
5

Superfield formalism

We saw in Chapter 3 how the Wess–Zumino model could be formulated in terms

of the fields S, ψL, and the auxiliary field F , which transform into each other

under a supersymmetry transformation. Here, we simply “pulled a Lagrangian out

of a hat”, and verified by brute force that (at least the free part of) this Lagrangian

led to a supersymmetric action. While this example was instructive, it provided no

guidance as to how to write down other more complicated supersymmetric theories.

We alluded, however, to the fact that we could think of the fields, S, ψL, and F as

the components of a single entity, a chiral superfield.1

The superfield formalism provides a convenient way to formulate general rules

for the construction of supersymmetric Lagrangians, even for theories with non-

Abelian gauge symmetry that are the foundation of modern particle physics. The

superfield calculus that we develop in this and succeeding chapters will provide us

with a constructive procedure for writing down theories that are guaranteed to be

supersymmetric. This procedure will ultimately be used to write down the simplest

supersymmetric extension of the Standard Model. This theory, augmented with suit-

able soft supersymmetry breaking terms, is known as the Minimal Supersymmetric

Standard Model, or MSSM.

5.1 Superfields

To begin, we would like to somehow combine the fields S, ψL, and F into a single

“superfield”, in much the same way that the neutron and proton fields are combined

into a single “nucleon” field in the isospin formalism. The fields S and ψ transform

differently under Lorentz transformations so that it is by no means obvious how to

combine these fields into a single entity called a superfield in which the component

fields all enter on the same footing, i.e. we do not combine the scalar bilinear in ψ

1 A. Salam and J. Strathdee, Nucl. Phys. B76, 477 (1974).
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50 Superfield formalism

with the scalarsS andF . We are thus led to introduce a new Majorana spinor θ , with

components θ1, θ2, θ3, and θ4, which can be combined with ψ to make a Lorentz

scalar that can then be “added” to S. Furthermore, since the components of ψ obey

anticommutation relations, the components of θ will be taken to be anticommuting

Grassmann numbers, so that

{θa, θb} = 0. (5.1)

We will further assume that

{θa, ψb} = 0. (5.2)

Note that Eq. (5.1) implies that θaθa = 0 (no sum on a).

The spinor θ is determined by the four independent quantities θa that we have

introduced. We emphasize that these are not complex numbers, but are a new type

of object, a Grassmann number. Although these do not commute, we should be

clear that they are not operators, but anticommuting numbers, in the same sense

that usual complex numbers are commuting numbers. These Grassmann numbers

(sometimes also referred to as a-numbers in analogy with commuting c-numbers)

also anticommute with fermionic operators, but commute with bosonic operators.

The Majorana condition, θ̄ = θT C means that the components of the conjugate

spinor θ̄ are completely determined in terms of the four independent θas. Thus

a product of any chain of larger than a total of four θ or θ̄s is identically zero.

Alternatively, it will sometimes be convenient to think of two components of θ and

two components of θ̄ as independent, or that each of the two components of θL and

θR are independent.

A superfield is a function of xμ and θ . The spinor θ (together with the coordi-

nate vector xμ) is a superfield label in exactly the same way that the coordinate

vector xμ is a label in the conventional formulation of field theory. We will denote

superfields by carets and let �̂(x, θ ) stand for a general superfield. The field �̂ thus

depends on four (commuting) spacetime co-ordinates xμ and on four anticommut-

ing co-ordinates, θa . The extension of four-dimensional spacetime to include the

four anticommuting dimensions is usually referred to as superspace. Whether the

anticommuting variables have a physical significance, or whether they serve only

as bookkeeping devices is something we will not dwell upon.

An important property of functions of Grassmann variables follows from the fact

that any power series expansion in terms of the anticommuting co-ordinates always

terminates because the square of any Grassmann variable is zero. For instance, if

η is a Grassmann variable, and we have a function f (η), then f (η) = A + Bη,

where A and B are just ordinary (real or complex) numbers. The power series

expansion terminates with the first term in η. A function g(x, η) would have a similar

expansion, except that the coefficients A and B would now be (real or complex)
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5.1 Superfields 51

functions of x . We can similarly write the superfield �̂ in terms of independent

products of the four θa variables, with coefficients that are functions of spacetime

co-ordinates xμ.

Exercise Verify that from the four Grassmann variables θa, a = 1, 2, 3, 4, one can
make exactly 16 independent products of 0, 1 . . . 4 θs. The most obvious choice is
1, θa (4 terms), θaθb (6 terms, because of the anticommutativity of the θas), θaθbθc

(4 terms, as any one θa from the unique quartic term in the θs can be omitted) and
finally one quartic term, θ1θ2θ3θ4.

We could thus expand �̂(x, θ ) = A + Bθ1 + · · · + Pθ1θ2θ3θ4. It is, however,

more convenient to expand the superfield in terms of

1 term independent of θ ; 1, (5.3a)

4 terms linear in θ ; choose θ̄γ5, (5.3b)

6 terms bilinear in θ ; choose θ̄ θ, θ̄γ5θ, θ̄γμγ5θ, (5.3c)

4 terms trilinear in θ ; choose θ̄γ5θ · θ̄ , (5.3d)

1 term quartic in θ ; choose (θ̄γ5θ )2, (5.3e)

since this manifestly displays the Lorentz properties of the “expansion coefficients”

which will ultimately be the usual fields in the theory. Terms such as θ̄γμθ and θ̄σμνθ

are identically zero due to Eqs. (3.8c) and (3.8e). We can thus write a general

superfield as,2

�̂(x, θ ) = S − i
√

2θ̄γ5ψ − i

2
(θ̄γ5θ )M + 1

2
(θ̄ θ )N + 1

2
(θ̄γ5γμθ )V μ

+i (θ̄γ5θ )[θ̄ (λ + i√
2
∂/ ψ)] − 1

4
(θ̄γ5θ)2[D − 1

2
�S]. (5.4)

Thus, the coefficients in the above expansion are the sixteen component fields

S, ψ, M, N , V μ, λ, and D. (5.5)

Here, V μ is a vector field and ψ and λ are spinor fields. In general, the bosonic fields

are complex, while ψ and λ are Dirac fields. The peculiar form of the coefficients of

trilinear and quartic terms in θ in this expansion as well as the factors of half and
√

2

is chosen for future convenience. It should be obvious to the reader that although

any scalar superfield can be written as in Eq. (5.4), this form is not unique. We will

2 Actually, this is not the most general superfield since we have assumed that the θ independent term in the expan-
sion is a Lorentz scalar. It is possible, and indeed necessary as we will see when we consider supersymmetric
gauge theories, to introduce superfields where this is not the case. Such superfields will carry an additional
index which specifies the Lorentz transformation property of their leading, i.e. θ -independent component. We
will refer to the superfield in Eq. (5.4) as a scalar superfield.
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52 Superfield formalism

regard (5.4) as the canonical form. Any other expansion can be straightforwardly

reduced to this canonical form using identities amongst the Grassmann variables

introduced later in this chapter.

Let us compute the Hermitian conjugate superfield �̂†. We will need the identi-

ties,

(ψ̄χ )† = χ̄ψ = ψcχ c, (5.6a)

(ψ̄γ5χ )† = −χ̄γ5ψ = −ψcγ5χ
c, and (5.6b)

(ψ̄∂/ χ )† = ∂μχ̄γμψ = −ψc∂/ χ c, (5.6c)

so that

(θ̄ θ )† = θ̄ θ, (5.7a)

(iθ̄γ5θ )† = iθ̄γ5θ, and (5.7b)

(θ̄γ5γμθ )† = θ̄γ5γμθ. (5.7c)

Then,

�̂†(x, θ ) = S† − i
√

2θ̄γ5ψ
c − i

2
(θ̄γ5θ )M† + 1

2
(θ̄ θ )N† + 1

2
(θ̄γ5γμθ )V μ†

+ i(θ̄γ5θ )[θ̄ (λc + i√
2
∂/ ψc)] − 1

4
(θ̄γ5θ )2[D† − 1

2
�S†]. (5.8)

We define the superfield �̂ to be real if �̂ = �̂†. In this case, we see that the bosonic

fields are real and the fermionic fields are Majorana (ψ = ψc and λ = λc). It was for

this reason that we inserted the factors of i in our superfield expansion in Eq. (5.4).

In general, however, �̂ need not be real.

Exercise Verify the relations in (5.6a), (5.6b), and (5.6c). Notice that these hold
regardless of whether the spinors are Dirac or Majorana.

5.2 Representations of symmetry generators: a recap

In quantum field theory, symmetry transformations act on field operators which are

the dynamical variables. We focus on symmetries which are linear transformations

of the field operators. A symmetry operation, with a set of parameters αa , due to

the action of the set of generators Qa can thus be written as,

eiαa Qa φme−iαb Qb = (
e−iαa ta

)

mn φn. (5.9a)

It is important to understand that
(
e−iαa ta

)

mn are simply numerical coefficients.

There are, of course, as many parameters αa as there are generators Qa , and for
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5.2 Representations of symmetry generators: a recap 53

each Qa we have a matrix coefficient (ta). For an infinitesimal transformation, this

becomes,

δφm = iαa[Qa, φm] = −i(αata)mnφn. (5.9b)

By considering the action of successive symmetry transformations and using the

Jacobi identity,

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0,

in the last step, it is straightforward to show that

δ2δ1φm = [iα2b Qb, δ1φm] = − [iα1a Qa, [φm, iα2b Qb]] − [φm, [iα2b Qb, iα1a Qa]] ,

which then yields,

(δ2δ1 − δ1δ2)φm = [[iα2b Qb, iα1a Qa], φm] . (5.10a)

The result of the successive transformations can also be written in terms of the

numerical coefficients tmn introduced above as,

δ2δ1φm = −α1a(ta)mnα2b(tb)npφp,

so that the right-hand side of Eq. (5.10a) can also be written as,

(δ2δ1 − δ1δ2)φm = −α1aα2b[ta, tb]mpφp, (5.10b)

with the usual matrix multiplication rule for the product of the matrices ta and tb
appearing on the right-hand side.

The set of generators Qa satisfies algebraic commutation relations that are de-

termined by the symmetry in question. If these are the generators of spacetime

symmetries, these are the commutation relations of the Poincaré algebra. If these

are generators of internal symmetry transformations, they satisfy the commutation

relations of the corresponding symmetry algebra. In both these cases (and many

others that we encounter), the algebra is a Lie algebra, so that the commutation

rules can be written as,

[Qa, Qb] = i fabc Qc,

where the coefficients fabc are the structure constants of the algebra. Requiring

the right-hand sides of (5.10a) and (5.10b) to be the same, we see that the set of

coefficient matrices ta must satisfy,

[ta, tb] = −i fbactc = i fabctc.

In other words, these coefficient matrices obey the same commutation relations

as the abstract generators Q. We say that these furnish a representation of the

symmetry algebra.
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54 Superfield formalism

Exercise We implicitly assumed that the parameters αa are commuting numbers
when we showed that the matrices ta obey the same commutation relations as the
generators Qa. If instead the parameters are anticommuting numbers, and the
generators Qa and Qb obey an anticommutation relation, show that corresponding
matrices ta and tb obey these same relations, and so, furnish a representation of
this graded algebra. In this case, of course, the exponential in Eq. (5.9a) becomes
a polynomial.

The familiar Pauli matrices or the Gell-Mann matrices are examples of matrix

representations of the generators of internal symmetry groups SU (2) and SU (3).

But what does all this have to do with the representation of spacetime symmetry

generators by differential operators that we have seen in Chapter 4? The under-

lying idea is the same. For instance, the momentum, defined as the generator of

translations, satisfies

φ → φ′ = φ(x + a) = eiaμ Pμφe−iaμ Pμ � φ(x) + aμ ∂φ

∂xμ
+ · · · (5.11)

For an infinitesimal translation we find,

φ′ = φ + δφ = (1 + iaμ Pμ)φ(1 − iaμ Pμ) = φ + aμ ∂φ

∂xμ
, (5.12)

or

[Pμ, φ] = −i∂μφ. (5.13)

Using Eq. (5.9b), we see that the translation generator Pμ can be represented by

δ(x − x ′) × i∂μ (where the indices m and n are the continuous spacetime indices x
and x ′). It is customary to omit the “identity matrix” δ(x − x ′) when writing this,

and we frequently say that Pμ is represented by the differential operator i∂μ. The

other generators of the Poincaré algebra can be similarly represented by differential

operators. It is then straightforward to check that the differential operators furnish

a representation of the Poincaré algebra, i.e. they obey the same commutation

relations as the generators.

5.3 Representation of SUSY generators as differential operators

We have just seen that the generators of the Poincaré algebra can be represented

by differential operators, where the derivative is with respect to the spacetime

co-ordinate. We now want to realize the spinorial generator of supersymmetry

transformations Q as a differential operator in superspace acting on the superfield

�̂(x, θ ).
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5.3 SUSY generators as differential operators 55

This requires us to first explain what is meant by derivatives with respect to

Grassmann numbers θa . First, since the four θas (or, the four θ̄as) are independent

we define,

∂θa

∂θb
= δab and

∂θ̄a

∂θ̄b
= δab. (5.14)

Then, since θa = Cabθ̄b, we have

∂θa

∂θ̄b
= Cab. (5.15)

If we have a product of θs, we must bring ∂/∂θa next to the θ we wish to differentiate,

e.g.

∂

∂θc
(θaθb) = ∂θa

∂θc
θb − θa

∂θb

∂θc
= δacθb − θaδbc, (5.16)

where the “−” sign arises because the θs anticommute. Differentiation of a product

of θ̄s or a combination of θs and θ̄s is analogously defined.

Since Q is a spinor operator, its action on a superfield �̂ correspondingly changes

its Lorentz transformation properties by either taking away or adding a θ to each

term. Since, as we have just seen, differentiation with respect to θa removes a θ ,

we are led to try,

[Qm, �̂] =
(

Mmn
∂

∂θ̄n
+ Nmnθn

)

�̂(x, θ ), (5.17)

where the matrices Mmn and Nmn (which may depend on x) have to be determined.

The reader may wonder why we wrote the derivative with respect to θ̄ rather than

θ . By Eq. (5.15), these are the same up to the numerical matrix Cab. We will see

shortly that by writing it as in Eq. (5.17), the matrix M becomes a multiple of the

identity matrix, and we can write the representation of a SUSY transformation with

the Majorana spinor parameter α as,

[
ᾱQ, �̂

] =
(

ᾱ
∂

∂θ̄
+ ᾱNθ

)

�̂. (5.18)

We can work out what N must be by applying the Jacobi identity to two successive

SUSY transformations by amounts α1 and α2. This gives,
[[

ᾱ1 Q, ᾱ2 Q
]
, �̂

] = [
ᾱ1 Q,

[
ᾱ2 Q, �̂

]] − [
ᾱ2 Q,

[
ᾱ1 Q, �̂

]]
. (5.19)

We then write each term on the RHS as an action of successive SUSY transforma-

tions using (5.18) to obtain,
(

ᾱ1

∂

∂θ̄
+ ᾱ1 Nθ

) (

ᾱ2

∂

∂θ̄
+ ᾱ2 Nθ

)

�̂ − (2 ↔ 1).
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56 Superfield formalism

A little manipulation of indices (and remembering that both θs and αs are anticom-

muting variables) shows that the terms involving no derivatives with respect to θ̄

give zero, as do the terms involving two such derivatives. We are then left only with

two terms, each involving a θ derivative from one factor multiplying Nθ from the

other factor. We leave the following as an exercise for the reader.

Exercise Verify that the RHS of (5.19) reduces to
[−ᾱ1aᾱ2b (NC)ba + ᾱ2bᾱ1a (NC)ab

]
�̂ .

On the other hand, the inner commutator of the LHS of (5.19) becomes

ᾱ2bᾱ1a{Qa, Qb} = −2ᾱ2bᾱ1a(γμC)ab Pμ

so that
[
[ᾱ1 Q, ᾱ2 Q] , �̂

] = 2iᾱ2bᾱ1a(γμC)ab∂μ�̂.

We are thus led to require that the matrix N must satisfy,

(NC)ba + (NC)ab = 2i (∂/ C)ba ,

whose solution may be written as N = i∂/ . Of course, because each term in the

Jacobi identity is quadratic in Q, we cannot fix the overall factor in front of (5.18)

from this. The choice of this factor is a convention. We will choose it to be i, which

as we will see later is consistent with the SUSY transformations of chiral scalar

superfields that we have already introduced in Chapter 3. We thus obtain the desired

realization of the SUSY generator,

[
ᾱQ, �̂

] = i

(

ᾱ
∂

∂θ̄
+ iᾱ∂/ θ

)

�̂. (5.20)

This expression for the supersymmetry generator is the analogue of (5.13) for the

translation generator.

5.4 Useful θ identities

Before proceeding further, we have a short digression to establish a number of useful

identities for Grassmann numbers θ that we have introduced into our formalism.

These identities are especially useful when we do superfield manipulations. For

instance, we may need to take a product of two (or more) superfields which, since it

is just a function of x and θ coordinates, is itself a superfield, but not in the canonical

form of Eq. (5.4). Indeed most manipulations will leave us with a superfield which

is not in this canonical form. However, in order to read off the components of the

resulting superfield, or simply to add superfields, we will need to be able to recast
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any superfield into canonical form. We have found the following identities to be

very useful for this purpose, and we will use them repeatedly in our subsequent

manipulations.

One manipulation that we need repeatedly is regrouping θs and θ̄s into a common

set of bilinears. For this purpose, it is very useful to note that,

θa θ̄b = −1

4

{
θ̄γ5θ (γ5)ab + θ̄ θδab − (θ̄γ μγ5θ )(γμγ5)ab

}
. (5.21)

This is the basic formula that underlies the Fierz re-arrangement discussed in

Chapter 3.

We list below various relations that we have found very useful for superfield

manipulation. We outline how to establish these, and leave it to the reader to verify

these in detail.

Bilinear Identities

θ̄γμθ = 0, (5.22a)

θ̄σμνθ = 0, (5.22b)

θ̄γμγνθ = gμνθ̄θ, (5.22c)

θ̄γ5γμγνθ = gμνθ̄γ5θ, (5.22d)

θ̄γμθL/R = −θ̄γμθR/L, (5.22e)

θ̄γμγ5θL/R = θ̄γμγ5θR/L. (5.22f)

The first two are the result of the Majorana character of θ and follow immediately

from (3.8b) and (3.8c) of Chapter 3. To establish the next two, decompose γμγν

into its symmetric and antisymmetric parts, and use (3.8e) to see that the latter

gives zero. Finally, the last two follow from the fact the vector bilinear identically

vanishes.

Trilinear Identities

θ̄ θ · θ = −θ̄γ5θ · (γ5θ), (5.23a)

θ̄ θ · θ̄ = −θ̄γ5θ · (θ̄γ5), (5.23b)

θ̄γ5γμθ · θ = −θ̄γ5θ · (γμθ ), (5.23c)

θ̄γ5γμθ · θ̄ = θ̄γ5θ · (θ̄γμ). (5.23d)

To prove the first, we note that we can write the left-hand side in terms of θ

alone (using θ̄ = θT C) as θT
L CθLθR + θT

R CθRθL. Here, we have used the fact that

any product of three θLs or three θRs identically vanishes as only two of these are

independent (and θs anticommute). The reader can similarly check that the right-

hand side of (5.23a) reduces to this same quantity. Eq. (5.23b) can be proven in the

same manner, or alternatively, by taking the Dirac conjugate of (5.23a).
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To establish (5.23c) we first show using Eq. (5.21) that

(θLγ5γμθL)θR = (θRγ5γμθR)θR = −1

2
(θ̄γ5θ )PRγμθ,

(θLγ5γμθL)θL = (θRγ5γμθR)θL = −1

2
(θ̄γ5θ)PLγμθ.

Combining these appropriately immediately leads to (5.23c). Eq. (5.23d) may be

obtained by taking the Dirac conjugate of (5.23c).

Quartic Identities

θ̄γ5θ · θ̄ θ = 0, (5.24a)

θ̄γ5θ · θ̄γμγ5θ = 0, (5.24b)

θ̄ θ · θ̄γμγ5θ = 0, (5.24c)

(θ̄ θ )2 = −(θ̄γ5θ )2, (5.24d)

θ̄γ5γμθ · θ̄γ5γνθ = −gμν(θ̄γ5θ )2. (5.24e)

The first of these follows if we recognize that θ̄�θ = θT
R CθR ± θT

L CθL where

the upper (lower) sign corresponds to � = I (γ5), and use the fact that a product of

three or more θLs or θRs identically vanishes. Writing the left-hand side of (5.24b)

or (5.24c) in terms of its chiral components immediately shows that it vanishes.

Multiplying Eq. (5.23a) on the left by θ̄ immediately leads to (5.24d). Finally, the

last of these identities may be obtained from θ̄γ5γμθ · θ̄γ5γνθ = −θ̄γ5θ · θ̄γ5γνγμθ

which follows from Eq. (5.23c); then using (5.22d) immediately yields (5.24e).

Exercise Convince yourself that the θ identities that we have listed are valid.

The trilinear [quartic] identities show how various trilinear [quartic] terms in θ

can be recast as θ̄γ5θ · θ̄ [(θ̄γ5θ )2] that appear in our canonical form of the superfield

in (5.4). Quadratic terms can be similarly cast into the forms appearing there. We

expect that it is now clear to the reader how any other form for the expansion of the

superfield may be reduced to this canonical form.

5.5 SUSY transformations of superfields

We are now in a position to compute how a general superfield �̂(x, θ ) changes

under an infinitesimal SUSY transformation. Our starting point is the relation

δ�̂ = i
[
ᾱQ, �̂

] =
(

−ᾱ
∂

∂θ̄
− iᾱ∂/ θ

)

�̂. (5.25)
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To proceed, we must work out the action of ∂/∂θ̄ on various terms in �̂. For

instance, to work out ∂

∂θ̄
(θ̄ θ ), it helps again to keep track of spinor indices:

∂

∂θ̄a
(θ̄bθb) = θa − θ̄bCba.

But

θ̄bCba = CT
abθ̄

T
b = −(C θ̄T )a = −θa

so that

∂

∂θ̄
(θ̄ θ ) = 2θ. (5.26a)

In a similar fashion, we can show that,

∂

∂θ̄
(θ̄γ5θ ) = 2γ5θ, (5.26b)

∂

∂θ̄
(θ̄γμγ5θ ) = 2γμγ5θ, (5.26c)

∂

∂θ̄ a
(θ̄γ5θ ) · θ̄b = 2(γ5θ )a θ̄b + θ̄γ5θδab, (5.26d)

∂

∂θ̄
(θ̄γ5θ )2 = 4(θ̄γ5θ ) · (γ5θ ). (5.26e)

We can now evaluate the RHS of Eq. (5.25). First, using χ ≡ λ + i√
2
∂/ ψ , we

find

−ᾱ
∂

∂θ̄
�̂ = i

√
2ᾱγ5ψ + iθ̄γ5αM − θ̄αN − θ̄γ5γμαV μ + i

2
θ̄ θ ᾱγ5χ

− i

2
θ̄γ5θᾱχ + i

2
θ̄γμγ5θᾱγ μχ + θ̄γ5θ θ̄γ5α

[

D − 1

2
�S

]

. (5.27)

Next,

−iᾱ∂/ [θ�̂] = −iᾱ∂/Sθ −
√

2ᾱ∂/ θ θ̄γ5ψ − 1

2
θ̄γ5θᾱ∂/ θM

− i

2
θ̄ θ ᾱ∂/ θN − i

2
θ̄γ5γμθᾱ∂/ θV μ + θ̄γ5θᾱ∂/ θ θ̄χ. (5.28)

The superfield in Eq. (5.27) is already in the canonical form. We have used the

(anti)symmetry properties of Majorana spinor bilinears as well as (5.21) to write it

this way. We must similarly re-arrange the last expression so that we can combine

it with (5.27) to obtain δ�̂ (with components δS, δψ , . . .) in the canonical form. By

comparing “coefficients”, we obtain the transformation laws for the components of
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a general scalar superfield:

δS = i
√

2ᾱγ5ψ, (5.29a)

δψ = −αM√
2

− i
γ5αN√

2
− i

γμαV μ

√
2

− γ5∂/Sα√
2

, (5.29b)

δM = ᾱ
(

λ + i
√

2∂/ ψ
)

, (5.29c)

δN = iᾱγ5

(

λ + i
√

2∂/ ψ
)

, (5.29d)

δV μ = −iᾱγ μλ +
√

2ᾱ∂μψ, (5.29e)

δλ = −iγ5αD − 1

2
[∂/ , γμ]V μα, (5.29f)

δD = ᾱ∂/ γ5λ. (5.29g)

Exercise Perform the required algebra to obtain the transformation laws for the
components of the scalar superfield.

Equations (5.29a)–(5.29g) define a linear transformation of the component fields,

and, as expected for a SUSY transformation, the variation of a bosonic (fermionic)

field is proportional to a fermionic (bosonic) field.

5.6 Irreducible SUSY multiplets

We have just seen that the components of a general scalar superfield transform into

one another under supersymmetry. This does not, however, mean that we require

all the components to be simultaneously present. Of course, we cannot arbitrarily

leave out any component since these would “be generated” by the transformation.

For instance, if we said S was absent, we would see that it would be generated by

the transformation as long as ψ �= 0. It is, however, possible that there might be a

smaller set of component fields which transform into just one another under SUSY.

If we find such a set, we say the representation furnished by the original (larger)

set is reducible. If this set cannot be reduced any further, we say that it furnishes

an irreducible representation of supersymmetry.

Exercise A familiar example of the concept of irreducibility is the representation
(of the 3-D rotation transformation) furnished by the tensor T i j = xi y j , where xi

and y j are the components of two co-ordinate vectors. Under rotations, the nine
components of T i j clearly transform into one another. Show that the six compo-
nents of Si j = xi y j + x j yi as well as the three components of Ai j = xi y j − x j yi
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separately transform into one another. Show further that while Ai j furnishes an
irreducible representation, the representation furnished by Si j can be reduced fur-
ther into a traceless symmetric tensor S̄i j = Si j − 1

3
Trace(S)δi j whose five compo-

nents transform among themselves, and the unit tensor δi j , which is inert under the
transformations. This is, of course, the familiar statement that the combination of
two angular momentum 1 states gives states with angular momenta 0,1, and 2.

5.6.1 Left-chiral scalar superfields

Our examination of the Wess–Zumino model in Chapter 3 showed us that there

is a consistent supersymmetric model that can be written down in terms of just

the S, ψL, and F fields. Furthermore, Eq. (3.16a)–(3.16c) show that these three

fields (which are contained in our general superfield) form a multiplet under

SUSY transformations. It should, therefore, be possible to find a representation

where several of the components of the general superfield �̂ are zero or un-

physical. In other words, the representation furnished by the components of �̂

should be reducible. Since the Wess–Zumino multiplet (3.15) does not include

any vector field, we naturally look for a representation where the field strength

(∂μVν − ∂νVμ) vanishes, i.e. Vμ = ∂μζ . We must, of course, require that this

is not altered by the SUSY transformations (5.29a)–(5.29g). In order that δV μ

is also a pure gradient, we infer from (5.29e) λ = 0. Then, requiring δλ = 0,

gives us

δλ = −iγ5αD − 1

2
[γρ, γμ]∂ρ∂μζα = 0,

which, in turn, implies D = 0. We can thus consistently choose

λ = D = 0, Vμ = ∂μζ.

The set of SUSY transformations then reduces to,

δS = i
√

2ᾱγ5ψ, (5.30a)

δψ = −αM√
2

− i
γ5αN√

2
− i

γμαV μ

√
2

− γ5∂/Sα√
2

, (5.30b)

δM = i
√

2ᾱ∂/ ψ, (5.30c)

δN =
√

2ᾱ∂/ γ5ψ, (5.30d)

δV μ =
√

2ᾱ∂μψ. (5.30e)
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These can then be written as,

δ

[
∂μS ∓ iV μ

√
2

]

= ∓2iᾱ∂μψ L
R
, (5.31a)

δψ L
R

= −M ∓ iN√
2

α L
R

± ∂μS ∓ iV μ

√
2

γμα R
L
, (5.31b)

δ

[M ∓ iN√
2

]

= 2iᾱ∂/ ψ L
R
. (5.31c)

We then see that the fields

(∂μS − iV μ)√
2

, ψL,
M − iN√

2
(5.32)

transform into one another, as does the set

(∂μS + iV μ)√
2

, ψR,
M + iN√

2
. (5.33)

Let us recapitulate what we have accomplished. Starting with a scalar multiplet,

by choosing λ = D = 0 and Vμ = ∂μζ , we have reduced the original multiplet

into two multiplets such that the component fields of each multiplet transform only

among themselves. If the superfield �̂ that we started with was real, then these two

reduced multiplets are conjugates of one another. If, however, we had started with

a complex field �̂, the two multiplets are unrelated. A superfield transforming as

the set (5.32) is called a left-chiral superfield, while one transforming as the set

(5.33) is called a right-chiral superfield. We trust that it is clear that our reduction

procedure is conceptually identical to the example of reducing the second rank

co-ordinate tensor into its scalar and the traceless symmetric and antisymmetric

parts, discussed in the last exercise.

Finally, let us recover the field content of the Wess–Zumino model. We can

reduce a complex superfield �̂ as described above, and set all the components in

the set (5.33) to zero, consistent with SUSY transformations. In other words, we

can choose ψR = 0, V μ = i∂μS and let N = iM ≡ iF . Then, the field content

of our model will be a complex spin zero field S, ψL (or equivalently, a four-

component Majorana spinor ψ whose right-handed components are chosen to make

it Majorana) and a complex field F . Making the appropriate substitutions in (5.4),

we obtain the expansion of a left-chiral scalar superfield,

ŜL = S + i
√

2θ̄ψL + iθ̄ θLF + i

2
(θ̄γ5γμθ )∂μS

− 1√
2
θ̄γ5θ · θ̄∂/ ψL + 1

8
(θ̄γ5θ )2�S. (5.34)
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The transformation laws for the component fields are then

δS = −i
√

2ᾱψL, (5.35a)

δψL = −
√

2FαL +
√

2∂/SαR, (5.35b)

δF = i
√

2ᾱ∂/ ψL, (5.35c)

which is exactly the same as in Eq. (3.16a)–(3.16c). Throughout the remain-

der of this book, we will reserve S, ψ , and F to denote components of chiral

superfields.

Exercise Convince yourself that the components of the left-chiral superfield form
an irreducible multiplet. In other words, show that it is not possible to set any of
the components (or combinations thereof) to zero.

Exercise In our reduction of the general superfield to the left-chiral scalar su-
perfield, we took Vμ = ∂μζ , and λ = D = 0. Show that any attempt to reduce the
system by setting V μ = 0 with iγμλ + √

2∂μψ = 0, etc. collapses the system of
equations.

5.6.2 Right-chiral scalar superfields

In order to obtain a right-chiral scalar superfield, we set ψL = 0, V μ = −i∂μS and

N = −iM ≡ F in (5.4) so that

ŜR = S − i
√

2θ̄ψR − iθ̄ θRF − i

2
(θ̄γ5γμθ )∂μS

− 1√
2
θ̄γ5θ · θ̄∂/ ψR + 1

8
(θ̄γ5θ )2�S. (5.36)

We note that the field

Ŝ†
L = S† − i

√
2ψ̄θR − iθ̄ θRF† − i

2
(θ̄γ5γμθ )∂μS†

− 1√
2
θ̄γ5θ · θ̄∂/ ψR + 1

8
(θ̄γ5θ )2�S† (5.37)

has the form of a right-chiral scalar superfield.
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5.6.3 The curl superfield

Let us define the field strength tensor field Fμν ≡ ∂μV ν − ∂νV μ. It is then straight-

forward to check that,

δFμν = −iᾱ[γ ν∂μ − γ μ∂ν]λ, (5.38a)

δλ = −iγ5αD + 1

4
[γν, γμ]Fμνα, and (5.38b)

δD = ᾱ∂/ γ5λ, (5.38c)

so that the components Fμν , λ, and D transform into each other. Nevertheless,

it is not possible to choose S, ψ , M, and N all equal to zero, since (because of

(5.29b) this choice is not invariant under a SUSY transformation. In a gauge theory,

however, which is where we will have need for the curl superfield, there is more

freedom because of gauge invariance. We will see in the next chapter how it is

possible to work with a multiplet containing only the Fμν , λ, and D fields. Such

a gauge multiplet will be derived from a real superfield that contains the gauge

potential V μ.

5.7 Products of superfields

We begin by noting that the expansion,

ŜL(x, θ ) = S(x) + i
√

2θ̄ψL(x) − i

2
(θ̄γ5θ )F + i

2
(θ̄ θ )F + i

2
(θ̄γ5γμθ )∂μS(x)

− 1√
2
θ̄γ5θ · θ̄∂/ ψL(x) + 1

8
(θ̄γ5θ )2�S(x), (5.39)

for a left-chiral scalar superfield can be succinctly written in terms of a new variable

x̂μ = xμ + i
2
θ̄γ5γμθ as,

ŜL(x, θ ) = S(x̂) + i
√

2θ̄ψL(x̂) + iθ̄ θLF(x̂). (5.40)

To see this, we can expand each of the fields in (5.40) as power series around

x̂ � x . Since any term can contain at most two θs and two θ̄s, this expansion must

terminate. We can thus write S(x̂) as

S(x̂) = S(x) + i

2
(θ̄γ5γμθ )∂μS(x) + 1

2!
(

i

2
)2(θ̄γ5γμθ )(θ̄γ5γνθ )∂μ∂νS(x)

= S(x) + i

2
(θ̄γ5γμθ )∂μS(x) + 1

8
(θ̄γ5θ )2�S (5.41)
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where we have used identity (5.24e) to obtain the last term. Likewise, using (5.23d)

we have

θ̄ψL(x̂) = θ̄

[

ψL(x) + i

2
(θ̄γ5γμθ )∂μψL(x)

]

= θ̄ψL(x) + i

2
(θ̄γ5θ )θ̄∂/ ψL. (5.42)

Finally, from (5.24b) and (5.24c) we have

θ̄ θF(x̂) = θ̄ θF(x) and θ̄γ5θF(x̂) = θ̄γ5θF(x). (5.43)

Combining these results, we arrive at Eq. (5.40).

The important point about Eq. (5.40) is that it shows that a left-chiral scalar

superfield is a function of just x̂ and θL (recall that θ̄R = θT
L C). The θR dependence

of ŜL enters only via x̂ . If we take the product of two (or more) left-chiral scalar

superfields, it will again be a function of just x̂ and θL, and can be written in the

form of Eq. (5.40). We thus conclude that a product of any number of left-chiral
scalar superfields is itself a left-chiral scalar superfield.

In a similar fashion, a right-chiral scalar superfield ŜR can be written as just a

function of x̂† and θR:

ŜR(x, θ ) = S(x̂†) − i
√

2θ̄ψR(x̂†) − iθ̄ θRF(x̂†). (5.44)

This then establishes that the product of two (or more) right-chiral scalar superfields

is a right-chiral scalar superfield.

Exercise By explicit multiplication, or otherwise, convince yourself that the prod-
uct of a left-chiral superfield with a right-chiral superfield is a general superfield.

5.8 Supercovariant derivatives

Covariant derivatives are defined so that when these act on any object, they yield a

new object with the same transformation properties as the original one. For instance,

in gauge theories, unlike the ordinary derivative, the gauge covariant derivative

acting on a field whose components transform according to a representation R of

the gauge group, is a new field with components that transform in the same way.

Since the representation (5.25) of the generator for supersymmetry includes the

second term with a θ in it, it is clear that, under SUSY, the components ∂�̂/∂θ̄

transform differently from those of �̂. This is in contrast to spatial derivatives where,

because Pμ commutes with the super-charge, the components of ∂μ�̂ transform the
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same way as those of �̂. Thus ordinary spacetime derivatives are automatically

covariant with respect to SUSY transformations.

To facilitate the construction of invariant functions of superfields and their deriva-

tives with respect to θ , we want to define a supersymmetric covariant derivative D
so that the components of D�̂ transform the same way as the components of �̂

under a supersymmetry transformation. We thus require,
[

−ᾱ
∂

∂θ̄
− iᾱ∂/ θ

]

D�̂ = D

[

−ᾱ
∂

∂θ̄
− iᾱ∂/ θ

]

�̂. (5.45)

We will leave it to the reader to verify that the fermionic derivative operator,

D = ∂

∂θ̄
− i∂/ θ, (5.46)

anticommutes with − ∂

∂θ̄
− i∂/ θ and satisfies (5.45) because the fermionic parameter

α anticommutes with θ .

Exercise Verify that the expression for D in (5.46) satisfies (5.45).

For later use, we will define a related derivative D̄ so that D = C D̄T so that

D satisfies the “Majorana condition”. We can readily find the explicit form for D̄.

Starting with D̄ = DT C , we find,

D̄b =
[

∂

∂θ̄a
− i(∂/ θ )a

]

Cab

= ∂

∂θc

∂θc

∂θ̄a
Cab − i(∂/ C θ̄T )aCT

ba

= − ∂

∂θb
+ i(θ̄∂/ )b

so that

D̄ = − ∂

∂θ
+ iθ̄∂/ . (5.47)

We can also define left and right SUSY covariant derivatives by acting on D with

the projectors PL or PR. To do so, we note that θ̄a = θ̄Lb PRba + θ̄Rb PLba immediately

gives us,

∂θ̄a

∂θ̄Lb
= PRba and

∂θ̄a

∂θ̄Rb
= PLba, (5.48)

which implies,

∂

∂θ̄La
= ∂

∂θ̄b

∂θ̄b

∂θ̄La
= ∂

∂θ̄b
PRab. (5.49)
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Although it should be clear from the context, we clarify that we are taking the

derivative with respect to the conjugates of the spinors θL or θR. A similar relation

holds for ∂/∂θ̄R, so that

∂

∂θ̄L

= PR

∂

∂θ̄
and

∂

∂θ̄R

= PL

∂

∂θ̄
. (5.50)

We then have

DL ≡ PL D = ∂

∂θ̄R

− i∂/ θR (5.51a)

DR ≡ PR D = ∂

∂θ̄L

− i∂/ θL, (5.51b)

where DL + DR = D. Finally, let us also define,

D̄R ≡ DT
L C and D̄L ≡ DT

R C. (5.52a)

Clearly, D̄R + D̄L = (DT
L + DT

R )C = DT C = D̄. Note that once again our defi-

nition is consistent with the “Majorana condition” for the spinorial operator D.

Notice also that,

D̄L = DT
R C = DT PT

R C = D̄ PR , (5.52b)

and

D̄R = DT
L C = DT PT

L C = D̄ PL . (5.52c)

We will leave it to the reader to verify that by steps very similar to those that led us

to (5.51a) and (5.51b) we obtain,

D̄L = − ∂

∂θR

+ iθ̄R∂/ , (5.53a)

and

D̄R = − ∂

∂θL

+ iθ̄L∂/ . (5.53b)

As one more exercise in the manipulation of the supercovariant derivative, we

establish an identity involving DL and DR to be used in the next chapter. We compute

the anticommutation relation

{DLa, DRb} =
{

∂

∂θ̄Ra
− i(∂/ θR)a,

∂

∂θ̄Lb
− i(∂/ θL)b

}

= −i

{

(∂/ θR)a,
∂

∂θ̄Lb

}

− i

{
∂

∂θ̄Ra
, (∂/ θL)b

}

= −i
∂

∂θ̄Lb
(∂/ θR)a − i

∂

∂θ̄Ra
(∂/ θL)b.
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To obtain the last step we can explicitly act on a superfield and, since the θs

anticommute, see that just the terms shown survive. Finally, since θR = C θ̄T
L and

θL = C θ̄T
R , we have ∂θRb/∂θ̄La = Cba and ∂θLb/∂θ̄Ra = Cba , so that

{DLa, DRb} = −i(∂/ C)ab − i(∂/ C)ba

= −2i(∂/ C)ab. (5.54)

Exercise Similarly show that

{DLa, DLb} = {DRa, DRb} = 0.

Thus any term with a product of three DLs or three DRs vanishes.

To conclude this section, we show that the action of DR on a left-chiral superfield

ŜL(θL, x̂) gives zero. To evaluate the first term, we note that the θ̄L dependence enters

only via x̂ , and we can write,

∂ŜL

∂θ̄L

= ∂ŜL

∂ x̂μ

∂ x̂μ

∂θ̄L

= ∂ŜL

∂ x̂μ

i

2

∂(θ̄γ5γ
μθ )

∂θ̄L

= ∂ŜL

∂xμ
· iγ μθL,

where in the last step we used θ̄γ5γμθ = 2θ̄LγμθL. We thus establish the important

property,

DRŜL =
(

∂

∂θ̄L

− i∂/ θL

)

ŜL = 0. (5.55)

Working the steps backwards, we see that this is also a sufficient condition for any

field to be a left-chiral superfield. The reader can similarly show,

DLŜR = 0. (5.56)

We remark that the result of the last exercise in the previous section follows imme-

diately from Eq. (5.55) and (5.56).

5.9 Lagrangians for chiral scalar superfields

Our goal in this section is to present a systematic strategy to construct actions that

are invariant under supersymmetric transformations. This means that the variation

of the Lagrangian density can at most be a total derivative. In fact, the Lagrangian

density can never be a SUSY invariant. This follows simply from the SUSY algebra.
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By manipulations similar to (3.20) of Chapter 3 we get,

(δ2δ1 − δ1δ2)L = −2ᾱ2γμα1∂μL.

This would, of course, have to vanish if L were truly a SUSY invariant. We would

then be led to conclude thatL is a constant and that the theory has no dynamics. Thus,

SUSY transformations always change the Lagrangian density by a (non-vanishing)

total derivative.

The first observations toward our goal stem from Eq. (5.29g) and Eq. (5.35c)

which show that the D-component (the coefficient of (θ̄γ5θ )2) of any superfield

and the F-component of chiral superfields (the coefficient of θ̄ θL of a left-chiral

superfield, or the coefficient of θ̄ θR of a right-chiral superfield) transform as a total

derivative under a SUSY transformation. This leads us to two important conclu-

sions:

� if we take the product of any number of chiral superfields and their Hermitian

conjugates, the D-term of the product superfield will change only by a total

derivative under SUSY transformations, and
� if we take the product of only left- (or only right-) chiral superfields, the F-term

of the product will also change by just a total derivative. The would-be D-term

(i.e. the coefficient of (θ̄γ5θ )2) of this product is already a total derivative.

These D- or F-components of the composite (product) superfield are themselves

products of the ordinary fields that were the components of the individual superfields

in the product. Thus, these D- and F-terms are candidates for a SUSY Lagrangian.

With just chiral scalar multiplets, we can only obtain a theory with spin 0 and spin
1
2

fields.

The recipe for obtaining SUSY invariant actions (given a set of N chiral super-

fields) is now in hand. We start with two functions K (Ŝ†
Li , ŜL j ) and f̂ (ŜLi ) of a

set of left-chiral superfields ŜLi , where i = 1, . . . , N . Since Ŝ†
Li is a right-chiral

superfield, K is a general superfield, while f̂ is a left-chiral superfield. Then, the

D-term of K and the F-term of f̂ are candidates for a SUSY Lagrangian density.

The function K is called the Kähler potential and the function f̂ is known as the

superpotential. We make two clarifying remarks.

� There is no loss of generality in writing the superpotential as a function of just left-

chiral superfields because every right-chiral superfield ŜR j can, by the analogue

of Eq. (5.37), be written as a left-chiral superfield
(
ŜR j

)†
.

� The reader may wonder why we do not include the D-term of the superpotential

in the Lagrangian. We see from Eq. (5.34) that the coefficient of the (θ̄γ5θ )2 term

of any left-chiral superfield is itself a total derivative, and so does not contribute to
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the action. For the same reason, terms in the Kähler potential that do not depend

on both ŜL and Ŝ†
L would also be irrelevant.

Just as the scalar potential specifies any theory of spin zero and spin half fields in

usual field theory, a supersymmetric field theory with chiral superfields is specified

by the Kähler potential together with the superpotential. We now compute the

Lagrangian density for any SUSY theory with just spin zero and spin half fields in

terms of these functions. For simplicity, we will restrict our discussion to theories

that are power counting renormalizable.

5.9.1 Kähler potential contributions to the Lagrangian density

We begin with the computation of the Kähler potential contribution to the action.

This requires us to compute the coefficient of the (θ̄γ5θ )2 term (or the D-term)

of the function K . For this reason, this contribution is frequently known as the

“D-term contribution” to the Lagrangian density.

Renormalizability imposes stringent restrictions on the form of K , and also as

we will see below, on the form of the superpotential. To see this, we have to do

some dimensional analysis. We will denote the mass dimension of any quantity X
as [X ]. Since [P] = 1, from the SUSY algebra {Q, Q̄} = 2γ μ Pμ, we must have

[Q] = [Q̄] = 1/2. (Remember that Q = C Q̄T implies [Q] = [Q̄].) Then from

Eq. (5.25), we obtain [θ ] = [θ̄ ] = −1/2.

If, in our expansion (5.34) of the chiral superfield, we now choose the scalar field

S to have the canonical dimension [S] = 1, then [ψ] = 3/2 and [F] = 2, just as

for the Wess–Zumino model. Indeed the left-chiral superfield ŜL can be assigned

[ŜL] = 1. Since [(θ̄γ5θ )2] = −2, then

[K D-term] = [K ] + 2. (5.57)

If this D-term is to represent a renormalizable Lagrangian, then [K D-term] ≤ 4, so

that

[K ] ≤ 2 (renormalizable theory) (5.58)

and the Kähler potential is at most a quadratic polynomial of Ŝ and Ŝ†. In non-

renormalizable theories (such as supergravity), higher powers may be present. In

fact, then K need not even be a polynomial.

As already noted, chiral superfields have only gradient D-terms, so there is no

point writing linear terms (or for that matter terms involving just Ŝ or just Ŝ†) in

the Kähler potential. In a renormalizable theory, since cubic and higher terms are

not allowed in K , the most general form of K is a real function (to ensure the
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Hermiticity of the Lagrangian density)

K =
N∑

i, j=1

Ai j Ŝ†
i Ŝ j . (5.59)

Without loss of generality, we can choose a basis so that Ai j is diagonal, and the

fields Ŝi can be normalized so that the Aii = 1. Then

K [Ŝ†, Ŝ] =
N∑

i=1

Ŝ†
i Ŝi (5.60)

is a general choice for K in a renormalizable theory.

Exercise For the curl superfield, show that if we choose [V μ] = 1, we would
have [λ] = 3/2 and [D] = 2. Notice that unlike the chiral supermultiplet, the mass
dimension of the curl superfield vanishes, so that renormalizability considerations
do not restrict the power of this multiplet in the Kähler potential. It cannot, of
course, enter the superpotential since it is not a chiral superfield. We will exploit
this in the next chapter when we discuss supersymmetric gauge theories.

We now have only to compute the coefficient of the (θ̄γ5θ )2 term in the product

Ŝ†
i Ŝi . In so doing, we need only keep terms with four θ ’s or θ̄ ’s in any combination.

Multiplying the expansion (5.37) by (5.34), four sets of terms will arise.

The first set of terms is

• 1

8
S†�S(θ̄γ5θ )2 + 1

8
�S†S(θ̄γ5θ )2 + 1

4
(θ̄γ5γμθ )(θ̄γ5γνθ )∂μS†∂νS.

We integrate by parts on each of the first two terms above, and discard the surface

terms. For the third term, apply identity (5.24e). The result is that

Ŝ†
LŜL � −1

2
(θ̄γ5θ )2∂μS†∂μS. (5.61)

The second set of terms is

• iψ̄θR(θ̄γ5θ )θ̄∂/ ψL − i(θ̄γ5θ )θ̄∂/ ψRθ̄ψL.

In the first term, re-write ψ̄θR → ψ̄Lθ and apply the Fierz re-arrangement identity

(5.21) to the θ θ̄ product. The second and third terms of (5.21) lead to vanishing

contributions via the identities (5.24a) and (5.24b), respectively, while the second

term of (5.21) leads to a contribution − i
4
(θ̄γ5θ )2ψ̄L∂/ ψL. Similarly, the second

term of • above leads to a contribution − i
4
(θ̄γ5θ )2ψ̄R∂/ ψR. Since ψ = ψL + ψR is

Majorana, we find

Ŝ†
LŜL � −1

2
(θ̄γ5θ )2 i

2
ψ̄∂/ ψ. (5.62)
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The third set of terms consists of

• θ̄ θRθ̄ θLF†F .

By expanding the PL and PR projection operators and using (5.24a) and (5.24d),

we find

Ŝ†
LŜL � −1

2
(θ̄γ5θ )2F†F . (5.63)

A fourth set of terms

• 1

2
θ̄ θR(θ̄γ5γμθ )F†∂μS + 1

2
(θ̄γ5γμθ )θ̄ θL∂μS†F

will identically vanish due to identities (5.24b) and (5.24c).

Putting all the pieces together, we find

Ŝ†
LŜL � −1

2
(θ̄γ5θ )2{∂μS†∂μS + i

2
ψ̄∂/ ψ + F†F}. (5.64)

We will define the D-term to be the coefficient of the − 1
2
(θ̄γ5θ )2 term in the product

Ŝ†
LŜL since this gives us the canonically normalized kinetic energy terms for the

scalar field S and the Majorana spinor field ψ . The D-term contribution to the

Lagrangian density for a single chiral scalar superfield is thus

LD = ∂μS†∂μS + i

2
ψ̄∂/ ψ + F†F . (5.65)

The field F enters without any derivative. It turns out to be an auxiliary field that

satisfies an algebraic equation of motion.

5.9.2 Superpotential contributions to the Lagrangian density

We now turn to the computation of the superpotential contributions to the La-

grangian density. This is proportional to the coefficient of the θ̄ θL, or the F-term, of

the superpotential function. These contributions are therefore frequently referred

to as F-term contributions. Dimensional analysis tells us that the F-term of the

superpotential f̂ has dimensions [ f̂ ] − 1. In a renormalizable theory, therefore, the

superpotential is at most a cubic polynomial in Ŝi .
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We can formally write any superpotential as a power series about Ŝ = S as,

f̂ (Ŝ) = f̂ (Ŝ = S) +
∑

i

∂ f̂

∂Ŝi

∣
∣
∣
∣
∣
Ŝ=S

(Ŝ − S)i

+ 1

2

∑

i j

∂2 f̂

∂Ŝi∂Ŝ j

∣
∣
∣
∣
∣
Ŝ=S

(Ŝ − S)i (Ŝ − S) j

+ 1

3!

∑

i jk

∂3 f̂

∂Ŝi∂Ŝ j∂Ŝk

∣
∣
∣
∣
∣
Ŝ=S

(Ŝ − S)i (Ŝ − S) j (Ŝ − S)k

+ · · · (5.66)

Here, Ŝ = S means that after the derivative is evaluated, each superfield is set to

be the scalar component so that these “derivative coefficients” are functions of just

the scalar fields. The terms (Ŝ − S)i are at least linear in θ so that there can be at

most four factors of this type because any product of five θs and θ̄s vanishes. In

fact, because the superpotential is a function of only left-chiral superfields, even

the product of four factors vanishes, so that there really are no terms represented

by the ellipsis in the expansion above.

Let us now isolate the potential sources of the θ̄ θL terms in f̂ (Ŝ) whose coefficient

is the item of interest to us. We see that:

1. the first term in the expansion will not contribute since it has no θs,

2. the last terms cannot contribute since they all contain at least three θs,

3. the
∑

i ∂ f̂ /∂Ŝi |Ŝ=S(Ŝ − S)i term contributes with the θ̄ θL coefficient from

Ŝ − S, and

4. the 1
2

∑

i j ∂2 f̂ /∂Ŝi∂Ŝ j |Ŝ=S(Ŝ − S)i (Ŝ − S) j term contributes when (Ŝ − S)i

and (Ŝ − S) j each contribute a term linear in θ .

The form of the term from item 3 above is easy to write down; using (5.34) it is

just

∂ f̂

∂Ŝi

∣
∣
∣
∣
∣
Ŝ=S

(Ŝ − S)i = ∂ f̂

∂Ŝi

∣
∣
∣
∣
∣
Ŝ=S

(
iFi θ̄ θL

)
. (5.67)

The term from item 4 can be written as

1

2

∂2 f̂

∂Ŝi∂Ŝ j

∣
∣
∣
∣
∣
Ŝ=S

(Ŝ − S)i (Ŝ − S) j = 1

2

∂2 f̂

∂Ŝi∂Ŝ j

∣
∣
∣
∣
∣
Ŝ=S

(i
√

2ψ̄i PLθ )(i
√

2θ̄ψ jL)
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= 1

4

∂2 f̂

∂Ŝi∂Ŝ j

∣
∣
∣
∣
∣
Ŝ=S

ψ̄i PL

[
θ̄ θ1 + θ̄γ5θ · γ5 − θ̄γμγ5θ · γ μγ5

]
PLψ j

= 1

2

∂2 f̂

∂Ŝi∂Ŝ j

∣
∣
∣
∣
∣
Ŝ=S

θ̄ θLψ̄i PLψ j , (5.68)

where we have used identity (5.21).

The coefficient of θ̄ θL in f̂ (Ŝ) is thus

i
∂ f̂

∂Ŝi

∣
∣
∣
∣
∣
Ŝ=S

Fi + 1

2

∂2 f̂

∂Ŝi∂Ŝ j

∣
∣
∣
∣
∣
Ŝ=S

ψ̄i PLψ j , (5.69)

where a sum over the various fields is implied. This term is not Hermitian, since

f̂ is intrinsically complex. However, we note that the F-term of the right-chiral

superfield [ f̂ (Ŝ)]† which also leads to a SUSY-invariant action gives just the Her-

mitian conjugate of the expression (5.69). We will add this to obtain a Hermitian

Lagrangian density.

In defining the F-terms, we will actually take the coefficient of−θ̄ θL as the choice

for a Lagrangian. This is purely conventional. We will choose the size of the terms

in the superpotential to give mass and interaction terms with usual normalizations

in the Lagrangian density. Thus,

LF = −i
∑

i

∂ f̂

∂Ŝi

∣
∣
∣
∣
∣
Ŝ=S

Fi − 1

2

∑

i, j

∂2 f̂

∂Ŝi∂Ŝ j

∣
∣
∣
∣
∣
Ŝ=S

ψ̄i PLψ j

+ i
∑

i

⎛

⎝
∂ f̂

∂Ŝi

)†
∣
∣
∣
∣
∣
∣
Ŝ=S

F†
i − 1

2

∑

i, j

⎛

⎝
∂2 f̂

∂Ŝi∂Ŝ j

)†
∣
∣
∣
∣
∣
∣
Ŝ=S

ψ̄i PRψ j .

(5.70)

We remark that nowhere in our derivation of (5.70) did we need to assume the

dimensionality of the superpotential.

5.9.3 A technical aside

The careful reader may have noticed that we did not allow the superpotential to con-

tain terms involving supercovariant derivatives of the superfield. This is because the

supercovariant derivative of a chiral superfield is not, in general, a chiral superfield.

However, by the exercise immediately following (5.54), we see that the product

of any three right (or left) supercovariant derivatives vanishes. Hence, even for a

general superfield �̂, D̄L DR�̂ must be a left-chiral superfield (since DR acting on

this vanishes). This raises the question whether such terms (or functions thereof)
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may be included in the superpotential of a more general theory not involving just

chiral superfields.

First, we note that up to total derivatives, this term is just −∂2�̂/∂θR∂θ̄L so that

it just removes one θR and one θ̄L from the general expansion (5.4) of �̂. Aside

from total derivatives, this then leaves only terms with M or N (with no θ or θ̄ ), a

term with λ (with one θ̄ ) and a term with D (with a θ̄γ5θ ). Up to total derivatives,

the F-term (which is proportional to the coefficient of θ̄ θL) of D̄L DR�̂ is then just

a multiple of the D component of �̂ and would be included in our general list of

contributions from the Kähler potential.

Next, the reader may worry about terms like ŜL D̄L DR�̂ since this is also a

left-chiral superfield. However, since DRŜ = D̄LŜ = 0, this can be written as

D̄L DR(Ŝ�̂) which we just argued that we do not need to include. Powers of D̄L DR�̂

are just a special case of this. We thus see that there is no loss of generality in not

including supercovariant derivatives of superfields in the superpotential as long as
we allow for a general Kähler potential (which can include terms involving these

derivatives). In a renormalizable theory, however, the choice of Kähler potential is

greatly restricted as we have already noted. Finally, we remark that our analysis

above shows that certain F-terms (which lead to non-renormalizable interactions

in four dimensions) can be rewritten as D-terms.

5.9.4 A master Lagrangian for chiral scalar superfields

We can now combine the D- and F-term Lagrangian candidates above to arrive

at the general Lagrangian for renormalizable theories involving only chiral scalar

superfields:

L = LD + LF

=
∑

i

[

∂μS†
i ∂

μSi + i

2
ψ̄i∂/ ψi + F†

i Fi

]

− i
∑

i

∂ f̂

∂Ŝi

∣
∣
∣
∣
∣
Ŝ=S

Fi − 1

2

∑

i, j

∂2 f̂

∂Ŝi∂Ŝ j

∣
∣
∣
∣
∣
Ŝ=S

ψ̄i PLψ j

+ i
∑

i

⎛

⎝
∂ f̂

∂Ŝi

)†
∣
∣
∣
∣
∣
∣
Ŝ=S

F†
i − 1

2

∑

i, j

⎛

⎝
∂2 f̂

∂Ŝi∂Ŝ j

)†
∣
∣
∣
∣
∣
∣
Ŝ=S

ψ̄i PRψ j . (5.71)

We see that while the fields Si and ψi have conventional kinetic energy terms, the

fields Fi have no kinetic energy term, and so are not dynamical fields.
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At this stage we eliminate these auxiliary fields from the Lagrangian by using

their (algebraic) Euler–Lagrange equations:

∂L
∂F†

i

= 0 ⇒ Fi + i

(

∂ f̂

∂Ŝi

)†

= 0, (5.72a)

∂L
∂Fi

= 0 ⇒ F†
i − i

∂ f̂

∂Ŝi

= 0. (5.72b)

We thus obtain the general supersymmetric Lagrangian for theories with just scalars

and spinors to be

L =
∑

i

(∂μSi )
†(∂μSi ) + i

2

∑

i

ψ̄i∂/ ψi −
∑

i

∣
∣
∣
∣
∣

∂ f̂

∂Ŝi

∣
∣
∣
∣
∣

2

Ŝ=S

− 1

2

∑

i, j

[

∂2 f̂

∂Ŝi∂Ŝ j

∣
∣
∣
∣
∣
Ŝ=S

ψ̄i
1 − γ5

2
ψ j + h.c.

]

. (5.73)

The third term yields the scalar potential (which is quartic if the superpotential is

cubic). The masses and Yukawa interactions of fermions are all included in the last

term. The model dependence of the theory enters via the choice of the superpotential

which can be an arbitrary function (at most a cubic polynomial for renormalizable

theories) of left-chiral superfields, but not their Hermitian conjugates.

Exercise (Recovering the Wess–Zumino model) To recover the Wess–Zumino
model, complete with interactions, create a theory with a single left-chiral scalar
superfield ŜL � (S, ψL, F). Let S = A+iB√

2
and F = F+iG√

2
, where A, B, F, and

G are real scalar fields. Assume a superpotential of the form f̂ = 1
2
mŜ2 + 1

3
gŜ3.

Recover the Lagrangian terms given in Eq. (3.1b), (3.1c), and (3.43). This exercise
completes the proof that the WZ model interaction terms Eq. (3.43) are, in fact,
supersymmetric.

5.10 The action as an integral over superspace

Supersymmetric actions are commonly expressed as integrals over superspace.

To understand how this is accomplished, we must first define integration over

Grassmann numbers. Consider the integral over the entire range of η of a function

f (η) of a single Grassmann variable η:
∫

f (η)dη =
∫

(A + Bη)dη,
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where we have expanded f as a power series in η. Following Berezin,3 we define
∫

dη = 0 (5.74a)

∫

dη · η = 1. (5.74b)

Notice that (5.74b) implies that the dimension of η is the negative of that of dη –

hence dη should not be thought of as an increment of η. This then gives
∫

f (η)dη =
∫

(A + Bη)dη = B.

Exercise Verify that with this definition, Berezin integration is a linear operation,
i.e. that

∫
dη[a f (η) + bg(η)] = a

∫
dη f (η) + b

∫
dηg(η), where a and b are (com-

muting) constants and f and g are functions. Show also that the integral
∫

dη f (η)

over the entire range of η is invariant under finite shifts η → η + η′ of the integra-
tion variable by a Grassmann-valued constant.

For integrals over several Grassmann variables, there is a sign ambiguity. We de-

fine the integral over several variables by requiring that the variable to be integrated

first be moved to the extreme left: we thus have,
∫

dη1dη2 · η1η2 = −
∫

dη1dη2 · η2η1 = −1. (5.75)

We are now ready to see how to write the D- and F-term contributions to the

action as integrals over superspace. The D-term contribution to the Lagrangian

density was defined as the coefficient of − 1
2
(θ̄γ5θ )2 when the Kähler potential

is expanded in the canonical form. Since (θ̄γ5θ )2 is quartic in the θs, it must be

proportional to θ1θ2θ3θ4. Plugging in an explicit representation for the Dirac γ

matrices shows that (θ̄γ5θ )2 = 8 θ4θ3θ2θ1. A look at (5.4) then tells us that
∫

dθ1dθ2dθ3dθ4 K
(
Ŝ†, Ŝ

) ≡
∫

d4θ K
(
Ŝ†, Ŝ

)

equals 8 times the coefficient of (θ̄γ5θ )2 in the expansion of K . Since we have

defined the D-term as the coefficient of − 1
2
(θ̄γ5θ )2, we can write the D-term part

of the action as,
∫

d4xLD = −1

4

∫

d4xd4θ K
(
Ŝ†, Ŝ

)
. (5.76)

3 See The Method of Second Quantization, F. A. Berezin, Academic Press (1966).
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To see how to write the F-term action as a superspace integral, it is most straight-

forward to work in the chiral representation where, as in (4.9), the upper (lower)

components of the spinor correspond to the two left-(right-)chiral components; i.e.

(θ1, θ2, θ3, θ4) = (θL1, θL2, θR1, θR2). It is then easy to check that θ̄ θL = 2θL2θL1.

From the form (5.34) for the expansion of an (elementary or composite) left-chiral

superfield, we see that
∫

dθL1dθL2 f̂ (ŜL) ≡
∫

d2θL f̂ (ŜL)

is exactly twice the coefficient of θ̄ θL in the expansion of the superpotential. Since

the F-term contribution to the Lagrangian density was defined to be the coefficient

of −θ̄ θL in this expansion, we see that the F-term part of the action can be expressed

as
∫

d4xLF = −1

2

[∫

d4xd2θL f̂ (Ŝ) + h.c.

]

. (5.77)

While the F-term of left-chiral superfields involves integration over just the two

Grassmann co-ordinates θL1 and θL2, the D-term involves an integration over θR1

and θR2 as well. In the literature, it is instead common to see integrations over

d2θ and d2θ̄ , where θ and θ̄ are two-component spinors. Eq. (4.9) provides the

connection. The two undotted components in (4.9) of the Majorana spinor θ (i.e.

the two components of our θL) are frequently denoted by θi while the two dotted

components are denoted by θ̄ i (i = 1, 2). The analogue of our integration over the

two θL (θR) co-ordinates is then integration over the two components of θ (θ̄ ).
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