on (H ∩ ~G)
x>~b, and a character of

(H ∩ ~G, ~G)
x>min{~a+r,~b} )

has a dual blob if and only if it is trivial on (H ∩ ~G, ~G)x>(~a+,a)+r · ~Gx>~b.
In particular, it is necessary, but need not be sufficient, for it to be trivial on ~G

x>~b.
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We will use Definition 4.3.2 to manufacture, for a > r, characters of Gx>a from elements

of Lie∗(H)x>−a (using ~a = a − r and ~b = a+); and also characters of (G′, G)x>(r,s+), where G′

is a tame, twisted Levi subgroup of G, containing γ, such that x is in B(G′), from elements of

Lie∗(H ′, H)x>(−r,−s) (using ~a = (0, 0+) and ~b = (r, s)+).

Hypothesis 4.3.4 is the analogue of [AK07, Hypothesis 8.3]. It says roughly that depths, of

elements and characters, are the same whether measured in H or G. This is known, at least for

elements, when H is a Levi subgroup of G by [AD02, Lemma 3.7.25], and hence by tame descent

even when H is just a tame, twisted Levi subgroup.

Hypothesis 4.3.4. For all

– a ∈ R̃ with r 6 a <∞,

– x ∈ B(H), and

– X∗ ∈ Lie∗(H)x>a,

if Q is a parabolic subgroup of G with unipotent radical U and Levi subgroup L satisfying

x ∈ B(L), and

(i) the coset X∗ + Lie∗(G)x>−a contains an element of the annihilator of Lie(Q) or

(ii) the character of Gx>a with dual blob X∗+ Lie∗(G)x>−a agrees with the trivial character of

Qx>a on the intersection of their domains,

then the coset X∗ + Lie∗(H)x>−a is degenerate.

Remark 4.3.5. With the notation of Hypothesis 4.3.4, the conditions on X∗ are satisfied if there

is some point o ∈ B(G) such that X∗ + Lie∗(G)x>−a intersects Lie∗(G)o>−a, or the character

of Gx>a with dual blob X∗ + Lie∗(G)x>−a agrees with the trivial character of Go>a on the

intersection of their domains. Indeed, in these cases, we need only choose a maximal split torus

whose apartment contains both o and x, and then take for Q the parabolic subgroup containing

that torus that is dilated by o− x [Spr98, § 13.4.1].

4.4 Asymptotic expansions and K-types

The main result of this section, Theorem 4.4.11, shows that certain characters have asymptotic

expansions around (nearly) arbitrary semisimple elements in terms of Fourier transforms of

orbital integrals, as in [KM03, Theorem 5.3.1]. This relies on Harish-Chandra’s ‘semisimple

descent’ [Har99, §§ 18–20], as discussed in Lemma 4.4.3.

We recall the

– non-negative real number r,

– element γ ∈ G, with associated groups P∓ = C
(<−∞)
G (γ±1), N∓, and H = C

(<r)
G (γ), and

– point x ∈ B(H)

from § 3.2. We should regard x as fixed only provisionally, until Corollary 4.4.9; we need to

allow it to vary in the proof of Theorem 4.4.11. We will also introduce more notation before

Definition 4.4.7.

Lemma 4.4.1 is a technical computation to prepare for this descent. It is convenient

(particularly in Proposition 5.2.7) to state and prove Lemmas 4.4.1 and 4.4.3 uniformly for

r = 0 and for r positive.
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Lemma 4.4.1. For any

– tame, twisted Levi sequence ~G in G containing γ, such that x is in B(~G),

– concave depth vector ~a, and

– h ∈ Hx>r,

we have that  
~Gx>~a+r·hγ ~Gx>~a+r

F (g) dg

equals  
(H ∩ ~G, ~G)x>(~a+,~a+r−ord

γ±1 )

 
(H ∩ ~G)x>~a+r·hγ

F (Int(g)m) dmdg

for all F ∈ H(G).

Proof. For any concave depth vector ~b, put H~b = (H ∩ ~G, ~G)
x>(~b+,~b+r−ordγ±1 )

. Note that

Lemmas 3.2.7(iii) and 3.2.11(i) give that Int(H~b)((H ∩ ~G)
x>~b+r · hγ) is contained in the ~G

x>~b+r-
double coset to which hγ belongs.

It suffices to prove, for each concave depth vector ~b satisfying ~a 6 ~b 6 ~a ∨ ~b, the desired
equality if F is the characteristic function of a ~G

x>~b+r-double coset contained in the ~Gx>~a+r-
double coset to which hγ belongs. By Lemma 3.2.11(iv), such a double coset is of the form
~G
x>~b+r Int (k~a)

−1(h~ahγ)~G
x>~b+r = Int (k~a)

−1(~G
x>~b+r · h~ahγ ~Gx>~b+r) for some k~a ∈ H~a and h~a ∈

(H ∩ ~G)x>~a+r. Upon replacing F by k~aFk
−1
~a , which does not change either side of the desired

equality, we may, and do, assume that k~a is the identity. Put

U = ~G
x>~b+r · h~ahγ ~Gx>~b+r = (N+ ∩ ~G)

x>~b+r · h~ahγ ~Gx>~b+r.

Note that (H ∩ ~G)x>~a+r ·hγ ∩U equals (H ∩ ~G)
x>~b+r ·h~ahγ. If g ∈ H~a is such that Int (g)−1U =

Int (g)−1(~G
x>~b+r · h~ahγ ~Gx>~b+r) intersects (H ∩ ~G)x>~a+r · hγ, then, by another application

of Lemma 3.2.11(iv), there is k~b ∈ H~b so that Int(k~bg)−1((H ∩ ~G)
x>~b+r · h~ahγ) intersects

(H ∩ ~G)x>~a+r · hγ. By Lemma 3.2.11(v), we have that k~bg belongs to (H ∩ ~G)x>~a, hence g to

H~b · (H ∩ ~G)x>~a. If h0 ∈ (H ∩ ~G)x>~a is such that gh0 belongs to H~b, hence stabilises U , then we
have that

(H ∩ ~G)x>~a+r · hγ ∩ Int(g)−1U

equals Int(h0)((H ∩ ~G)x>~a+r · hγ ∩U) = Int(h0)((H ∩ ~G)
x>~b+r · h~ahγ). (∗)

By Lemma 3.2.13, we have that meas(U) equals

[~G
x>~b+r : ~G

x>~b+r ∩ Int(h~ahγ)−1 ~G
x>~b+r] ·meas(~G

x>~b+r) = δP−(γ) meas(~G
x>~b+r),

and, similarly, meas(~Gx>~a+r · hγ ~Gx>~a+r) equals δP−(γ) meas(~Gx>~a+r). Thus, the left-hand side

of the desired equality is [~Gx>~a+r : ~G
x>~b+r]

−1.
Now we consider the right-hand side. By Lemma 3.2.11(i, ii), we have that [γ, ·] induces

a bijection (H,P− ∩ ~G)x=(0+,~c+r−ordγ)
∼= (H,P− ∩ ~G)x=(0+,~c+r), and [γ−1, ·] induces a bijection

(N+ ∩ ~G)x=~c+r−ordγ−1
∼= (N+ ∩ ~G)x=~c+r, so that

|(H, ~G)x=(0+,~c+r−ordγ±1 )| equals |(H,G)x=(0+,~c+r)|,
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for all concave depth vectors ~c, and hence that

[~Gx>~a+r : ~G
x>~b+r]

[(H ∩ ~G)x>~a+r : (H ∩ ~G)
x>~b+r]

= [~Gx>~a+r : (H ∩ ~G, ~G)
x>(~a+r,~b+r)

] = [(H, ~G)x>(0+,~a+r) : (H, ~G)
x>(0+,~b+r)

]

equals

[(H, ~G)x>(0+,~a+r−ordγ±1 ) : (H, ~G)
x>(0+,~b+r−ordγ±1 )

].

Combining this with (∗) shows that the right-hand side is 
H~a

meas ((H ∩ ~G)x>~a+r)
−1 meas((H ∩ ~G)x>~a+r · hγ ∩ Int (g)−1U) dg

= [H~a :H~b · (H ∩ ~G)x>~a]
−1

× [(H ∩ ~G)x>~a+r : (H ∩ ~G)
x>~b+r]

−1

= [(H, ~G)x>(0+,~a+r−ordγ±1 ) : (H, ~G)
x>(0+,~b+r−ordγ±1 )

]−1

× [(H ∩ ~G)x>~a+r : (H ∩ ~G)
x>~b+r]

−1

= [~Gx>~a+r : ~G
x>~b+r]

−1,

so the desired equality follows. 2

Our approach to Lemma 4.4.3 requires that γH>r beH◦-invariant. The most natural way that
this can happen is if γ centralises H◦. This sort of hypothesis has arisen before (see Lemma 4.1.4),
and will again (though, after this section, not until Theorem 5.3.11), so we state it formally now.

Hypothesis 4.4.2. The action of γ centralises H◦.

Lemma 4.4.3 is a quantitative version of [AK07, Definition 7.3], which applies Harish-
Chandra’s submersion principle to the (submersive, by [Rod85, p. 774, Proposition 1]) map
G◦ × γH>r → G given by (g,m) 7→ Int(g)m. It is important to note that the distribution Tγ
really depends only on γ, not on x, ~G, ~a, h, or g. In Proposition 5.2.7, we need this result in the
case r = 0.

Lemma 4.4.3. If T is an invariant distribution on G, then there is an H◦-invariant distribution
Tγ on H, supported by γH>r, such that, with the notation of Lemma 4.4.1, we have that

Tγ([(H ∩ ~G)x>~a+r]hγ) equals T ([~Gx>~a+r]hgγ)

for any g ∈ (H ∩ ~G, ~G)x>(~a+,~a)+r.

Proof. As in [AK07, Definition 7.3], given f ∈ H(γH>r), we

(i) choose a compact, open subgroup K of G◦, and let α ∈ H(G◦ × γH>r) be the function
[K]⊗ f : (g,m) 7→ [K](g)f(m);

(ii) use [AK07, Theorem 7.1] to find a function fα ∈ H(Int(G◦)(γH>r)) such thatˆ
G
fα(g)F (g) dg equals

ˆ
G

ˆ
γH>r

α(g,m)F (Int(g)m) dmdg

for all F ∈ H(G); and

(iii) define Tγ(f) := δP−(γ)−1T (fα).

2340

https://doi.org/10.1112/S0010437X18007364 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007364


Explicit asymptotic expansions for tame supercuspidal characters

(The modulus function is not necessary for the definition, but it saves us from having to carry
around an unpleasant constant multiple coming from our desire to work with single, rather
than double, cosets. We have otherwise followed the notation of [AK07], but point out a slight
potential for confusion: α depends on f , although it is not explicitly indicated in the notation;
and the symbol ‘f ’ in ‘fα’ is just punctuation, and is not the same as the f at which we are
evaluating Tγ .)

Although the function α, and hence fα, depends on the choice of K, the number T (fα) does
not. Indeed, if K ′ is contained in K, and we write α′ for the analogue of α constructed with
respect to K ′, then the fact that α equals

ffl
K(k⊗1)α′ dk means that fα equals

ffl
K k
−1fα′k dk, so

that, by invariance of T , the equality T (fα) = T (fα′) holds.
Put H+ = (H,G)x>(~a,~a+r−ordγ±1 ). Once we take into account all the normalisations of

measures, Lemma 4.4.1 says that, if f is [(H ∩ ~G)x>~a+r] ·hγ and we choose K to be H, then fα is
[~Gx>~a+r · hγ ~Gx>~a+r]. By definition (Lemma 4.2.5), we have that g is congruent modulo ~Gx>~a+r

to an element of the form Qγ(v) with v ∈ (H ∩ ~G, ~G)x>(~a+,~a+r−ordγ); so, by Lemma 3.2.7(iii), we
have that

~Gx>~a+r · hgγ ~Gx>~a+r = ~Gx>~a+r · h Int(v)γ · ~Gx>~a+r

= Int(v)(~Gx>~a+r · Int(v)−1h · γ ~Gx>~a+r)

equals

Int(v)(~Gx>~a+r · hγ ~Gx>~a+r).

Now invariance of T gives that

T ([~Gx>~a+r · hgγ ~Gx>~a+r])

equals

T (fα) = δP−(γ)Tγ([~Gx>~a+r]hγ).

On the other hand, Lemma 3.2.13 gives that

[~Gx>~a+r · hgγ ~Gx>~a+r] equals δP−(γ)[~Gx>~a+r]hgγ.

The result follows. 2

Corollary 4.4.4. With the notation of Lemma 4.4.3, for any a ∈ R̃ with r 6 a <∞ and any
character φ of Hx=a, we have that

Tγ(γh[Hx>a, φ̂
∨]) equals T (γh[Gx>a, φ̂

∨])

for all h ∈ Hx>r, where φ̂ is the extension of φ trivially across (H,G)x>(a+,a) to Gx>a.

Proof. Since γ normalises Hx>r (by Lemma 3.2.11(i), say), we have by invariance of T and Tγ
that the stated equality is equivalent to

Tγ([Hx>a, φ̂
∨]hγ) equals T ([Gx>a, φ̂

∨]hγ)

for all h ∈ Hx>r. It is this that we actually prove.
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By Lemma 4.4.3 (and Lemma 4.2.5), and remembering our normalisation convention for [·],
we have that

T ([Gx>a, φ̂
∨]hγ) = |Gx=a|−1

∑
ga∈(H,G)x=(a+,a)

∑
ha∈Hx=a

φ̂∨(ha)T ([Gx>a]hagahγ)

equals

|Gx=a|−1|(H,G)x=(a+,a)|
∑

ha∈Hx=a

φ̂∨(ha)Tγ([Hx>a]hahγ)

=
|Hx=a| · |(H,G)x=(a+,a)|

|Gx=a|
Tγ([Hx>a, φ̂

∨]hγ),

so that the desired equality follows from the fact that |Hx=a| · |(H,G)x=(a+,a)| equals |Gx=a|. 2

Remark 4.4.5. In [AK07, Theorem 12.1], and hence in [AK07, Corollary 12.9], which uses the
theorem to deduce the validity of local character expansions around semisimple elements on
an explicitly specified domain, Adler and Korman have to impose the bound (in their notation)
r > max{ρ(π), 2s(γ)}. The quantitative nature of Corollary 4.4.4 allows us to improve this bound
to r > max{ρ(π), s(γ)}, by taking our r to be ρ(π) + ε for sufficiently small positive ε, and our
Z∗o to be 0. In our notation, it is what allows us to show that the asymptotic expansion in
Theorem 4.4.11 is valid on all of H>r. (Recall that a Γ-asymptotic expansion, in the sense of
Kim and Murnaghan, is valid on a larger domain [KM03, Theorem 5.3.1] than the local character
expansion [DeB02, Theorem 3.5.2], essentially because π intertwines with non-trivial characters
of Moy–Prasad subgroups of depth ρ(π), but with the trivial character only on a Moy–Prasad
subgroup of depth ρ(π)+.)

We now need to recall the

– element Z∗o ∈ Lie∗(G) and

– tame, twisted Levi subgroup G′

satisfying Hypothesis 4.1.1, from § 4.1; and the

– mock-exponential map e,

satisfying Hypothesis 4.3.1, from § 4.3. As in Definition 4.3.2, it is the map e that allows us to
speak of the dual blobs of certain characters.

In [KM03, Theorem 5.3.1], Kim and Murnaghan apply their general result [KM03,
Theorem 3.1.7] on asymptotic expansions to the special case of characters. Their hypotheses
refine the Moy–Prasad notion of an unrefined, minimal K-type [MP94, Definition 5.1] to give
what they call a good, minimal K-type [KM03, Definition 2.4.6(2)]. Singling out which characters
of a Moy–Prasad group Go>r with o ∈ B(G) are minimal, or good, in this sense requires what is
now called a Moy–Prasad isomorphism between Lie(G)o=r and Go=r, which is used to define the
dual blob of such a character. In the situation of [KM03], such a map is already available, and,
indeed, may be deduced from the exponential map [KM03, § 1.4, (Hk)]. Since we have insisted
on the existence of such a map only on H, not on G, we may not obviously speak of the dual
blob of a character of Go>r if o is not a point of B(H). Fortunately, all that we need to know
is the analogue of the notion of K-types being associate [MP94, Definition 5.1], and this makes
sense even if only one of the K-types in question has a well-defined notion of a dual blob.
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Let o be a point of B(G′), and φo a character of G′o=r. Write φ̂o for the extension of φo trivially
across (G′, G)o>(r,s) to (G′, G)o>(r,s+). Hypothesis 4.4.6 is our version of the assertion that

(Go>r, φ̂o) is a good, minimal K-type in the sense of [KM03, Definition 2.4.6(2)], and even
that ((G′, G)o>(r,s+), φ̂o) is a slightly refined, minimal K-type in the sense of [Adl98, § 2.3].

If we have a family of Moy–Prasad isomorphisms that allows us to speak of dual
blobs in general—as, for example, when G splits over ktame [Yu15, § 8.1(iii) and remark
after Corollary 5.6]—then these circumlocutions are not necessary, and Hypothesis 4.4.6 is
automatically satisfied when (G′o>r, φo) is the character with dual blob Z∗o + Lie∗(G′)o>−r. See,
for example, the argument in [MP94, § 7.2, Case 1], and [Adl98, Lemma 1.8.1].

Hypothesis 4.4.6. If

– y is an element of B(H),

– b ∈ R̃ satisfies 2b > r,

– X∗ is an element of Lie∗(H)y>−r,

– ((G′, G)y>(r,b), φ̂) is the character with dual blob X∗ + Lie∗(G′, G)y>(r,b)∼ ,

– g is an element of G, and

– (Int(g)−1(G′, G)o>(r,b), φ̂
g
o) agrees with ((G′, G)y>(r,b), φ̂) on the intersection of their

domains,

then X∗ + Lie∗(G′, G)y>(r,b)∼ intersects Ad∗(g)−1(Z∗o + Lie∗(G′, G)o>(r,b)∼).

In Definition 4.4.7, we use Lemma 4.4.3 to define certain invariant distributions on H that
carry all the information that we need about characters of G near γ.

Definition 4.4.7. If π is an admissible representation of G, then we define qΘπ,γ and qΘπ,γ,Z∗o to
be the distributions on Lie∗(H) given for any f∗ ∈ H(Lie∗(H)) by

qΘπ,γ(f∗) = Θπ,γ(f̌∗γ )

and

qΘπ,γ,Z∗o (f∗) = qΘπ,γ(f∗Z∗o ),

where we have introduced the ad hoc notation

– f̌∗γ for the function that vanishes outside γH>r, and is given on that domain by γ · e(Y ) 7→
f̌∗(Y ), and

– f∗Z∗o for the function that vanishes outside Lie∗(H)∩ Ad∗(H◦)(Z∗o+Lie∗(G′)>−r), and agrees
with f∗ on that domain;

and where

– Θπ,γ is the distribution Tγ deduced from T = Θπ in Lemma 4.4.3.

Kim and Murnaghan [KM03, Theorem 3.1.7] give sufficient ‘sampling’ conditions for a
distribution to agree, on an appropriate space of test functions, with a combination of orbital
integrals. Lemma 4.4.8 is a technical computation that allows us, in Corollary 4.4.9, to show
that these conditions are satisfied for the characters of an irreducible representation containing
(Go>r, φ̂o), which is our analogue of a good, minimal K-type.
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Lemma 4.4.8. With the notation of Definition 4.4.7, if

– γ centralises H◦,

– a ∈ R̃ satisfies r 6 a <∞, and

– X∗ belongs to Lie∗(H)x>−a,

then

qΘπ,γ([X∗ + Lie∗(H)x>−r])

equals

meas(Hx>a)
∑

Y ∈hx>r/hx>a

Λ∨X∗(Y ) trπ(γe(Y )[Gx>a, φ̂
∨]),

where φ̂ is the character of Gx>a with dual blob X∗ + Lie∗(G)x>−a.

Proof. Remembering our normalisation convention for [·], we have that

[X∗ + Lie∗(H)x>−r]
∨

equals

meas(Lie(H)x>r)[Lie(H)x>r,Λ
∨
X∗ ]

= meas(Lie(H)x>a)
∑

Y ∈Lie(H)x>r/Lie(H)x>a

Λ∨X∗(Y ) · (Y + [Lie(H)x>a,ΛX∗ ]).

By Hypothesis 4.3.1(i), the composition of this with log (as a function on H>r) equals

meas(Hx>a)
∑

Y ∈Lie(H)x>r/Lie(H)x>a

Λ∨X∗(Y ) · (e(Y )[Hx>a, φ
∨]).

(Note that we have not assumed that e is measure preserving; the point is that

meas(Lie(H)x>a)[Lie(H)x>a,Λ
∨
X∗ ] ◦ e

and

meas(Hx>a)[Hx>a, φ
∨]

both belong to H(Hx=a, φ), and both take the value 1 at the identity.) The result now follows

from Corollary 4.4.4 (and Definition 4.4.7). 2

Corollary 4.4.9. With the notation and hypotheses of Lemma 4.4.8, suppose further that π

is irreducible and contains (Go>r, φ̂o). Then

qΘπ,γ([X∗ + Lie∗(H)x>−r])

vanishes unless a is greater than r and X∗+ Lie∗(H)x>−a is degenerate, or a equals r and there

is some g ∈ G so that X∗ belongs to Ad∗(g)−1Z∗o + Lie∗(H ∩ Int(g)−1G′)>−r.
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Proof. Suppose that the quantity does not vanish. Then Lemma 4.4.8 gives that π contains
(Gx>a, φ̂), where φ̂ is the character of Gx>a with dual blob X∗+Lie∗(G)x>−r. As in [MP94, § 7.2],

since irreducibility guarantees that the various G-translates of the (non-zero) (Go>r, φ̂o)-isotypic

subspace of π span the entire space of π, we have that there is some g ∈ G so that the (Gx>a, φ̂)-

and (Int(g)−1Go>r, φ̂
g
o)-isotypic subspaces intersect non-trivially. In particular, (Gx>a, φ̂) and

(Int(g)−1Go>r, φ̂
g
o) agree on the intersection of their domains.

First suppose that a is greater than r. Then it follows from Remark 4.3.5 that X∗ +
Lie∗(H)x>−a is degenerate.

Next suppose that a equals r. Then, by Hypothesis 4.4.6, we have that

(X∗ + Lie∗(G)x>−r)∩ Ad∗(g)−1(Z∗o + Lie∗(G)o>−r)

is non-empty. By Lemma 4.1.3, we have that g ·x belongs to B(G′) and Z∗ to Lie∗(G′)g·x>−r;
and we may, and do, assume, upon modifying g on the right by an element of

(Gx>0 ∩ Int(g)−1Go>0)Gx>0

(which does not change either of the containments), that

(X∗ + Lie∗(H)x>−r)∩ Ad∗(g)−1(Z∗o + Lie∗(G′)>−r)

is non-empty. For notational convenience, we assume that g is the identity.
By Lemma 4.1.4, we have that γ belongs to G′ and Z∗o to Lie∗(H ′); and the coset

(X∗ − Z∗o ) + Lie∗(G)x>−r

intersects Lie∗(G′)>−r, so Remark 4.3.5 gives that the coset (X∗ − Z∗o ) + Lie∗(H)x>−r is
degenerate; so, finally, [AD02, Corollary 3.5.2] gives that the coset (X∗ − Z∗o ) + Lie∗(H ′)x>−r is
degenerate. That is, X∗ + Lie∗(H ′)x>−r intersects Z∗o + Lie∗(H ′)>−r. 2

Although it is not strictly necessary, we find it convenient to state and prove Lemma 4.4.10,
which guarantees (at least if the number of nilpotent orbits is finite) that the sum in the
asymptotic expansion in Theorem 4.4.11 has only finitely many terms.

Lemma 4.4.10. The set {g ∈ G | Ad∗(g)−1Z∗o ∈ Lie∗(H)} is a union of finitely many (G′ ◦, H◦)-
double cosets.

Proof. By writing the desired set as a union of translates of subsets of G◦ of the form {g ∈
G◦ | Ad∗(g1g)−1Z∗o ∈ Lie∗(H)}, as g1 ranges over G/G◦, we see that it suffices to consider such
a subset of G◦. For notational convenience, we assume that g1 is the identity.

We first prove this result over the separable closure of k. For notational convenience, in
the first part of the proof, we replace k by ksep, so that, for example, G◦ stands for G◦(ksep).
However, we will drop this notational convenience when we prove the result as stated.

Without loss of generality, Z∗o belongs to Lie∗(H). By Hypothesis 4.4.2 and Lemma 4.1.4, we
have that γ belongs to G′, hence by Hypothesis 3.2.2(iii) that H′ ◦ is a (no longer twisted) Levi
subgroup of H◦. Let S′ be a maximal torus in H that is contained in H′, so that there is some
maximal torus in G that is contained in G′ and contains S′. By [DM94, Théorème 1.8(iv)], we
have that T′ := CG◦(S

′) is a maximal torus in G◦, so that actually T′ is contained in G′.
Suppose that g is an element of S := {g ∈ G◦ | Ad∗(g)−1Z∗o ∈ Lie∗(H)}. We have as above

that (H ∩ Int(g)−1G′)◦ is a Levi subgroup of H◦. Since all maximal tori in H are H◦-conjugate
(because we are working over ksep), we may, and do, assume, upon adjusting g on the right by
an element of H◦, that (H ∩ Int(g)−1G′)◦ contains S′. In particular, G′ contains Int(g)S′, so,
again as above, we have that Int(g)T′ = CG◦(Int(g)S′) is contained in G′. Since all maximal tori
in G′ are G′ ◦-conjugate, we may, and do, assume, upon adjusting g on the left by an element of
G′ ◦, that Int(g)T′ equals T′. Then we have that g lies in NG◦(T

′).
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We have shown that each double coset in S intersects NG◦(T
′). Since the map from NG◦(T

′)
to the set of double cosets intersecting it factors through the finite group NG◦(T

′)/T′, we have
shown the geometric version of the statement.

Now we resume working with our original, discrete-valued field k, and so drop the notational
convenience of replacing it by ksep. By what we have already shown, it suffices to show that
the intersection with G◦ of a (G′ ◦(ksep),H◦(ksep))-double coset is a union of finitely many
(G′ ◦, H◦)-double cosets. Fix g ∈ G◦. The exact sequence of pointed sets

1 → H◦(ksep)∩ Int(g)−1G′ ◦(ksep) → H◦(ksep)×G′ ◦(ksep) → G′ ◦(ksep)gH◦(ksep) → 1,

where the first arrow is the twisted diagonal embedding h 7→ (h, Int(g)h) and the second is the
multiplication map (h, g′) 7→ g′gh, gives rise to the exact sequence in cohomology

H◦ ×G′ ◦ → G′ ◦(ksep)gH◦(ksep)∩G → H1(ksep/k,H◦(ksep)∩ Int(g)−1G′ ◦(ksep)).

As observed in [AS09, Proof of Lemma 6.1], the Galois cohomology set of any connected, reductive
p-adic group, such as H◦ ∩ Int(g)−1G′ ◦ (which equals CH(Int(g)−1 Z(G′ ◦)◦) by Remark 3.2.3),
is finite, so the result follows. 2

Our main result, Theorem 4.4.11, is a simultaneous generalisation of Adler and Korman’s
result [AK07, Corollary 12.9], which describes the domain of validity of local character expansions
near semisimple elements, and Kim and Murnaghan’s result [KM03, Theorem 5.3.1], which shows
that a different sort of asymptotic expansion is valid near the identity. Theorem 4.4.11 describes
the domain of validity of a Kim–Murnaghan-style asymptotic expansion about γ.

So far, we have worked with a fixed point x ∈ B(H), satisfying Hypothesis 3.2.8. For the proof
of Theorem 4.4.11, we must forget the particular choice that we have made of x, and instead
regard it as a variable free to range over B(H).

Because we have been accumulating hypotheses gradually throughout the paper, we
recapitulate all those that are currently in force. We are imposing

– Hypotheses 3.2.2, 3.2.8 (for all points x ∈ B(H)), and 4.4.2 (on γ),

– Hypotheses 4.1.1 and 4.4.6 (on Z∗o and φ̂o),

– Hypothesis 4.3.1 (on e), and

– Hypothesis 4.3.4 (on H).

We emphasise that all of these, except possibly Hypothesis 4.4.2, are satisfied under suitable
tameness hypotheses; for example, if γ is a compact-modulo-centre element of a tame torus
satisfying [AS08, Definition 6.3]. Under the same tameness hypotheses, we may arrange
Hypothesis 4.4.2 upon replacing γ by the product γ<r =

∏
06i<r γi of the terms in a normal

r-approximation (with the notation of [AS08, § 6] and terminology of [AS08, Definition 6.8]). In
the notation of [AS08, Definition 9.5], we have that γ<rH>r contains γHx>r for all x ∈ Br(γ).

As stated, Theorem 4.4.11 (and Corollary 4.4.13 and Lemma 4.4.14) is contingent on [KM03,
Theorem 3.1.7]. Of course, this theorem is true, but it imposes some stringent hypotheses (see
[KM03, § 1.4]). Rather than repeating those hypotheses, we prefer to emphasise that we are
using that theorem just as a black box to obtain the necessary homogeneity result; as long as
the orbital integrals ‘close to Z∗o ’ span an appropriate space of distributions, we are fine.

The theorem is vacuous unless π contains our analogue (Go>r, φ̂o) of a good, minimal K-type.
However, by [KM03, Theorem 2.4.10], under suitable tameness hypotheses [KM03, § 1.4], every
irreducible representation contains such a K-type, so this is not actually too much of a restriction.

2346

https://doi.org/10.1112/S0010437X18007364 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007364


Explicit asymptotic expansions for tame supercuspidal characters

In order for the statement of the theorem even to make sense, we require that the relevant
orbital integrals converge. This is true unconditionally in characteristic 0 [Ran72, Theorem 3];
and, as remarked in [DeB02, § 3.4, p. 409], by the same proof, even in equal characteristic if p is
sufficiently large.

Theorem 4.4.11. Suppose that [KM03, Theorem 3.1.7(1, 5)] is satisfied, and all of the relevant

orbital integrals converge. For any irreducible representation π containing (Go>r, φ̂o), there is a
finitely supported, OH◦(Ad∗(G)Z∗o )-indexed vector b(π, γ) so that

Φπ(γ · e(Y )) =
∑

O∈OH◦ (Ad∗(G)Z∗o )

bO(π, γ)ÔH
◦
O (Y )

for all Y ∈ Lie(H)rss ∩ Lie(H)>r.

By Hypothesis 4.3.1(ii)(a), we have that e(Y ) lies in Hrss ∩H>r for all Y ∈ Lie(H)rss ∩
Lie(H)>r, so that the notation makes sense.

We have used ‘b’, rather than ‘c’, for the coefficients in the expansion because we prefer to
reserve ‘c’ for a differently organised form of the coefficients in a related asymptotic expansion;
see Theorem 5.3.11.

Remark 4.4.12. Put U ′ ∗ = Z∗o + Lie∗(H ′)>−r. For a given finitely supported OH◦(Ad∗(G)U ′ ∗)-
indexed vector b(π, γ) and element Y ∈ Lie(H)rss ∩H>r, the equations

Φπ(γ · e(Y )) =
∑

O∈OH◦ (Ad∗(G)U ′ ∗)

bO(π, γ)ÔH
◦
O (Y )

and

|DG/H(γ)|1/2Θπ(γ · e(Y )) =
∑

g∈G′\G/H◦
Ad∗ (g)−1Z∗o∈Lie∗(H)

|Dred
H (Ad∗ (g)−1Z∗o )|1/2

×
∑

O∈OH◦ (Ad∗ (g)−1U ′ ∗)

bO(π, γ)µ̂H
◦
O (Y )

are equivalent by Hypothesis 4.3.1(ii)(b). We thus need not distinguish between the existence of
asymptotic expansions of Φπ and of Θπ (although, of course, the coefficients will differ).

Proof. We use Remark 4.4.12 to allow us to work with Θπ and µ̂H
◦
O rather than Φπ and ÔH

◦
O . To

emphasise that the coefficients in this expansion are different, we denote them by b̃ instead of b.
We use the function spaces

D−r(−r)+ =
∑

x∈B(H)

C(Lie∗(H)x=−r)

and

D(−r)+ =
∑

x∈B(H)

Cc(Lie∗(H)/Lie∗(H)x>−r)

of [KM03, Definition 3.1.1], adapted from Lie(G) to Lie∗(H); and also the distribution spaces

J Ad∗(g)−1Z∗o
(−r)+ of [KM03, Definition 3.1.2(2)], similarly adapted.
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With the notation of Definition 4.4.7, consider the difference

qΘ
0

π,γ := qΘπ,γ −
∑

g∈G′\G/H◦
Ad∗(g)−1Z∗o∈Lie∗(H)

qΘπ,γ,Ad∗(g)−1Z∗o
.

The indexing set for the sum is finite, by Lemma 4.4.10, so that the definition makes sense; and the
sets Ad∗(H◦)(Ad∗(g)−1Z∗o + Lie∗(H ∩ Int(g)−1G′)>−r) corresponding to different double cosets

G′gH◦ are disjoint, by Hypothesis 4.1.1(iii), so we have by Corollary 4.4.9 that qΘ
0

π,γ vanishes

on D−r(−r)+. Also by Corollary 4.4.9, each qΘπ,γ,Ad∗(g)−1Z∗o
with Ad∗(g)−1Z∗o in Lie∗(H), as well

as qΘ
0

π,γ , belongs to J Ad∗(g)−1Z∗o
(−r)+ . In particular, for each g ∈ G such that Ad∗(g)−1Z∗o belongs

to Lie∗(H), we have by [KM03, Theorem 3.1.7(5)] that there is an OH◦(Ad∗(g)−1Z∗o )-indexed

vector b̃(π, γ) so that

qΘπ,γ,Ad∗(g)−1Z∗o
equals

∑
O∈OH◦ (Ad∗(g)−1Z∗o )

b̃O(π, γ)µHO

on D(−r)+. By [KM03, Theorem 3.1.7(1)], we have that qΘ
0

π,γ vanishes on D(−r)+, so that

qΘπ,γ equals
∑

g∈G′\G/H◦

qΘπ,γ,Ad∗(g)−1Z∗o
=

∑
O∈OH◦ (Ad∗(G)Z∗o )

b̃O(π, γ)µH
◦
O

on D(−r)+. Exactly as in the proof of [DeB02, Theorem 3.5.2] and [KM03, Theorem 5.3.1], it

follows that the function Θπ(γ · e(·)) representing f 7→ qΘπ,γ(f̂) on Lie(H)rss ∩ Lie(H)>r equals∑
O∈OH◦ (Ad∗(G)Z∗o )

b̃O(π, γ)µ̂H
◦
O . 2

Corollary 4.4.13. With the notation and hypotheses of Theorem 4.4.11, we have that Φπ

vanishes on γH>r unless Ad∗(G)Z∗o intersects Lie∗(H); in particular, unless γ belongs to
Int(G)G′.

Theorem 4.4.11 only tells us that a vector b(π, γ) as in the statement exists; it gives no idea
of how to compute it, or even to test the correctness of a candidate vector. Lemma 4.4.14, which
is analogous to [KM03, Corollary 6.1.2], describes a general approach to verifying the coefficients
in an asymptotic expansion. See [DeB02, Theorem 2.1.5] for a similar result. Because we state
Lemma 4.4.14 only for a distribution already known to have an asymptotic expansion, it does not
need the long list of hypotheses of Theorem 4.4.11. Notice that we consider expansions slightly
more general than those occurring in Theorem 4.4.11; that is, Lemma 4.4.14 applies to those
expansions whose existence we have just proved, but also to others, such as those whose existence
we hypothesise in Theorem 5.3.11.

Lemma 4.4.14. Put U ′ ∗ = Z∗o +Lie∗(G′)>−r and U∗ = Ad∗(G)U ′ ∗; and, for each g ∈ G such that
Ad∗ (g)−1Z∗o belongs to Lie∗(H), put H ′g = H ∩ Int (g)−1G′ and U ′ ∗g = Ad∗ (g)−1U ′ ∗. Suppose
that

– Tγ is an element of the span of {µ̂H◦O | O ∈ OH
◦
(U∗)}, and

– c(Tγ) is a finitely supported, OH◦(U∗)-indexed vector.
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If Hypothesis 4.1.1 and [KM03, Theorem 3.1.7(1, 2)] are satisfied, then

Tγ equals
∑

O∈OH◦ (U∗)

cO(Tγ)µ̂H
◦
O

if and only if

Tγ([hx>r,Λ
∨
X∗ ]) equals

∑
O′∈OH

′ ◦
g (U ′ ∗g )

cO′(Tγ)µ̂H
◦
O′ ([hx>r,Λ

∨
X∗ ])

for all x ∈ B(H ′g) and X∗ ∈ Lie∗(H)x>−r ∩ U ′ ∗g , whenever g ∈ G is such that Ad∗(g)−1Z∗o belongs
to Lie∗(H).

Proof. As in the proof of Theorem 4.4.11, we use the function spaces

D′ −r(−r)+ =
∑

x∈B(H′)

C(Lie∗(H)x=−r)

and

D(−r)+ =
∑

x∈B(H)

Cc(Lie∗(H)/Lie∗(H)x>−r)

of [KM03, Definition 3.1.1], adapted from Lie(G) to Lie∗(H).
Let Ťγ be the distribution on Lie∗(H) given by Ťγ(f∗) = Tγ(f̌∗) for all f∗ ∈ H(Lie∗(H)).

Then Ťγ belongs to the span of {µO | O ∈ OH
◦
(U∗)}. Choose, for each g0 ∈ G, an element

Ťγ,Ad∗ (g0)−1Z∗o
in the span of {µO | O ∈ OH

◦
(U ′ ∗g )} such that Ťγ equals

∑
g0
Ťγ,Ad∗ (g0)−1Z∗o

. It
suffices to show, for each g0 ∈ G◦, that

Ťγ,Ad∗(g0)−1Z∗o
equals

∑
O∈OH◦ (U ′ ∗g0 )

cO(Tγ)µH
◦
O (∗)

on D(−r)+. For notational convenience, we assume that g0 is the identity.

By [KM03, Lemma 3.1.5 and Theorem 3.1.7(1,2)], it is enough to show that Ťγ,Z∗o agrees

with the right-hand side of (∗) on D′ −r(−r)+, which is to say that they agree on the characteristic

function f∗ of each coset X∗ + Lie∗(H)x>−r with x ∈ B(H ′) and X∗ ∈ Lie∗(H)x>−r. By our
normalisation convention for [·], we have that f̌∗ equals [Lie(H)x>r,Λ

∨
X∗ ].

If X∗ + Lie∗(H)x>−r does not intersect Z∗o + Lie∗(G′)>−r, then both sides of the equality
vanish; so we may, and do, assume that the two sets intersect.

If g belongs to G, and Ťγ,Ad∗(g)−1Z∗o
(f∗) does not vanish, then we have that Ad∗(gH◦)−1(Z∗o +

Lie∗(G′)>−r) intersects X∗+Lie∗(H)x>−r, hence, by Remark 4.1.7 and Hypothesis 4.1.1(iii), that
G′gH◦ is the trivial double coset. That is, we have that Ťγ(f∗) =

∑
g Ťγ,Ad∗(g)−1Z∗o

(f∗) equals

Ťγ,Z∗o (f∗). By assumption, Ťγ,Z∗o (f∗) equals∑
O′∈OH′ ◦ (U ′ ∗)

cO′(Tγ)µ̂H
′ ◦
O′ ([Lie(H ′)x>r,Λ

∨
X∗ ]),

as desired.
We have proven the ‘if’ direction. The ‘only if’ direction is much easier, and involves

essentially the argument that we used to show that Ťγ(f∗) equalled Ťγ,Z∗o (f∗). 2
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5. Computation of asymptotic expansions

5.1 Gauss sums and Weil indices
We know from Theorem 4.4.11 that the characters of certain representations have asymptotic
expansions about (nearly) arbitrary semisimple elements. Although Lemma 4.4.14 provides a
way to verify the correctness of a potential asymptotic expansion, it gives no idea what the
coefficients in such an expansion should be. The main result of § 5, Theorem 5.3.11, shows how
to use the inductive structure in Yu’s construction of supercuspidals [Yu01] to reduce character
computations for such representations of G to analogous computations on a tame, twisted Levi
subgroup G′. The recipe involves some fourth roots of unity, which have previously been relevant
in stability calculations (see, for example, [DS16, Proposition 4.20] and [Kal16, § 4.7]). In [AS09,
§ 5.2], Adler and the author interpreted analogous fourth roots of unity as Gauss sums. In this
paper, we interpret them as Weil indices, in the spirit of [Wal95, §VIII.1]. Pleasantly, we manage
to avoid the centrality assumption [AS09, Hypothesis 2.3] by using Proposition 4.2.4.

Definition 5.1.1. In [Wei64, § 14], Weil associated to a (non-degenerate) quadratic space over
a local field a constant via the Fourier transform. We follow the equivalent description in
[Wal95, §VIII.1]. Let (V, q) be a quadratic space over k, and b the unique symmetric bilinear
form so that q(v) equals b(v, v) for all v ∈ V . If q is non-degenerate, then there is a unique,
unit-modulus complex number, denoted in [Wei64, Wal95] by γΛ(q) and usually called the
Weil index (of (V, q) with respect to Λ), such that, whenever L is a lattice containing L• :=
{v ∈ V | b(v, w) ∈ k>0 for all w ∈ L}, we have that

meas(L)1/2

 
L

Λ1/2(q(v)) dv equals meas(L•)1/2γΛ(q).

(In [Wal95, §VIII.1], it is required that L• be contained in 2L; but, since we are assuming
that p is odd, this requirement is equivalent to ours.) In general, we define the Weil
index of (V, q) with respect to Λ to be that of (V/rad(V, q), q+), where rad(V, q) = {v ∈
V | b(v, w) = 0 for all w ∈ V } is the radical of (V, q), and q+ is the induced (non-degenerate)
quadratic form.

In Notation 5.1.2, we define a quadratic form qX∗,γ using 1−Ad(γ). In fact, using just −Ad(γ)
would not change the form, but we find it convenient to write it this way. This quadratic form
gives rise to the Gauss sums G that are ubiquitous in character computations; in this paper,
they pop out of our calculations in Proposition 5.2.6.

Notation 5.1.2. For any X∗ ∈ Lie∗(G) and γ ∈ G, we define

bX∗,γ(Y1, Y2) =
〈
X∗, [Y1, (1−Ad(γ))Y2]

〉
and qX∗,γ(Y ) = bX∗,γ(Y, Y )

for all Y, Y1, Y2 ∈ Lie(G). We write GG(X∗, γ) for the Weil index of the pairing qX∗,γ on Lie(G).
We have for g ∈ G that Ad(g) furnishes an isomorphism of (Lie(G), qX∗,γ) onto (Lie(G),

qAd∗(g)X∗,Int(g)γ), so that GG(X∗, γ) equals GG(Ad∗(g)X∗, Int(g)γ). Thus, if O′ is contained in
the coadjoint orbit of CG(γ) containing X∗, then we may write GG(O′, γ) for GG(X∗, γ).

If

– H is a reductive subgroup of G,

– we have an H-stable decomposition Lie(G) = Lie(H)⊕ Lie(H)⊥, and

– γ belongs to H and X∗ annihilates Lie(H)⊥,

then we write GG/H(X∗, γ) (or GG/H(O′, γ)) for the quotient GG(X∗, γ)/GH(X∗, γ).
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We now recall the

– non-negative real number r,

– element γ ∈ G, with associated groups P∓ = C
(<−∞)
G (γ±1), N±, and M = C

(<0)
G (γ), and

– point x ∈ B(C
(<r)
G (γ)),

satisfying Hypotheses 3.2.2 and 3.2.8, from § 3.2; and the

– tame, twisted Levi subgroup G′

from § 4.1. We do not impose Hypothesis 4.4.2; and do not need the element Z∗o from § 4.1, or
the mock-exponential map from Hypothesis 4.3.1.

We do fix an element X∗ satisfying Hypothesis 4.1.5, and we do require that γ belongs to G′.
As in § 4.1, we use primes to denote the analogues in G′ of constructions in G, so, for example,

M′ stands for C
(<0)
G′ (γ) (subject to the proviso in Remark 3.2.3, that we may refer directly only

to the identity component of M′).
Contrary to our notation elsewhere, in the proof of Proposition 5.1.3 we find it convenient

to use H to stand for C
(<r)
G (γ2), not C

(<r)
G (γ); but we return to the usual notation before

Proposition 5.1.8.
The pairing qX∗,γ is usually degenerate, but, in Proposition 5.1.3, we pick out a non-

degenerate subspace, and even a non-degenerate sublattice.

Proposition 5.1.3. We have that Lie(C
(<r)
G (γ), G)x>(0+,(r−ordγ±1 )/2) pairs via bX∗,γ with

itself into k>0, and with Lie(C
(<r)
G (γ), N+, G)x>(0+,(r−ordγ−1 )/2,((r−ordγ)/2)+) on the right or

Lie(C
(<r)
G (γ), N−, G)x>(0+,(r−ordγ)/2,((r−ordγ−1 )/2)+) on the left into k>0.

Further, the qX∗,γ-orthogonal modulo k>0 of

Lie(C
(<r)
G (γ2), G′, G)x>(∞,∞,(r−ordγ±1 )/2)

in Lie(C
(<r)
G (γ2))⊥ ∩ Lie(G′)⊥ is

Lie(C
(<r)
G (γ2), G′, G)x>(∞,∞,(r−ordγ±1 )/2).

Proof. For this proof, put H = C
(<r)
G (γ2). (Elsewhere, we write H for C

(<r)
G (γ).) Also for this

proof, put s±
γ±1 = (r ± ordγ±1)/2,

V = Lie(C
(<r)
G (γ), G)x>(0+,s−

γ±1 ),

V1,+ = Lie(C
(<r)
G (γ), N−, G)x>(0+,s−γ ,s

−
γ−1+),

and

V2,+ = Lie(C
(<r)
G (γ), N+, G)x>(0+,s−

γ−1 ,s
−
γ +).

(We apologise for resulting notation like s−
γ−1+.)

The argument for the first statement is similar to, but easier than, the proof of
Proposition 4.2.3.

For this paragraph, fix an element Y1 of V , a real number i2 satisfying i2 < r, and an element

Y2 of Lie(C
(<i2)
G (γ±1))x>(r−i2)/2. By Lemma 3.2.11(i), we have that (1 − Ad(γ))Y2 belongs to
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Lie(C
(<i2)
N+ (γ−1),C

(<i2)
G (γ±1))x>(max{(r+i2)/2,(r−i2)/2},(r+i2)/2), and to the slightly deeper variant

Lie(C
(<i2)
N+ (γ−1),C

(<i2)
G (γ±1))x>(max{((r+i2)/2)+,(r−i2)/2},((r+i2)/2)+) if Y2 belongs to V2,+. Thus, by

Lemma 3.2.7(i), we have that [Y1, (1 − Ad(γ))Y2] belongs always to Lie(N+, G)x>(r−ordγ−1 ,r),

hence bX∗,γ(Y1, Y2) =
〈
X∗, [Y1, (1− Ad(γ))Y2]

〉
to k>0, and to Lie(N+, G)x>(r−ordγ−1 ,r+), hence

bX∗,γ(Y1, Y2) to k>0, if Y1 belongs to V1,+ or Y2 to V2,+. The first statement follows.
For the second statement, put

V ⊥ = Lie(H,G′, G)x>(∞,∞,s−
γ±1 ).

Suppose that Y1 ∈ V ⊥ is such that bX∗,γ(Y1, Y2) + bX∗,γ(Y2, Y1), which equals〈
ad∗((Ad(γ)−1 −Ad(γ))Y1)X∗ + ad∗(Ad(γ)−1Y1)(Ad(γ)−1 − 1)X∗, Y2

〉
,

belongs to k>0 for all Y2 ∈ V ⊥. Then

ad∗((Ad(γ)−1 −Ad(γ))Y1)X∗ + ad∗(Ad(γ)−1Y1)(Ad(γ)−1 − 1)X∗

belongs to Lie∗(H,G′, G)x>(−∞,−∞,−s−
γ±1 ). Since (Ad(γ)−1 − 1)X∗ belongs to Lie∗(H ′)x>0 by

Hypothesis 4.1.5(ii) and Remark 3.2.10, and since we have by Lemma 3.2.11(i) that Ad(γ)−1Y1 =
Y1 − (1 − Ad(γ)−1)Y1 belongs to Lie(H,N+, G)x>(r+,s+

γ−1 ,s
−
γ ), we have by Lemma 4.1.6(i)

that ad∗(Ad(γ)−1Y1)(Ad(γ)−1 − 1)X∗ belongs to Lie∗(H,N+, G)x>(r+,s+
γ−1 ,s

−
γ ) ⊆ Lie∗(H,G′,

G)x>(−∞,−∞,−s−
γ±1 ). Thus, we have that

ad∗((Ad(γ)−1 −Ad(γ))Y1)X∗ belongs to Lie∗(H,G′, G)x>(−∞,−∞,−s−
γ±1 ).

By Lemma 4.1.6(ii), we have that

(Ad(γ)−1 −Ad(γ))Y1 belongs to Lie(H,G′, G)x>(−∞,−∞,s+
γ±1 ).

Thus, by Lemma 3.2.11(iii), we have that Y1 ∈ Lie(H,G′, G)x>(∞,∞,s−
γ±1 ) belongs to Lie(H,G′,

G)x>(−∞,−∞,s−
γ±1 ), hence to Lie(H,G′, G)x>(∞,∞,s−

γ±1 ), as claimed. 2

Corollary 5.1.4. We have that

G
G/C

(<r)
G (γ2)

(X∗, γ)

G
G′/C

(<r)

G′ (γ2)
(X∗, γ)

equals

|Lie(C
(<r)
G (γ2), G′, G)x=(0+,0+,(r−ordγ±1 )/2)|

−1/2∑
Y

Λ1/2(qX∗,γ(Y )),

where the sum over Y runs over

Lie(C
(<r)
G (γ2), G′, G)x>(0+,r−ordγ±1 ,(r−ordγ±1 )/2)/

Lie(C
(<r)
G (γ2), G′, G)x>(0+,r−ordγ±1 ,((r−ordγ±1 )/2)+).
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Proof. This follows immediately from Proposition 5.1.3, since the left-hand side is the Weil index

associated to (Lie(C
(<r)
G (γ2))⊥ ∩ Lie(G′)⊥, qX∗,γ), once we notice that the natural maps

Lie(C
(<r)
G (γ2), G′, G)x>(∞,∞,(r−ordγ±1 )/2)

→ Lie(C
(<r)
G (γ2), G′, G)x>(0+,r−ordγ±1 ,(r−ordγ±1 )/2)

→ Lie(C
(<r)
G (γ2), G′, G)x>(0+,0+,(r−ordγ±1 )/2)

induce isomorphisms

Lie(C
(<r)
G (γ2), G′, G)x=(∞,∞,(r−ordγ±1 )/2)

∼= Lie(C
(<r)
G (γ2), G′, G)x>(0+,r−ordγ±1 ,(r−ordγ±1 )/2)/

Lie(C
(<r)
G (γ2), G′, G)x>(0+,r−ordγ±1 ,((r−ordγ±1 )/2)+)

∼= Lie(C
(<r)
G (γ2), G′, G)x=(0+,0+,(r−ordγ±1 )/2). 2

Corollary 5.1.5 is a local constancy result for Gauss sums. It shows that certain quotients of
Gauss sums can ‘see’ information only up to depth r on the group side, and depth (−r)+ on the
dual-Lie-algebra side.

Corollary 5.1.5. The quantity
G
G/C

(<r)
G (γ2)

(X∗, γ)

G
G′/C

(<r)

G′ (γ2)
(X∗, γ)

does not change if we replace X∗ by a translate under Lie∗(C
(<r)
G′ (γ2))x>−r and γ by a translate

under C
(<r)
G′ (γ2)x>r.

The quantity
G
G/C

(<r)
G (γ)

(X∗, γ)

G
G′/C

(<r)

G′ (γ)
(X∗, γ)

·
G

C
(60)
G (γ2)/C

(60)
G (γ)

(X∗, γ)−1

G
C

(60)

G′ (γ2)/C
(60)

G′ (γ)
(X∗, γ)−1

does not change if we replace X∗ by a translate under Lie∗(C
(<r)
G′ (γ))x>−r and γ by a translate

under C
(<r)
G′ (γ)x>r.

Proof. The first statement is a direct consequence of Corollary 5.1.3. Since C
(60)
G (γ)∩ C

(<r)
G (γ2)

equals C
(<r)
G (γ), and similarly in G′, by Hypothesis 3.2.8(iii), the second statement follows by

applying the first to G, C
(60)
G (γ2), and C

(60)
G (γ). 2

The main result of § 5.1, Proposition 5.1.8, computes a certain integral on the group in terms
of the Gauss sums G defined via the Lie algebra. The usual device for transferring between
the group and the Lie algebra is an exponential map, but we have avoided assuming (so far in
§ 5) that there is an exponential map, or even a Moy–Prasad isomorphism. We wish to continue
avoiding this, but we need some way of relating the behaviour of the group character φ appearing
in Proposition 5.1.8 to the dual-Lie-algebra element X∗. By [Yu15, § 8.1(ii) and remark after
Corollary 5.6], a Moy–Prasad isomorphism exists, regardless of any tameness hypotheses, for
adjoint groups. We state the necessary properties of such an isomorphism in Hypothesis 5.1.6. It
may be constructed as in [Adl98, § 1.5], taking into account the modifications as in [Ste68, proof
of Theorem 8.2]; we do not give the details here.
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Hypothesis 5.1.6. Let Mad be the adjoint quotient of M. For each

– tame, twisted Levi sequence ~M in M containing γ, such that x belongs to B( ~M), and

– grouplike depth vector ~ satisfying ~ ∨ ~ > ~+,

there is an isomorphism

ex=~ : Lie( ~Mad)x=j
∼= ( ~Mad)x=~.

These isomorphisms satisfying the following.

(i) For all grouplike depth vectors ~k satisfying ~k ∨~k > ~k+, and elements Yk ∈ Lie( ~Mad)x>~k
and vk ∈ ex=~k(Yk), for k ∈ {1, 2}, we have that

[v1, v2] belongs to ex=~1∨~2([Y1, Y2]).

(ii) For all i ∈ R̃>0, grouplike depth vectors ~ satisfying ~ ∨ ~ > ~+, and elements Y ∈
Lie(C

(<i)
~M

(γ))x>~, there is an element v ∈ ex=~(Y )∩ C
(<i)
~M

(γ)x>~ so that

[v, γ] belongs to ex=i+~j((1−Ad(γ))Y ).

(iii) For all grouplike depth vectors ~k satisfying ~k ∨~k > ~k+, for k ∈ {1, 2}, if ~1+ and ~2+ are
equal, then the diagram

Lie(M)x=max{~1,~2}
//

��

Lie(M)x=~1

��
Lie(M)x=~2

//Mx=min{~1,~2}

commutes.

We can almost use Hypothesis 5.1.6 to define the notion of a dual blob of a character of Gx>r,
but we do not want to restrict ourselves to characters that factor through the adjoint quotient.
Instead, in Hypothesis 5.1.7, as in Hypothesis 4.4.6, we speak in a roundabout way of dual blobs,
this time via commutators. As with Hypothesis 4.1.5, we isolate Hypothesis 5.1.7 only to have a
convenient reference; it will automatically be satisfied when we need it, in Theorem 5.3.11.

We now return to the notation used elsewhere in this paper, writing H for C
(<r)
G (γ)

(and so H′ for C
(<r)
G′ (γ), subject to the proviso in Remark 3.2.3). Let φ be a character

of H ′x>r/C
(<r)
DG∩G′(γ)x>r. We write again φ for its extension trivially across (C

(<r)
DG∩G′(γ),

DG∩G′)x>(r+,r) to G′x>r, and then φ̂ for its further extension trivially across D(G′, G)x>(r,s)

to (G′, G)x>(r,s+).

Hypothesis 5.1.7. We have that

φ̂([v1, v2]) equals ΛX∗([Y1, Y2])

for all jm ∈ R̃>0, and elements Ym ∈ Lie(C
(60)
G (γ))x>jm and vm ∈ ex=jm(Ym)∩ C

(60)
G (γ), for

m ∈ {1, 2}, such that j1 + j2 > r.

Proposition 5.1.8 is used in Proposition 5.2.6 to show that Gauss sums appear when
evaluating invariant distributions at certain test functions.
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Proposition 5.1.8. We have that

|(H,C(60)
G′ (γ),C

(60)
G (γ))x=(0+,0+,(r−ordγ)/2)|

1/2

×
 

(H,C
(60)

G′ (γ),C
(60)
G (γ))x>(0+,r−ordγ,(r−ordγ )/2)

φ̂([v, γ]) dv

equals

G
C

(60)
G (γ)/H

(X∗, γ)/G
C

(60)

G′ (γ)/H′
(X∗, γ)−1.

Proof. Put V⊥= (H,C
(60)
G′ (γ),C

(60)
G (γ))x>(0+,r−ordγ ,(r−ordγ)/2). We use Notation 4.2.1.

Proposition 4.2.3 gives that Qγ is multiplicative modulo D(G′, G)x>(r,s) on V⊥.
In particular, we have for any i ∈ R with 0 < i < r that 

V⊥
φ̂(Qγ(v)) dv

equals  
V⊥/V(<i)

 
V(<i)

φ̂(Qγ(v1v2)) dv2 dv1

=

 
(H,C

(6i)
G′ (γ),C

(6i)
G (γ))x>(0+,r−ordγ,(r−ordγ )/2)

φ̂(Qγ(v1))

×
 
V(<i)

φ̂(Qγ(v2)) dv2 dv1,

where we have put

V(<i) = (C
(<i)
G′ (γ),C

(<i)
G (γ),C

(60)
G′ (γ),C

(60)
G (γ))x>(r−i,(r−i)/2,r−ordγ ,(r−ordγ)/2);

and reasoning inductively gives that 
V⊥

φ̂(Qγ(v)) dv equals
∏

0<i<r

 
(C

(<i)

G′ (γ),C
(<i)
G (γ))x>(r−i,(r−i)/2)

φ̂(Qγ(v)) dv.

We have by Hypotheses 5.1.6 and 5.1.7, and Proposition 4.2.4, that

φ̂(Qγ(v))2 equals Λ1/2(qX∗,γ(Y ))2,

hence, since both are p∞th complex roots of unity and p is odd, that

φ̂(Qγ(v)) equals Λ1/2(qX∗,γ(Y )),

for all 0 < i < r, and elements

Y ∈ Lie(C
(<i)
G′ (γ),C

(<i)
G (γ))x>(r−i,(r−i)/2)

and
v ∈ ex=(r−i,(r−i)/2)(Y )∩ (C

(<i)
G′ (γ),C

(<i)
G (γ))x>(r−i,(r−i)/2).

Lemma 3.2.12 gives that

|(H,C(60)
G′ (γ),C

(60)
G (γ))x=(0+,0+,(r−ordγ)/2)|

equals
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|Lie(H,C
(60)
G′ (γ),C

(60)
G (γ))x=(0+,0+,(r−ordγ)/2)|,

so we have shown that

|(H,C(60)
G′ (γ),C

(60)
G (γ))x=(0+,0+,(r−ordγ)/2)|

1/2
 
V⊥

φ̂(Qγ(v)) dv

equals ∏
0<i<r

|Lie(C
(<i)
G′ (γ),C

(<i)
G (γ))x=(0+,(r−i)/2)|

1/2

×
 

Lie(C
(<i)

G′ (γ),C
(<i)
G (γ))x>(r−i,(r−i)/2)

Λ1/2(qX∗,γ(Y )) dY.

By arguing as above, we see that this equals

|Lie(H,C
(60)
G′ (γ),C

(60)
G (γ))x=(0+,0+,(r−ordγ)/2)|

1/2

×
 

Lie(H,C
(60)

G′ (γ),C
(60)
G (γ))x>(0+,r−ordγ,(r−ordγ )/2)

Λ1/2(qX∗,γ(Y )) dY.

By Corollary 5.1.4, we are done. 2

5.2 Matching distributions on groups and subgroups
We recall the

– non-negative real number r,

– element γ ∈ G, with associated groups P∓ = C
(<−∞)
G (γ±1), N±, M = C

(<0)
G (γ), and H =

C
(<r)
G (γ), and

– point x ∈ B(H)

from § 3.2, of which we now require that r be positive; the

– tame, twisted Levi subgroup G′

from § 4.1, which we require to contain γ; and the

– element X∗ ∈ Lie∗(H ′) and

– characters φ of
G′x>r

(C
(<r)
DG∩G′(γ), G′)x>(r+,r)

and φ̂ of
(G′, G)x>(r,s+)

D(H ′, G′, G)x>(r+,r,s+)
,

satisfying Hypotheses 4.1.5 and 5.1.7 (and so, indirectly, Hypothesis 5.1.6), from § 5.1. As in
§ 4.1, we use primes to denote the analogues in G′ of constructions in G; so, for example, H′

stands for C
(<r)
G′ (γ) (subject to the proviso in Remark 3.2.3, that we may refer directly only to

the identity component of H′).
This section approaches the explicit computation of sample values of an invariant distribution

T on G, as in Lemma 4.4.8, by converting it into a computation of analogous sample values for an
invariant distribution T ′ on the tame, twisted Levi subgroup G′ that ‘matches’ T in some sense.
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Lemma 5.2.2 relates Fourier transforms of orbital integrals on Lie(G) and Lie(G′), but it does
not give us enough information to figure out the correct general matching condition. Our first
main result, Proposition 5.2.7, does provide that information; and our second, Theorem 5.2.8,
states the matching condition and the resulting reduction.

Put qG = qdim(G), and similarly for other groups. Lemma 5.2.1 is similar to Lemma 3.2.14, but
involves qrG/G′ , which we view as a proxy for the discriminant of X∗, rather than the discriminant

of γ. (See [DS16, Proposition 4.12] and the proof of Theorem 5.3.11 for the justification of our
claim that qrG/G′ is a reasonable proxy.)

Lemma 5.2.1. We have that

[Gx>0 :Gx>s]

[G′x>0 :Gx>s]
equals

|gx=0|−1/2

|g′x=0|
−1/2

·
qsG
qsG′
· |Gx=s|−1/2

|G′x=s|
−1/2

.

Proof. The proof proceeds exactly as did that of Lemma 3.2.14. We begin by reducing to the
Lie algebra, where we observe that [Lie(G)x>0 : Lie(G)x>s] equals both

|gx=0|−1[Lie(G)x>0 : Lie(G)x>s]

and

[Lie(G)x>0 : Lie(G)x>s] · |Lie(G)x=s|−1.

The result then follows from [DS16, Corollary 3.15]. 2

Lemma 5.2.2 is stated in such a way that it is independent of the choices of Haar measures
on G and G′, but appears still to depend, in the notation of the proof, on the choices of Haar
measures on CG◦(Y

∗) and CG′ ◦(Y
∗). However, this choice does not matter; these groups are

equal, and we may use any common Haar measure on them.

Lemma 5.2.2. We have that

meas(Gx>0)−1µ̂G
◦
O′ ([gx>r,Λ

∨
X∗ ])

equals

meas(G′x>0)−1µ̂G
′ ◦
O′ ([g′x>r,Λ

∨
X∗ ])

for all O′ ∈ OG′ ◦(X∗ + Lie∗(G′)x>−r).

Proof. Choose an element Y ∗ in O′ ∩ (X∗ + Lie∗(G′)x>−r). Put

C = {g ∈ G◦ | Ad∗(g)Y ∗ ∈ X∗ + g∗x>−r}

and

I = meas(Gx>0)−1µ̂G
◦

Ad∗(G◦)O′([gx>r,Λ
∨
X∗ ]),

and let C′ and I ′ be the analogous objects for G′ ◦. Because of our normalising convention for [·],
we have that [gx>r,Λ

∨
X∗ ]̂ is the characteristic function of X∗ + g∗x>−r, so I equals
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meas(Gx>0)−1 meas(C/CG◦(Y
∗))

=
∑

g∈Gx>0\C/CG◦ (Y ∗)

meas(Gx>0gCG◦(Y
∗)/CG◦(Y

∗))

meas(Gx>0)

=
∑

g∈Gx>0\C/CG◦ (Y ∗)

meas(Int(h)−1Gx>0 ∩ CG◦(Y
∗))−1;

and similarly for I ′. We have that CG◦(Y
∗) equals CG′ ◦(Y

∗) (Hypothesis 4.1.5(v)), so that
Int(g′)−1Gx>0 ∩ CG◦(Y

∗) equals Int(g′)−1G′x>0 ∩ CG′ ◦(Y
∗) for g′ ∈ C′, and the natural map

G′x>0\C′ → Gx>0\C is a surjection (Lemma 4.1.6(iii) and Hypothesis 4.1.5(v) again). In fact the
map is obviously also injective and equivariant for right translation by CG◦(Y

∗) = CG′ ◦(Y
∗), so

induces a bijection of G′x>0\C′/CG′ ◦(Y
∗) with Gx>0\C/CG◦(Y

∗). It follows that I equals I ′, as
desired. 2

Lemma 5.2.3 is implicit in the proof of [AS09, Proposition 4.3]. It ‘gives us room’
perpendicular to G′ when sampling invariant distributions at certain test functions related to
K-types. We use this room in Proposition 5.2.7 to compute the sample values in terms of Gauss
sums.

Lemma 5.2.3. We have that

q−sG |gx=0|1/2|Gx=s|1/2[Gx>r, φ̂
∨]

equals

q−sG′ |g
′
x=0|

1/2|G′x=s|
1/2

 
Gx>0

g−1[(G′, G)x>(r,s+), φ̂
∨]g dg.

Proof. Both sides are invariant under conjugation by Gx>0, and supported by the orbit under
Gx>0 of (G′, G)x>(r,s+). Thus, it suffices to verify the equality on (G′, G)x>(r,s+). Suppose that
t ∈ R satisfies s < t < r, and g belongs to (G′, G)x>(r,t). We show that the integral

ˆ
(G′,G)x>((r−t)+,r−t)

φ̂([h, g]) dh

is 0 unless g belongs to (G′, G)x>(r,t+). By, and with the notation of, Hypotheses 5.1.6 and 5.1.7,
the integral is a multiple of ˆ

Lie(G′,G)x>((r−t)+,r−t)

Λ(〈X∗, [Y, Z]〉) dY,

where Z ∈ Lie(G′, G)x>(r,t) is such that g belongs to ex=(r,t)(Z). In particular, the integral is 0
unless 〈

X∗, [Y,Z]
〉

= 〈ad∗(Z)X∗, Y 〉
belongs to k>0 for all Y ∈ Lie(G′, G)x>((r−t)+,r−t), hence unless ad∗(Z)X∗ belongs to Lie∗(G′,
G)x>(t−r,(t−r)+). By Lemma 4.1.6(ii), this would imply that Z ∈ Lie(G′, G)x>(r,t) belonged to
Lie(G′, G)x>(−∞,t+), hence to Lie(G′, G)x>(r,t+); and so that g ∈ ex=(r,t)(Z) belonged to (G′,
G)x>(r,t+), as claimed.

Thus, the left-hand side is supported by Gx>r, so the two sides agree up to a constant. To
show that the constant is 1, we use Lemma 3.2.12 and [DS16, Corollary 3.15 and Lemma 3.16]
to see that [(G′, G)x>(r,s+) : Gx>r] equals [Gx>0 : (G′, G)x>(0+,s)]. Then Lemma 5.2.1 gives that

q−sG |gx=0|1/2|Gx=s|1/2 meas(Gx>r)
−1
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equals

q−sG′ |g
′
x=0|

1/2|G′x=s|
1/2

meas((G′, G)x>(r,s+))
−1. 2

Lemma 5.2.4 gives us a transformation property of functions in a certain Hecke algebra.
(Remember that we have built in a contragredient to our Hecke-algebra notation, so that

H(G//(M ′,M)x>(r,s+), φ̂) stands for the space of functions that transform according to φ̂∨.)
After we specialise it slightly in Corollary 5.2.5, it will be used in Proposition 5.2.6.

Lemma 5.2.4. For all f ∈ H(G//(M ′,M)x>(r,s+), φ̂) and i, j ∈ R>0 satisfying i + 2j 6 r and
j < s, we have that

f(Int(bh)(gγ)) equals φ̂∨([h, g])φ̂∨([γ−1, h])f(Int(b)(gγ))

for all

b ∈ (G′, G)x>(0,j),

h ∈ (C
(<i)
G′ (γ),C

(<i)
G (γ))x>(r−i,r−(i+j)),

and

g ∈ C
(<i)
G (γ)x>i+j .

Proof. Put t = i+ j. We have that

Int(h)(gγ) equals [h, g] · (gγ) · [γ−1, h].

By Proposition 4.2.3, we have that [γ−1, h] belongs to (C
(<i)
G′ (γ),C

(<i)
G (γ))x>(r,r−j) ⊆ (M ′,

M)x>(r,s+). By Lemma 3.2.7(iii), we have that [h, g] belongs to C
(<i)
G (γ)x>r ⊆ (M ′,M)x>(r,s+),

and that the commutator of an element of (G′, G)x>(0,j) with one of (G′, G)x>(r,r−j) or Gx>r
belongs to DGx>r ⊆ ker φ̂. Thus,

f(Int(bh)(γg)) equals φ̂∨(Int(b)[h, g])f(Int(b)(gγ))φ̂∨(Int(b)[γ−1, h])

= φ̂∨([h, g])φ̂∨([γ−1, h])f(Int(b)(γg)). 2

We view Corollary 5.2.5 as stating in a philosophical sense that we can, under certain
restrictive conditions, ignore the presence of the element γ when conjugating. This allows us
to show that certain subintegrals in Proposition 5.2.6 vanish.

Corollary 5.2.5. With the notation of Lemma 5.2.4, if the inequality i+ 2j < r holds, then

f(Int(bh)(gγ)) equals φ̂∨([h, g])f(Int(b)(gγ)).

Proof. Proposition 4.2.3 gives that [h, γ] belongs to D(G′, G)x>(r,s) ⊆ ker φ̂. The result now
follows from Lemma 5.2.4. 2

Proposition 5.2.6 isolates an important part of the proof of [AS09, Proposition 5.3.2]. For
notational convenience, we assume that γ is compact modulo centre, and state Proposition 5.2.6
in terms of the group G; but we drop the assumption on γ, and apply the result to M instead, in
Proposition 5.2.7. In the context in which we use it, the function f will be fixed by conjugation
by (G′, G)x>(0+,s); in that sense, this result is a key part in the reduction of computations on G
to computations on G′.
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Proposition 5.2.6. If γ is compact modulo Z(G), then, for any f ∈ H(G//(G′, G)x>(r,s+), φ̂),
we have that

qsG/H |DG/H(γ)|1/2[gx=0 : hx=0]−1/2[Gx=s : C
(60)
G (γ)x=s]

−1/2

×G
C

(60)
G (γ)/H

(X∗, γ)−1

 
Gx>0

f(Int(g)γ) dg

equals

qsG′/H′ |DG′/H′(γ)|1/2[g′x=0 : h′x=0]
−1/2

[G′x=s : C
(60)
G′ (γ)x=s]

−1/2

×G
C

(60)

G′ (γ)/H′
(X∗, γ)−1

 
(G′,G)x>(0+,s)

f(Int(j)γ) dj.

Proof. For this proof, put Jγ;x, rK⊥ = (H,C
(60)
G′ (γ),C

(60)
G (γ))x>(0+,r−ordγ ,(r−ordγ)/2). (This is

closely related, but not identical, to the notation of [AS09, § 1.4].) The main idea is that the
integral over Gx>0 is unchanged (aside from normalisation issues) if we take it only over Jγ;x, rK⊥.
To show this, we chop the remainder of the domain of integration into shells, on each of which
we use Corollary 5.2.5 to show that the integral vanishes.

Suppose that i, j ∈ R>0 satisfy i+ 2j < r, and put

Sij = (H,G′,C
(6r−2j)
G (γ),C

(<i)
G (γ), G)x>(0+,0+,(r−ordγ)/2,j,j+)\

(H,G′,C
(6r−2j)
G (γ),C

(6i)
G (γ), G)x>(0+,0+,(r−ordγ)/2,j,j+).

(In the notation of [AS09, § 1.4], we have for any g ∈ Sij that i⊥(g) is i and j⊥(g) is j.) We claim
that Iij :=

´
Sij
f(Int(g)γ) dg equals 0.

Put t = i+ j, and

C = (H,C
(6r−2j)
G (γ),C

(<i)
G (γ))x>(0+,(r−ordγ)/2,j),

C+ = (H,C
(6r−2j)
G (γ),C

(6i)
G (γ),C

(<i)
G′ (γ),C

(<i)
G (γ))x>(0+,(r−ordγ)/2,j,j,j+),

and

H = (C
(<i)
G′ (γ),C

(<i)
G (γ))x>(r−i,r−t).

For this paragraph, fix an element c of (C
(<i)
G′ (γ),C

(<i)
G (γ))x>(j+,j), and readopt Notations 5.1.2

and 4.2.1. For later use, we show that the integral
ˆ
H
φ̂(Bγ(h, c)) dh

is 0 unless c belongs to C+. Our argument is very similar to the proof of Lemma 5.2.3. By, and
with the notation of, Hypotheses 5.1.6 and 5.1.7, we have that the integral is a multiple of

ˆ
Lie(C

(<i)

G′ (γ),C
(<i)
G (γ))x>(r−i,r−t)

Λ(bX∗,γ(Y,Z)) dY,

where Z ∈ (C
(<i)
G′ (γ),C

(<i)
G (γ))x>(j+,j) is such that c belongs to ex=(j+,j)(Z). In particular, it is

0 unless
bX∗,γ(Y,Z) =

〈
ad∗((1−Ad(γ))Z)X∗, Y

〉
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belongs to k>0 for all Y ∈ Lie(C
(<i)
G′ (γ),C

(<i)
G (γ))x>(r−i,r−t), hence unless ad∗((1− Ad(γ))Z)X∗

belongs to Lie∗(C
(<i)
G′ (γ),C

(<i)
G (γ))x>(i−r,t−r). We now reason as in Proposition 5.1.3. If this

containment held, then we would have by Lemma 4.1.6(ii) that (1 − Ad(γ))Z belonged to

Lie(G′,C
(<i)
G (γ), G)x>(−∞,t,−∞). This in turn would imply by Lemma 3.2.11(ii) that Z ∈

Lie(C
(<i)
G′ (γ),C

(<i)
G (γ))x>(j+,j) belonged to Lie∗(G′,C

(6i)
G (γ),C

(<i)
G (γ), G)x>(−∞,−∞,j,−∞), hence

to Lie(C
(<i)
G′ (γ),C

(6i)
G (γ),C

(<i)
G (γ))x>(j+,j,j+); and so that c ∈ ex=(j+,j)(Z) belonged to (C

(<i)
G′ (γ),

C
(6i)
G (γ),C

(<i)
G (γ))x>(j+,j,j+) ⊆ C+.

Since Sij equals (G′, G)x>(0,j) ·(C \C+), we have by [AS09, Lemma 5.3.1] that Iij is a multiple
of ˆ

C \C+

ˆ
(G′,G)x>(0,j)

f(Int(bc)γ) db dc.

By Proposition 4.2.3, we have that Qγ is C
(<i)
G (γ)x>t-valued on C; and, if we write Bγ for

the composition of Bγ with the projection G → G/D(G′, G)x>(r,s), so that the composition

φ̂ ◦ Bγ factors through Bγ , then Bγ is bi-multiplicative on H × C and trivial on H ×
(H,C

(6r−2j)
G (γ))x>(0+,(r−ordγ)/2). Since H = (C

(<i)
G′ (γ),C

(<i)
G (γ))x>(r−i,r−t) is contained in (G′,

G)x>(0,j), we have by Corollary 5.2.5 thatˆ
(G′,G)x>(0,j)

ˆ
C \C+

f(Int(bc)γ) dc db

=
∑
c

ˆ
(G′,G)x>(0,j)

ˆ
C+

ˆ
H
f(Int(bh)(Qγ(cc+)γ)) dh dc+ db,

where the sum over c runs over the non-trivial cosets in the quotient of (C
(<i)
G′ (γ),C

(<i)
G (γ))x>(j+,j)

by its intersection (C
(<i)
G′ (γ),C

(6i)
G (γ),C

(<i)
G (γ))x>(j+,j,j+) with C+, equals∑

c

ˆ
(G′,G)x>(0,j)

ˆ
C+

f(Int(bcc+)γ)

ˆ
H
φ̂(Bγ(h, cc+)) dh dc+ db

=

(ˆ
(G′,G)x>(0,j)

ˆ
C \C+

f(Int(bcc+)γ) dc+ db

)(ˆ
H
φ̂(Bγ(h, c)) dh

)
= 0,

so that Iij =
´
Sij
f(Int(g)γ) dg equals 0, as desired.

Recall that we have put Jγ;x, rK⊥ = (H,C
(60)
G′ (γ),C

(60)
G (γ))x>(0+,r−ordγ ,(r−ordγ)/2). Since

Gx>0\
⋃

i,j>0
i+2j<r

Sij equals (H,G′, G)x>(0+,0+,(r−ordγ)/2) = (G′, G)x>(0+,s) · Jγ;x, rK⊥, we have

shown (by another application of [AS09, Lemma 5.3.1]) that

meas((H ′,C
(60)
G′ (γ),C

(60)
G (γ))x>(0+,r−ordγ ,s))

ˆ
Gx>0

f(Int(g)γ) dg

equals

ˆ
(G′,G)x>(0+,s)

ˆ
Jγ;x,rK⊥

f(Int(jv)γ) dv dj.
(∗)

By Proposition 4.2.3, we have that

[v, γ] belongs to (G′, G)x>(r,s+),

and [
j, [v, γ]

]
belongs to D(G′, G)x>r ⊆ ker φ̂
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for all v ∈ Jγ;x, rK⊥ and j ∈ (G′, G)x>(0,s+). Thus, upon normalising the integrals in (∗) by
dividing by the measure, we find that

[Gx>0 : (G′, G)x>(0+,s)]

 
Gx>0

f(Int(g)γ) dg

equals

[Jγ;x, rK⊥ : (H ′,C
(60)
G′ (γ),C

(60)
G (γ))x>(0+,r−ordγ ,s)]

×
 

Jγ;x,rK⊥
φ̂∨([v, γ]) dv

×
 

(G′,G)x>(0+,s)

f(Int(j)γ) dj.

Thus, it suffices to show that

[Jγ;x, rK⊥ : (H ′,C
(60)
G′ (γ),C

(60)
G (γ))x>(0+,r−ordγ ,s)]

[Gx>0 : (G′, G)x>(0+,s)]

×
 

Jγ;x,rK⊥
φ̂∨([v, γ]) dv

equals

|DG/H(γ)|1/2

|DG′/H′(γ)|1/2
· [gx=0 : hx=0]−1/2

[g′x=0 : h′x=0]−1/2
·

[Gx=s : C
(60)
G (γ)x=s]

−1/2

[G′x=s : C
(60)
G′ (γ)x=s]

−1/2

×
G

C
(60)
G (γ)/H

(X∗, γ)−1

G
C

(60)

G′ (γ)/H′
(X∗, γ)−1 ·

qsG/H

qsG′/H′
.

We have by Lemma 5.2.1 that

[Gx>0 : (G′, G)x>(0+,s)] equals [gx=0 : g′x=0]
−1/2

qsG/G′ [Gx=s :G′x=s]
−1/2

,

and by Lemma 3.2.14 that

[Jγ;x, rK⊥ : (H ′,C
(60)
G′ (γ),C

(60)
G (γ))x>(0+,r−ordγ ,s)]

= [(H,C
(60)
G′ (γ),C

(60)
G (γ))x>(0+,0+,(r−ordγ)/2) : (C

(60)
G′ (γ),C

(60)
G (γ))x>(0+,s)],

which may be rewritten as

[(H,C
(60)
G (γ))x>(0+,(r−ordγ)/2) : (H,C

(60)
G (γ))x>(0+,s)]

[(H ′,C
(60)
G′ (γ))x>(0+,(r−ordγ)/2) : (H ′,C

(60)
G′ (γ))x>(0+,s)]

· [Hx>0 : (H ′, H)x>(0+,s)],

equals

|(H,C(60)
G (γ))x=(0+,(r−ordγ)/2)|

1/2
|DG/H(γ)|−1/2[C

(60)
G (γ)x=s :Hx=s]

−1/2

|(H ′,C(60)
G′ (γ))x=(0+,(r−ordγ)/2)|

1/2
|DG′/H′(γ)|−1/2[C

(60)
G′ (γ)x=s :H ′x=s]

−1/2

× [hx=0 : h′x=0]
−1/2

qsH/H′ [Hx=s :H ′x=s]
−1/2

2362

https://doi.org/10.1112/S0010437X18007364 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007364


Explicit asymptotic expansions for tame supercuspidal characters

= |(H,C(60)
G′ (γ),C

(60)
G (γ))x=(0+,0+,(r−ordγ)/2)|

1/2

×
|DG/H(γ)|−1/2

|DG′/H′(γ)|−1/2
[C

(60)
G (γ)x=s : C

(60)
G′ (γ)x=s]

−1/2
[hx=0 : h′x=0]

−1/2
qsH/H′ .

(We have used that γ is compact modulo Z(G), so that

D
G/C

(60)
G (γ)

(γ) = det
Lie(G)/Lie(C

(60)
G (γ))

(Ad(γ)− 1)

is a unit (by Hypothesis 3.2.2(ii)), and similarly for G′.) The result now follows from
Proposition 5.1.8, with an inverse on G because we are dealing with φ∨ rather than φ. 2

So far, in Lemma 5.2.3 and Proposition 5.2.6, we have been dealing directly with functions f
on G. We want to combine these results; but, while the latter depends on the values of f near γ,
the former applies only to functions supported near the identity. Proposition 5.2.7 circumvents
this difficulty by dealing, not with the functions f themselves, but with the values T (f), where
T is an invariant distribution.

Proposition 5.2.7. If T is an invariant distribution on G, then

qH
−s |DG/H(γ)|1/2

δP−(γ)1/2
|hx=0|1/2|C(60)

G (γ)x=s|
1/2

×G
C

(60)
G (γ)/H

(X∗, γ)−1T (γ[Gx>r, φ̂
∨])

equals

qH′
−s |DG′/H′(γ)|1/2

δP ′ −(γ)1/2
|h′x=0|

1/2|C(60)
G′ (γ)x=s|

1/2

×G
C

(60)

G′ (γ)/H′
(X∗, γ)−1T (γ[(G′, G)x>(r,s+), φ̂

∨]).

Proof. Consider the function f : G → C given by

f(g) = T (g[(M ′,M,G)x>(r,s+,r), φ̂
∨])

for all g ∈ G. By invariance of T , we have that f(g) equals

T ([(M ′,M,G)x>(r,s+,r), φ̂
∨] · g[(M ′,M,G)x>(r,s+,r), φ̂

∨])

for all g ∈ G, so that f belongs to H(G//(M ′,M,G)x>(r,s+,r), φ̂); and also that f(gγg−1) equals

T (γ · g−1[(M ′,M,G)x>(r,s+,r), φ̂
∨]g)

for all g ∈ G. Since Lemma 3.2.7(iii) gives that the commutator of (M ′,M)x>(0+,s) with (M ′,

M,G)x>(r,s+,r) is contained in DGx>r ⊆ ker φ̂, we have that (M ′,M)x>(0+,s) stabilises ((M ′,M,

G)x>(r,s+,r), φ̂), hence fixes f . Thus Proposition 5.2.6, with M in place of G, gives that

qsM/H

|DG/H(γ)|1/2

δP−(γ)1/2
[mx=0 : hx=0]−1/2[Mx=s : C

(60)
G (γ)x=s]

−1/2

×G
C

(60)
G (γ)/H

(X∗, γ)−1

 
Mx>0

f(Int(g)γ) dg

equals

qsM ′/H′
|DG′/H′(γ)|1/2

δP ′ −(γ)1/2
[m′x=0 : h′x=0]−1/2[M ′x=s : C

(60)
G′ (γ)x=s]

−1/2

×G
C

(60)

G′ (γ)/H
(X∗, γ)−1f(γ).

(∗)
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Now
ffl
Mx>0

f(Int(g)γ) equals

T

(
γ ·

 
Mx>0

g−1[(M ′,M,G)x>(r,s+,r), φ̂
∨]g dg

)
.

Since [(M ′,M,G)x>(r,s+,r), φ̂
∨] agrees on (M ′,M)x>(r,s+) with

meas((M ′,M)x>(r,s+))

meas((M ′,M,G)x>(r,s+,r))
[(M ′,M)x>(r,s+), φ̂

∨],

we have by Lemma 5.2.3 (again applied to M instead of G) that

qsM |mx=0|−1/2|Mx=s|−1/2

 
Mx>0

g−1[(M ′,M,G)x>(r,s+,r), φ̂
∨]g dg (†)

agrees on Mx>s with
qsM ′ |m′x=0|−1/2|M ′x=s|−1/2 (‡)

times
meas ((M ′,M)x>(r,s+)

meas((M ′,M,G)x>(r,s+,r))
[Mx>r, φ̂

∨]

(where the unexpected quotient of measures comes from our normalisation convention for [·],
which involves dividing by the measure of the support); hence, since (†) belongs to H((M,
G)x>(s+,r)//Gx>r, φ̂), that it equals the same multiple (‡) of

meas((M ′,M)x>(r,s+))

meas((M ′,M,G)x>(r,s+,r))

meas(Gx>r)

meas(Mx>r)
[Gx>r, φ̂

∨]

=
[(M ′,M)x>(r,s+) :Mx>r]

[(M ′,M,G)x>(r,s+,r) :Gx>r]
[Gx>r, φ̂

∨]

= [Gx>r, φ̂
∨].

That is, by (∗), and remembering that f(γ) equals T (γ[(M ′,M,G)x>(r,s+), φ̂]), we have shown
that

qH
−s |DG/H(γ)|1/2

δP−(γ)1/2
|hx=0|1/2|C(60)

G (γ)x=s|
1/2

×G
C

(60)
G (γ)/H

(X∗, γ)−1T (γ[Gx>r, φ̂
∨])

equals

qH′
−s |DG′/H′(γ)|1/2

δP ′ −(γ)1/2
|h′x=0|

1/2|C(60)
G′ (γ)x=s|

1/2

×G
C

(60)

G′ (γ)/H
(X∗, γ)−1T (γ[(M ′,M,G)x>(r,s+,r), φ̂

∨]).

The result now follows from Lemma 4.4.3, with 0 in place of r. (See Remark 3.2.9.) 2

Theorem 5.2.8 gives a condition under which an invariant distribution T on G may be
said to match an invariant distribution T ′ on G′, and shows that, in this case, certain sample
values of those two distributions are equal. Note the resemblance of the proof to the descent
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arguments appearing in [KM06, §§ 6.2, 7.2]. We have phrased Theorem 5.2.8 in a way that we

think will be amenable to future calculations using Hecke-algebra isomorphisms, but, for now,

the limited analogue that we prove in Theorem 5.3.8 suffices to handle the characters of tame

supercuspidal representations in Theorem 5.3.11. We make an essentially cosmetic restatement

of the theorem later, as Lemma 5.3.10, in a form that is amenable to use in our main result,

Theorem 5.3.11.

An analysis of the proof of Theorem 5.2.8 shows that we only need to refer explicitly to the

measures on H◦ and H ′ ◦, not on G and G′. (Recall, though, that the functions [G′x>r, φ
∨] and

[(G′, G)x>(r,s+), φ̂
∨] implicitly depend on the choices of measure on G′ and G, respectively.) This

is the first place that we need to make use of the specific normalisation of Haar measure chosen

in § 2.3.

Theorem 5.2.8. Suppose that

– T ′ is an invariant distribution on G′,

– c(T ′, γ) is a finitely supported, OH′ ◦(Lie∗(H ′))-indexed vector of complex numbers such

that |DG′/H′(γ)|1/2T ′(γ[G′x>r, φ
∨]) equals

qsH′
GG′/H′(X

∗, γ)

G
C

(60)

G′ (γ2)/C
(60)

G′ (γ)
(X∗, γ)

∑
O′∈OH′ ◦ (Lie∗(H′))

cO′(T
′, γ)µ̂H

′ ◦
O′ ([h′x>r,ΛX∗ ]),

and

– T is an invariant distribution on G such that

δP−(γ)1/2|C(60)
G (γ)x=s|

−1/2
G
G/C

(60)
G (γ2)

(X∗, γ)−1T (γ[(G′, G)x>(r,s+), φ̂
∨])

equals

δP ′ −(γ)1/2|C(60)
G′ (γ)x=s|

−1/2
G
G′/C

(60)

G′ (γ2)
(X∗, γ)−1T ′(γ[G′x>r, φ̂

∨]).

Then |DG/H(γ)|1/2T (γ[Gx>r, φ̂
∨]) equals

qsH
GG/H(X∗, γ)

G
C

(60)
G (γ2)/C

(60)
G (γ)

(X∗, γ)

∑
O′∈OH′ ◦ (Lie∗(H′))

cO′(T
′, γ)µ̂H

◦
O′ ([hx>r,ΛX∗ ]).

Note that µ̂H
′ ◦
O′ and µ̂H

◦
O′ are Fourier transforms of different orbital integrals, as indicated by

the superscripts, even though the subscripts are the same.

It does not matter for Theorem 5.2.8 whether X∗ + Lie∗(G′)x>−r is the ‘dual blob’ of

(G′x>r, φ), only that Hypothesis 5.1.7 is satisfied.
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Proof. By Proposition 5.2.7, we have that qH
−s|DG/H(γ)|1/2T (γ[Gx>r,ΛX∗ ]) equals

qH′
−s GG/H(X∗, γ)

GG′/H′(X∗, γ)
[hx=0 : h′x=0]

−1/2

× |DG′/H′(γ)|1/2
G

C
(60)
G (γ2)/C

(60)
G (γ)

(X∗, γ)−1

G
C

(60)

G′ (γ2)/C
(60)

G′ (γ)
(X∗, γ)−1

× δP−(γ)1/2

δP ′ −(γ)1/2
[C

(60)
G (γ)x=s : C

(60)
G′ (γ)x=s]

−1/2 GG/C
(60)
G (γ2)

(X∗, γ)−1

G
G′/C

(60)

G′ (γ2)
(X∗, γ)−1︸ ︷︷ ︸

(G′)

× T (γ[(G′, G)x>(r,s+), φ̂
∨])︸ ︷︷ ︸

(G′)

.

(∗)

By assumption, we have that (∗G′) equals T ′(γ[G′x>r,ΛX∗ ]), so that, again by assumption,

qH
−s|DG/H(γ)|1/2T (γ[Gx>r,ΛX∗ ]) itself equals

GG/H(X∗, γ)

G
C

(60)
G (γ2)/C

(60)
G (γ)

(X∗, γ)

× [hx=0 : h′x=0]
−1/2

∑
O′∈OH′ ◦ ( Lie∗(H′)

cO′(T
′, γ)µ̂H

′ ◦
O′ ([h′x>r,ΛX∗ ]).

According to Waldspurger’s canonical Haar measures, we have that [hx=0 : h′x=0]−1/2 equals

meas(H ′x>0)−1/meas(Hx>0)−1, so that the result follows from Lemma 5.2.2. 2

5.3 Supercuspidal representations
After Lemma 5.3.3, we will begin to reintroduce notation from the previous sections; but we
begin this section without any of the accumulated notation (except for G itself), by recalling
the construction of tame supercuspidal representations from [Yu01]. Because the restriction is
necessary for Yu’s construction, we assume now that G is ktame-split and connected.

The construction is inductive in nature, and we consider only a single step in the induction; so
we replace the datum of [Yu01, § 3, p. 590] with a quintuple ((G′,G), o, (0 < r 6 rd), ρ

′, (φo, χ)),
which we fix for the rest of the paper. Here,

– our G′ is Yu’s Gd−1;

– our o is Yu’s y;

– our r is Yu’s rd−1;

– our ρ′ is the induction up to stabG′(o) of the representation ρd−1 constructed in [Yu01, § 4,
p. 592]; and

– our φo and χ are Yu’s φd−1 and φd, respectively.

Note that ρ′ is constructed by inducing ρd−1, not ρ′d−1; that is, it includes the twist by φo by
which those two representations differ. The group G′ and positive real number r here will be
the same as in §§ 4.1 and 3.2, respectively. The idea is that the part of Yu’s datum that he
denotes by ((G0 ( · · · ( Gd−1), y, (r0 < · · · < rd−1), ρ′0, (φ0, . . . , φd−1)) has already been used
to construct ρ′, which is (G′o>r, φo)-isotypic and induces an irreducible, hence supercuspidal,

depth-r representation of G′, which we call π′ := IndG
′

stabG′ (o)
ρ′.
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Let Z∗o be a generic element, as in [Yu01, § 8], representing (G′o>r, φo), as in [Yu01, § 9].
Because G is connected, Hypothesis 4.1.1 is just the genericity condition [Yu01, § 8, p. 596, GE].
Because G is tame, so that Moy–Prasad isomorphisms are always available, Hypothesis 4.4.6
follows from the definition of ‘representing’ [Yu01, § 5].

Notation 5.3.1. Put

K ′o = stabG′(o),

Jo = (G′, G)o>(r,s),

Ko = K ′o · Jo = stabG′(o)Go>s,

and

Jo,+ = (G′, G)o>(r,s+).

For uniformity of notation, we also put

J ′o = G′ ∩ Jo = G′o>r.

Let φ̂o be the extension of (J ′o, φo) trivially across D(G′, G)o>(r,s) to Jo,+.

Yu uses the theory of the Weil representation to construct a representation φ̃o of K ′o n Jo
[Yu01, Theorem 11.5] that is (G′o>0 n 1)-isotrivial and (1 n Jo,+, φ̂o)-isotypic. As suggested in
[Yu12], and seen by example in [DS16], the use of the ‘bare’, untwisted, Weil representation is
not ideal. We describe in forthcoming work, and use here, a representation φ̃+

o (a twist of φ̃o by
a character of K ′o n Jo that is trivial on G′o>0 n Jo) that has better intertwining and character-
theoretic properties, but still satisfies [Yu01, § 4, SC2]. The definition involves a somewhat
mysterious sign e−, whose rather involved definition we do not reproduce here. The analysis of
this sign, which seems to be required for endoscopic transfer, will be the subject of future work;
here we simply build it into our existing Gauss sums G.

Definition 5.3.2. As in [Yu01, § 4, p. 592], there is a unique representation ρ of Ko = K ′o · Jo
on the tensor product of the spaces of ρ′ and φ̃+

o such that

(ρχ−1)(k′ojo) equals ρ′(k′o)⊗ φ̃+
o (jo)

for all k′o ∈ K ′o and jo ∈ Jo. Put π = IndGKoρ. Also put

G̃G(X∗, γ) =
GG(X∗, γ)

G
C

(60)
G (γ2)/C

(60)
G (γ)

(X∗, γ)
e−

C
(60)
G (γ2)/C

(60)
G (γ)

(γ),

where e− is as defined in our forthcoming paper on the Weil representation.

Yu’s analogue of ρ, which is denoted by ρd, is defined on a smaller subgroup than ours; but,
if we were not using a different choice of representation φ̃o satisfying SC2, then its induction
to Ko would be isomorphic to our representation ρ, hence would not change the isomorphism
class of π. Although our π is not the same as the one that the unmodified construction of [Yu01]
assigns to our quintuple (because of our use of φ̃+

o instead of φ̃o), it does still arise from that
unmodified construction via a different choice of quintuple. To obtain the parameterising datum
for the unmodified construction, one absorbs into φo the twist by which φ̃+

o differs from φ̃o.
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Lemma 5.3.3. We have that ρ is (Jo,+, φ̂o)-isotypic.

Proof. By Definition 5.3.2, for all j+ ∈ Jo,+, the operator ρ(j+) may be written as ρ′(1) ⊗
φ̃+
o (1 n j+). The result thus follows from the fact that φ̃+

o is (1 n Jo,+, φ̂o)-isotypic [Yu01, § 4,
SC2]. 2

We resume the notation for the rest of the paper a bit at a time. For now, in addition to the

– positive real number r,

– tame, twisted Levi subgroup G′, and

– element Z∗o ∈ Lie∗(G′)

that we have already, we let x be a point of B(G) (eventually, the point in § 3.2), and recall the

– element X∗ ∈ Lie∗(G′)x>−r and

– characters φ of G′x>r and φ̂ of (G′, G)x>(r,s+)

from § 5.1, of which we require that X∗ belongs to Z∗o + Lie∗(G′)>−r. We do not have to impose
Hypothesis 4.1.5 explicitly; it will hold automatically, by Remark 4.1.7, once we have recalled
γ. We should regard x, X∗, and φ as fixed only provisionally, until Lemma 5.3.10; we need to
allow them to vary in the proof of Theorem 5.3.11. Although we do impose Hypothesis 5.1.7
here, it will not need to be explicitly stated in our main result, Theorem 5.3.11, where it will
automatically be satisfied.

In Notation 5.3.4, we mostly adapt Notation 5.3.1 and the following discussion from the point
o to the point x (and then drop the subscript x); but note that the group K ′ may be smaller
than the direct analogue stabG′(x) of K ′o.

Notation 5.3.4. Put

J = (G′, G)x>(r,s),

J+ = (G′, G)x>(r,s+),

and

J ′ = G′ ∩ J = G′x>r,

K ′ = stabG′(x, φ),

and

K = K ′ · J = stabG′(x, φ)Gx>s.

As in [Yu01, Proposition 11.4 and Theorem 11.5], we may use a special isomorphism, in the
sense of [Yu01, § 10, p. 601], to pull back a Weil representation to K ′ n J . We then write φ̃+

for the twist of this pullback constructed in our forthcoming work on the Weil representation.
Recall that this twist is by a character that is trivial on G′x>0 n J . To emphasise when we are

considering only the action of J , which is unaffected by the twist, we denote ResK
′nJ

J φ̃+ by φ̃.

Lemma 5.3.5 is the first of three calculations that prepare us for one of the main results of
this section, Theorem 5.3.8. It seems that the two statements in Lemma 5.3.5 should admit a
common generalisation, rather than just having similar proofs, but we have not been able to find
such a generalisation.
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Lemma 5.3.5. For all g′ ∈ G′, we have that

Int(g′)−1Ko ∩ J equals (Int(g′)−1K ′o ∩ J ′)(Int(g′)−1Jo ∩ J)

and

Kog
′J ∩G′ equals K ′og

′J ′.

Proof. Multiplying the second equality on the left by g′ −1 shows that it, too, is a statement about
Int(g′)−1K ′o. Replacing o by g′ −1·o, hence K ′o and Ko by their conjugates under g′ −1, corresponds
to replacing ((G′,G), o, (r 6 rd), ρ

′, (φ, χ)) by ((G′,G), g′ −1 ·o, (r 6 rd), ρ
′◦ Int(g′), (φ, χ)), which

gives rise to the same representations π′ and π; so we may, and do, assume upon making this
replacement that g′ equals 1.

Note that K ′o normalises Jo, so that (K ′o ∩ J ′)(Jo ∩ J) is a group.
By Lemma 3.1.1, we may, and do, pass to a tame extension, and so assume that G′ is a Levi

subgroup of G. Let U± be the unipotent radicals of opposite parabolics with Levi component G′.
Also by Lemma 3.1.1, we have that Ko ∩ J equals (Ko ∩ J ∩G′)(Ko ∩ J ∩U+)(Ko ∩ J ∩U−) and

KoJ equals K ′o(Ko ∩U+)K ′o(Ko ∩U−)(J ∩U−)(J ∩U+)J ′. (∗)

We have that Ko ∩ J ∩G′ equals K ′o ∩ J ′ and Ko ∩U± equals U±o>s ⊆ (G′, G)o>s = Jo, so the
first equality follows.

If we write an element of the intersection of KoJ with G′ as g′ = k′k+k−j−j+j′ according
to the decomposition (∗), then k−j− belongs to U− ∩ (k′k+)−1G′(j+j′)−1 ⊆ U− ∩G′U+ = {1}.
That is, k−j− equals 1. Then k+j+ = k+k−j−j+ belongs to U+ ∩ k′ −1G′j′ −1 = U+ ∩G′ = {1},
so that k+j+ also equals 1, and hence g′ equals k′j′, which belongs to K ′oJ

′. 2

Recall that Definition 5.3.2 expresses the inducing representation ρ for π as a tensor product
of the inducing representation ρ′ for π′ with a Weil representation. We show in Lemma 5.3.6
that its (φ̃χ)-isotypic subspace admits a similar tensor-product decomposition.

Lemma 5.3.6. The canonical isomorphism

HomC(φ, ρ′)⊗C HomC(φ̃, φ̃o) → HomC(φ̃χ, ρ)

(all Hom spaces being in the category of vector spaces) sending v′⊗ϕ to the map w 7→
v′(1)⊗ϕ(w) restricts to an isomorphism

HomJ ′ ∩K′o(φ, ρ
′)⊗C HomJ ∩ Jo(φ̃, φ̃o) → HomJ ∩Ko(φ̃χ, ρ).

Proof. Since HomJ ∩Ko(φ̃χ, ρ) equals HomJ ∩Ko(φ̃, ρχ
−1), we may, and do, assume for notational

convenience that χ is trivial. Since we will do the same thing repeatedly in later results, we
emphasise that it does not change any essential idea of the proof; it only keeps us from having
to carry around a cumbersome factor of χ everywhere.

Since J ∩Ko equals (J ′ ∩K ′o)(J ∩ Jo) by Lemma 5.3.5, certainly the indicated restriction has
image in HomJ ∩Ko(φ̃, ρ).

By Definition 5.3.2, we have that ResKJo ρ equals (not just is isomorphic to) ρ′ ⊗C φ̃o, where

the space of ρ′ carries the trivial action of Jo; so the (J ∩ Jo)-isotrivial component of HomC(φ̃, ρ)
is identified via the above isomorphism with

HomC(φ, ρ′)⊗C HomJ ∩ Jo(φ̃, φ̃o). (∗)

2369

https://doi.org/10.1112/S0010437X18007364 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007364


L. Spice

By our forthcoming work on the Weil representation, we have that HomJ ∩ Jo(φ̃, φ̃o) equals
Hom(K′ ∩K′o)n(J ∩ Jo)(φ̃

+, φ̃+
o ), in particular is stable under J ′ ∩K ′o, and is (J ′ ∩K ′o, φ∨)-isotypic;

so that the (J ′ ∩K ′o)-isotrivial component of (∗) is HomJ ′ ∩K′o(φ, ρ
′) ⊗C HomJ ∩ Jo(φ̃, φ̃o). This

shows that HomJ ∩Ko(φ̃, ρ) is no larger than desired. Since we have already shown the reverse
containment, we are done. 2

We use Lemma 5.3.7 to cut down the summands appearing in a Mackey-type formula in the
proof of Theorem 5.3.8.

Lemma 5.3.7. If g ∈ G is such that HomJ ∩ Int(g)−1Ko(φ̃χ, ρ
g) is non-zero, then g belongs to

KoG
′J .

Proof. As in the proof of Lemma 5.3.6, we may, and do, assume that χ is trivial.
We have that ρ is (Jo,+, φ̂o)-isotypic (Lemma 5.3.3), and φ̃ is (J+, φ̂)-isotypic. In particular, if

the indicated Hom space is non-zero, then (J+, φ̂) and (Int(g)−1Jo,+, φ̂
g
o) agree on the intersection

of their domains. By Hypothesis 4.4.6, we have that X∗ + Lie∗(G′, G)x>((−r)+,−s) intersects

Ad∗(g)−1(Z∗o + Lie∗(G′, G)o>((−r)+,−s)). Recall that X∗ + Lie∗(G′)x>−r is contained in Z∗o +
Lie∗(G′)>r by Remark 4.1.7. By the dual-Lie-algebra analogue of [AS08, Lemma 4.7], we may,
and do, assume, upon adjusting g on the right by an element of Gx>s and on the left by an
element of Go>s, which does not affect the conclusion (because Go>s is contained in Ko, and
Gx>s is contained in G′J), that X∗+Lie∗(G′)x>−r ⊆ Z∗o +Lie∗(G′)>−r intersects Ad∗(g)−1(Z∗o +
Lie∗(G′)>−r). Then Hypothesis 4.1.1(iii) gives that g belongs to G′, as desired. 2

We regard Theorem 5.3.8 as a hint about the existence of the Hecke-algebra isomorphisms
predicted in [Yu01, Conjecture 17.7]. Although it deals only with modules HomJ ′(φ, π

′) and
HomJ(φ̃χ, π) for the compactly supported parts H(K ′/J ′, φ) and H(K/J, φ̃χ) of the Hecke
algebras (for which an isomorphism is already known when x equals o [Yu01, Lemma 17.10]), we
find it suggestive, and hope that it will be useful as a starting point for future investigations.

Theorem 5.3.8. There is a (non-canonical) isomorphism of vector spaces

HomJ ′(φ, π
′) ∼= HomJ(φ̃χ, π)

so that the resulting map
HomJ ′(φ, π

′)⊗C φ̃
+χ → ResGK π

is a K-homomorphism.

Proof. Again, as in the proof of Lemma 5.3.6, we may, and do, assume that χ is trivial.
We have by Mackey theory that ResGJ π = ResGJ IndGKoρ is canonically isomorphic to⊕

g∈Ko\G/J

IndJJ ∩ Int(g)−1Ko
ρg.

Since the space of φ̃ is finite-dimensional, the natural map⊕
g∈Ko\G/J

HomJ(φ̃, IndJJ ∩ Int(g)−1Ko
ρg) → HomJ(φ̃, π)

is an isomorphism. We make a note here that will crop up repeatedly in this proof. Although
the isomorphism classes of the summands on the left do not depend on the specific choice of
representative g for a (Ko, J)-double coset, the actual sets do. Specifically, for g1, g2 ∈ G with
g2 = kog1j, where ko ∈ Ko and j ∈ J , we have a canonical isomorphism

IndJJ ∩ Int(g1)−1Ko
ρg1 ∼= IndJJ ∩ Int(g2)−1Ko

ρg2
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that sends a function f in the former space to the function g 7→ ρ(ko)f(gj). This map depends
only on g1 and g2, not on ko and j. We use it freely to change representative in a double
coset without explicit mention. (Strictly speaking, what we are doing is viewing the summands
not as individual spaces, but as limits of spaces with respect to the system of maps as above
corresponding to various j and ko.)

For g ∈G, Frobenius reciprocity gives a canonical isomorphism of HomJ(φ̃, IndJJ ∩ Int(g)−1Ko
ρg)

with HomJ ∩ Int(g)−1Ko(φ̃, ρ
g). By Lemma 5.3.7, we have for g ∈ G that HomJ ∩ Int(g)−1Ko(φ̃, ρ

g)
is 0 unless g belongs to KoG

′J . For g′ ∈ G′, we have from Lemma 5.3.6 a canonical isomorphism

HomJ ′ ∩ Int(g′)−1K′o
(φ, ρ′ g

′
)⊗C HomJ ∩ Int(g′)−1Jo(φ̃, φ̃

+ g′n1
o )

∼= HomJ ∩ Int(g′)−1Jo(φ̃, ρ
g′).

Finally, by Lemma 5.3.5, we have that the natural map K ′o\G′/J ′ → Ko\G/J is an injection,
so that we have constructed a canonical isomorphism⊕

g′∈K′o\G′/J ′
HomJ ′ ∩ Int (g′)−1K′o

(φ, ρ′ g
′
)⊗C HomJ ∩ Int (g′)−1Jo(φ̃, φ̃

+ g′n1
o ) ∼= HomJ(φ̃, π).

We make this explicit, and convert it into the desired isomorphism, after a few remarks. First,
write V ′ for the space of ρ′, and W and Wo for the spaces of φ̃ and φ̃+

o , respectively, so that the
space of ρ is V ′ ⊗Wo. Second, note that there is a canonical identification, for each g′ ∈ G′, of
HomJ ′ ∩ Int(g′)K′o

(φ, ρ′ g
′
) with the (J ′ ∩ Int(g′)K ′o, φ)-isotypic subspace of ρ′ g

′
(a subspace of V ′);

we make this identification without further comment. Finally, note again that the summands,
as isomorphism classes, are determined by the double coset K ′og

′J ′, but, as sets, depend on the
choice of representative g′. Namely, if g′1, g

′
2 ∈ G′ with g′2 = k′og

′
1j
′, where k′o ∈ K ′o and j′ ∈ J ′,

then we have a canonical isomorphism

HomJ ′ ∩ Int(g′1)−1K′o
(φ, ρ′ g

′
1) ∼= HomJ ′ ∩ Int(g′2)−1K′o

(φ, ρ′ g
′
2)

given by v′ 7→ ρ′(k′o)φ(j′)v′, and another canonical isomorphism

HomJ ∩ Int(g′1)−1Jo(φ̃, φ̃
+ g′1n1
o ) ∼= HomJ ∩ Int(g′2)−1Jo(φ̃, φ̃

+ g′2n1
o )

given by ϕ 7→ φ̃+
o (k′o) ◦ϕ ◦ φ̃(j′). Each of these maps depends only on g′1 and g′2, not on k′o or j′.

Further, each space HomJ ∩ Int(g′)−1Jo(φ̃, φ̃
+ g′n1
o ) is non-zero (in fact one-dimensional), and

equals HomK′ ∩ Int(g′)−1K′onJ ∩ Int(g′)−1Jo(φ̃
+, φ̃+ g′n1

o ). Choose a set S ′ of representatives for
K ′o\G′/K ′ (not just K ′o\G′/J ′) in G′, and arbitrarily choose, for each g′ ∈ S ′, a non-zero element
ϕg′ of the corresponding Hom space. (It would be pleasant to describe a canonical choice here,
but we have not been able to make one.) For g′ ∈ S ′, k′o ∈ K ′o, and k′ ∈ K ′, the composition
φ̃+
o (k′on1) ◦ϕg′ ◦ φ̃+(k′n1) depends only on the product k′og

′k′; so we may, and do, unambiguously

put ϕk′og′k′ = φ̃+
o (k′o) ◦ ϕg′ ◦ φ̃+(k′). We have now defined ϕg′ for all g′ ∈ G′.

Now notice that we have an isomorphism (canonical subject to the choice of ϕg′ above) given
by ⊕

g′∈K′o\G′/J ′
HomJ ′ ∩ Int(g′)−1K′o

(φ, ρ′ g
′
)

∼=
⊕

g′∈K′o\G′/J ′
HomJ ′ ∩ Int(g′)−1K′o

(φ, ρ′ g
′
)⊗C HomJ ∩ Int(g′)−1Jo(φ̃, φ̃

+ g′n1
o )
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sending
⊕
v′g′ to

⊕
v′g′ ⊗ ϕg′ . We have already seen that the right-hand side is canonically

isomorphic to HomJ(φ̃, π). A similar but easier calculation shows that the left-hand side is
canonically isomorphic to HomJ ′(φ, π

′), identified, as usual, with the (J ′, φ)-isotypic subspace of
π′. The resulting isomorphism (canonical subject to the choice of ϕg′)

HomJ ′(φ, π
′) ∼= HomJ(φ̃, π),

which we call T , takes a particularly pleasant form. Namely, if f ′ is a (J ′, φ)-isotypic vector in
the source, which is to say a certain function G′ → V ′, then the image of f ′ is the function that
sends w ∈ W to the function f : G → V = V ′ ⊗C W that vanishes off KoG

′J , and, for g′ ∈ G′,
ko ∈ Ko, and j ∈ J , satisfies

f(kog
′j) = ρ(ko)(f

′(g′)⊗ ϕg′(φ̃(j)w)).

The map that we want to be a K-homomorphism is, by definition, at least a J-
homomorphism, so it suffices to consider the action of K ′. Fix γ ∈ K ′. Notice that γ normalises
J , and that, by construction, ϕg′γ equals ϕg′ ◦ φ̃(γ); so (π(γ)f)(kog

′j) = f(kog
′jγ) equals

ρ(ko)((π
′(γ)f ′)(g′)⊗ ϕg′(φ̃(j)(φ̃+(γ)(w)))).

Since K ′ normalises (J ′, φ) by Notation 5.3.4, we have that π′(γ)f ′ is still a (J ′, φ)-isotypic
vector. In other words,

π(γ)((T (f ′))(w)) equals (T (π′(γ)f ′))(φ̃+(γ)w). 2

Corollary 5.3.9, which follows almost immediately from Theorem 5.3.8, allows us to use
Theorem 5.2.8 (or rather its reformulation, Lemma 5.3.10) in Theorem 5.3.11.

Corollary 5.3.9. For γ ∈ K ′, we have that

|C(60)
G (γ)x=s|

−1/2
G̃
G/C

(60)
G (γ)

(X∗, γ)−1 trπ(γ[J+, φ̂
∨χ∨])

equals

|C(60)
G′ (γ)x=s|

−1/2
G̃
G′/C

(60)

G′ (γ)
(X∗, γ)−1χ(γ) trπ′(γ[J ′, φ∨]),

where G̃ is as in Definition 5.3.2.

Proof. Once more, as in the proof of Lemma 5.3.6, we may, and do, assume that χ is trivial.
By Lemma 3.2.7(iii), we have that J normalises (J+, φ̂), hence also the (J+, φ̂)-isotypic

component of π; and that (by the Stone–von Neumann theorem) (J, φ̃) is the unique irreducible

representation of J containing (J+, φ̂). It follows that the (J+, φ̂)- and (J, φ̃)-isotypic components

of π are the same, so that π([J+, φ̂
∨]) is the projection onto the latter. Thus, the desired result

is a consequence of Theorem 5.3.8 and the fact (proven in our forthcoming work on the Weil
representation) that

tr φ̃+(γ) equals [C
(60)
G (γ)x=s : C

(60)
G′ (γ)x=s]

1/2 G̃G/C
(60)
G (γ)

(X∗, γ)

G̃
G′/C

(60)

G′ (γ)
(X∗, γ)

. 2
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Now, in addition to the

– positive real number r,

– tame, twisted Levi subgroup G′,

– element Z∗o ∈ Lie∗(G′),

– point x ∈ B(G),

– element X∗ ∈ Lie∗(G′), and

– characters (G′x>r, φ) and ((G′, G)x>(r,s+), φ̂)

that we have already (although we regard x, X∗, and φ as fixed only provisionally), we recall the

– element γ ∈ G, with associated group H = C
(<r)
G (γ),

of which we require that x belongs to B(H) and X∗ to Lie∗(H), satisfying Hypotheses 3.2.2, 3.2.8,
and now 4.4.2. We have by Hypothesis 4.4.2 and Lemma 4.1.4 (and the fact that X∗ belongs to
Lie∗(H)∩ (Z∗o + Lie∗(G′)>−r)) that γ belongs to G′; and by Remark 4.1.7 that Hypothesis 4.1.5
is satisfied. As in § 4.1, we use primes to denote the analogues in G′ of constructions in G; so,

for example, H′ stands for C
(<r)
G′ (γ) (subject to the proviso in Remark 3.2.3, that we may refer

directly only to the identity component of H′).
We prepare for our main result, Theorem 5.3.11, with Lemma 5.3.10. This slightly

reformulates Theorem 5.2.8, taking advantage of Hypothesis 4.4.2 to speak of G(O′, γ) rather
than G(X∗, γ) (Notation 5.1.2). Note that the hypothesised relationship between T and T ′ in
Lemma 5.3.10 is exactly the same as in Theorem 5.2.8, although the asymptotic expansions of
T and T ′ individually are different.

Lemma 5.3.10. Put U ′ ∗ = Z∗o + Lie∗(H ′)>−r. Suppose that

– T ′ is an invariant distribution on G′,

– c(T ′, γ) is a finitely supported, OH′ ◦(Ad∗(G′)U ′ ∗)-indexed vector of complex numbers such

that |DG′/H′(γ)|1/2T ′(γ[G′x>r, φ
∨]) equals

qsH′
∑

O′∈OH′ ◦ (Ad∗(G′)U ′ ∗)

GG′(O′, γ)

G
C

(60)

G′ (γ2)/C
(60)

G′ (γ)
(O′, γ)

× cO′(T ′, γ)GH′(O′, γ)−1µ̂H
′ ◦
O′ ([h′x>r,Λ

∨
X∗ ]),

and

– T is an invariant distribution on G such that

δP−(γ)1/2|C(60)
G (γ)x=s|

−1/2
G
G/C

(60)
G (γ2)

(X∗, γ)−1T
(
γ[(G′, G)x>(r,s+), φ̂

∨]
)

equals

δP ′ −(γ)1/2|C(60)
G′ (γ)x=s|

−1/2
G
G′/C

(60)

G′ (γ2)
(X∗, γ)−1T ′

(
γ[G′x>r, φ̂

∨]
)
.

Then |DG/H(γ)|1/2T (γ[Gx>r, φ̂
∨]) equals

qsH
∑

O′∈OH′ ◦ (U ′ ∗)

GG(O′, γ)

G
C

(60)
G (γ2)/C

(60)
G (γ)

(O′, γ)

× cO′(T ′, γ)GH(O′, γ)−1µ̂H
◦
O′ ([hx>r,Λ

∨
X∗ ]).
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Proof. By Theorem 5.2.8, it suffices to show that(
GG′/H′(X

∗, γ)

G
C

(60)

G′ (γ2)/C
(60)

G′ (γ)
(X∗, γ)

)−1( GG′/H′(O′, γ)

G
C

(60)

G′ (γ2)/C
(60)

G′ (γ)
(O′, γ)

)
equals the analogous quantity ‘without primes’, which is to say(

GG/H(X∗, γ)

G
C

(60)
G (γ2)/C

(60)
G (γ)

(X∗, γ)

)−1( GG/H(O′, γ)

G
C

(60)
G (γ2)/C

(60)
G (γ)

(O′, γ)

)
,

for all orbits O′ that intersect Ad∗(G′)U ′ ∗, and for which µ̂HO′([hx>r,Λ
∨
X∗ ]) is non-zero. Since the

non-vanishing of the Fourier transform implies that Ad∗(H)O′ intersects X∗ + Lie∗(H)x>−r, we
have by Lemma 4.1.8 that such an orbit O′ in fact intersects X∗ + Lie∗(H ′)x>−r. It now follows
from Corollary 5.1.5 that

GG/H(X∗, γ)

GG′/H′(X∗, γ)
·
G

C
(60)
G (γ2)/C

(60)
G (γ)

(X∗, γ)−1

G
C

(60)

G′ (γ2)/C
(60)

G′ (γ)
(X∗, γ)−1

equals

GG/H(O′, γ)

GG′/H′(O′, γ)
·
G

C
(60)
G (γ2)/C

(60)
G (γ)

(O′, γ)−1

G
C

(60)

G′ (γ2)/C
(60)

G′ (γ)
(O′, γ)−1

,

as desired. 2

Theorem 5.3.11 is our main result. It reduces the computation of the character of π to that
of π′, so iterating it allows us, at least in principle, to reduce the computation of characters of
positive-depth, tame supercuspidals to that of characters of depth-0 supercuspidals (for tame,
twisted Levi subgroups).

So far throughout the section, we have worked with a fixed point x ∈ B(G), element

X∗ ∈ Lie∗(G), and character φ̂ of (G′, G)x>(r,s+), satisfying Hypothesis 5.1.7. For the proof
of Theorem 5.3.11, we must forget that we have fixed these choices, and regard x, X∗, and φ as
free variables. Since it is needed to relate an invariant distribution on the group (a character)
to one on the Lie algebra (a Fourier transform of an orbital integral), we now also recall the
mock-exponential map e of § 4.3.

As we did for Theorem 4.4.11, we recapitulate all the hypotheses that are currently in force.
We are imposing

– Hypotheses 3.2.2, 3.2.8 (for all points x ∈ B(H)), and 4.4.2 (on γ), and

– Hypotheses 4.3.1 and 5.1.6 (on e and ex=~).

Also note that we have three exponential-type maps floating around, namely, the map of
Hypothesis 4.3.1; the Moy–Prasad isomorphisms of Hypothesis 5.1.6; and the map implicitly
used by Yu in [Yu01, § 9] when attaching the element Z∗o to the character φo. We require that
these be compatible, in the sense that the diagram

Lie(H)x>r
e //

��

Hx>r

��
Lie(M)x=r

Yu //

��

Mx=r

��
Lie(Mad)x=r

ex=r // (Mad)x=r
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commutes for all x ∈ B(H). We do not need to impose Hypothesis 4.1.1 (on Z∗o ) or 4.4.6 (on

(Go>r, φ̂o)), since they follow from the conditions that Yu imposes.
As stated, Theorem 5.3.11 is contingent on Theorem 4.4.11 and Lemma 4.4.14. Recall that

these theorems carry lengthy lists of hypotheses. Rather than citing them, and so incurring the
weight of those hypotheses, we prefer to emphasise that the theorems may be treated as black
boxes. As long as the necessary asymptotic expansions (with some, unspecified, coefficients) exist,
and can be detected by sampling the distribution character with unrefined, minimal K-types, we
are fine. For example, we do not need to reimpose Hypothesis 4.3.4; it was used only to prove
Theorem 4.4.11.

Since we are assuming Theorem 4.4.11 anyway, it may seem that the hypothesis regarding
the existence of the various vectors c(π′ g, γ) is redundant. The point is that we are requiring that

the support of c(π′ g, γ) be contained in OH′ ◦g (Ad∗(G′g)−1X∗o ), which may be a proper subset of

OH′ ◦g (Ad∗(g)−1U ′ ∗g ). That is, Theorem 5.3.11 supposes that only certain orbits actually occur in
the asymptotic expansions of the various π′ g, and concludes an analogous statement for π (as
well as actually computing the coefficients).

Theorem 5.3.11. Suppose that Theorem 4.4.11 and Lemma 4.4.14 are satisfied.
Put U ′ ∗ = Z∗o +Lie∗(G′)>−r and U∗ = Ad∗(G)U ′ ∗; and, for each g ∈ G such that Ad∗(g)−1Z∗o

belongs to Lie∗(H), put G′g = Int(g)−1G′, H ′g = H ∩G′g, and U ′ ∗g = Ad∗(g)−1U ′ ∗. Suppose that
X∗o is an element of U ′ ∗ such that, for every g ∈ G′\G/H◦ for which Ad∗(G′g)−1X∗o intersects
Lie∗(H), there is an OH′ ◦g (Ad∗(G′g)−1X∗o )-indexed vector c(π′ g, γ) such that

Φπ′ g(γ · e(Y ′)) equals
∑

O′∈OH
′ ◦
g (Ad∗(G′g)−1X∗o )

G̃G′g/H
′
g
(O′, γ)cO′(π

′ g, γ)Ô
H′ ◦g
O′ (Y ′)

for all Y ′ ∈ Lie(H ′g)
rss ∩ Lie(H ′g)>r. Then we have that

Φπ(γ · e(Y )) equals χ(γ)
∑

g∈G′\G/H◦

∑
O′

G̃G/H(O′, γ)cO′(π
′ g, γ)χ(e(Y ))ÔH

◦
O′ (Y )

for all Y ∈ Lie(H)rss ∩ Lie(H)>r, where G̃ is as in Definition 5.3.2.

Note that e(Y ′) belongs to (H ′g)>r whenever Y ′ belongs to Lie(H ′g)>r, for g ∈ G such that

Ad∗(G′g−1)X∗o intersects Lie∗(H), by Hypothesis 4.3.1(i)(a). Thus the notation Φπ′ g(γ · e(Y ′))
makes sense.

Proof. As in Lemma 5.3.6, we may, and do, assume that χ is trivial.
By Theorem 4.4.11, there is some asymptotic expansion for π in terms of OH◦(Ad∗(G)Z∗o ) ⊆

OH◦(U∗). By Remark 4.4.12 and Lemma 4.4.14, to check that the proposed expansion in the
statement is correct, it suffices to show that, whenever g0 ∈ G is such that Ad∗(g0)−1Z∗o belongs
to Lie∗(H), we have for all x ∈ B(H ′g0) and X∗ ∈ Lie∗(H)x>−r ∩ U ′ ∗g0 that

|Dred
H (Ad∗(g0)−1Z∗o )|1/2

∑
O′

G̃G/H(O′, γ)cO′(π
′ g0 , γ)µ̂H

◦
O′ ([hx>r,Λ

∨
X∗ ])

equals ˆ
h
|DG/H(γ)|1/2Θπ(γ · e(Y ))[hx>r,Λ

∨
X∗ ](Y ) dY,
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which, by Lemma 4.4.8, equals

meas(Hx>r)

meas(hx>r)
|DG/H(γ)|1/2 trπ(γ[Gx>r, φ̂

∨]),

where φ̂ is the character of Gx>r with dual blob X∗ + Lie∗(G)x>−r.
We assume for notational convenience that g0 is the identity. In particular, by Lemma 4.1.4

and Hypothesis 4.4.2, if there is anything to test, which is to say if Lie∗(H)∩ U ′ ∗ is non-empty,
then γ belongs to G′ and Z∗o belongs to Lie∗(H ′).

If γ is not compact modulo Z(G), then, because Z(G′)/Z(G) is compact [Yu01, § 3, p. 590,
D1], it is also not compact modulo Z(G′), so the matching condition becomes the equality 0 = 0
by [Del76, p. 156, Théorème 2] and [Cas77, Theorem 5.2].

If γ is compact modulo Z(G), then, since it stabilises the image of x in the reduced building of
H, we must have that γ fixes x. Since γ stabilises X∗ ∈ Lie∗(H), hence X∗+Lie∗(M ′)x>−r =X∗+
Lie∗(G′)x>−r (by Lemma 3.2.11(i), say), we have by Hypothesis 5.1.6(ii) that it also stabilises
(G′x>r, φ), where φ is the character of G′x>r with dual blob X∗ + Lie∗(G′)x>−r, hence belongs
to K ′.

By Remark 4.4.12, (the other direction of) Lemma 4.4.14, and Lemma 4.4.8, we have the
desired equality ‘with primes’; that is to say, we know that

|Dred
H′ (Z

∗
o )|1/2

∑
O′∈OH′ ◦ (Ad∗(G′)X∗o )

G̃G′/H′(X
∗, γ)cO′(π

′, γ)µ̂H
′ ◦
O′ ([h′x>r,Λ

∨
X∗ ])

equals
meas(H ′x>r)

meas(h′x>r)
|DG′/H′(γ)|1/2 trπ′(γ[G′x>r, φ

∨]),

where φ is the character of G′x>r with dual blob X∗ + Lie∗(G′)x>−r.
Now, according to Waldspurger’s canonical Haar measures, we have that Hx>0 and Lie(H)x>0

both have the same measure; and, by Lemma 3.2.12, the indices [Hx>0 : (H ′, H)x>(0+,r)]
and [Lie(H)x>0 : Lie(H ′, H)x>(0+,r)] are the same; so meas(Hx>r)/meas(Lie(H)x>r) equals

meas(H ′x>r)/meas(Lie(H ′)x>r). By Hypothesis 4.1.1(ii), we have that |Dred
H (Z∗o )|/|Dred

H′ (Z
∗
o )|

equals qrH/H′ . The desired equality thus follows from Lemma 5.3.10, with T and T ′ the constant

multiples

T = e−
C

(60)
G (γ2)/C

(60)
G (γ)

(γ)−1Θπ and T ′ = e−
C

(60)

G′ (γ2)/C
(60)

G′ (γ2)
(γ)−1Θπ′

of the characters of π and π′, respectively, where the signs e− are as in Definition 5.3.2. 2
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