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Abstract

Let (�, F, P) be a probability space and Z = (Z K )k∈N a Bernoulli noise on (�, F, P) which has the
chaotic representation property. In this paper, we investigate a special family of functionals of Z , which
we call the coherent states. First, with the help of Z , we construct a mapping φ from l2(N) to L2(�, F, P)
which is called the coherent mapping. We prove that φ has the continuity property and other properties
of operation. We then define functionals of the form φ( f ) with f ∈ l2(N) as the coherent states and
prove that all the coherent states are total in L2(�, F, P). We also show that φ can be used to factorize
L2(�, F, P). Finally we give an application of the coherent states to calculus of quantum Bernoulli
noise.
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1. Introduction

Bernoulli noise functionals play an important role in many problems such as
logarithmic Sobolev inequalities, deviation inequalities and option hedging in
mathematical finance (see, for example, [3] and references therein).

In recent years, there has been much interest in Bernoulli noise functionals. In 2001
Émery [1] considered the chaotic representation property of a class of discrete-time
stochastic processes including discrete-time Bernoulli noises. Years later, Privault [3]
surveyed the discrete-time chaotic calculus, which is a Malliavin-type theory of
stochastic calculus for Bernoulli noise functionals. Recently Wang et al. [4] introduced
a notion of quantum Bernoulli noises and defined corresponding quantum stochastic
integrals, which are actually about operator processes acting on Bernoulli noise
functionals. More recently Wang et al. [5] have presented an alternative approach
to the discrete-time chaotic calculus.
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Let (�, F, P) be a probability space and Z = (Z K )k∈N an independent sequence
of Bernoulli random variables on (�, F, P) which has the chaotic representation
property [1]. Naturally Z can be viewed as a Bernoulli noise (in discrete time) and
random variables on (�, F, P) can be interpreted as functionals of Z .

In this paper we investigate a special family of functionals of Z which we call the
coherent states. First, with the help of Z , we construct a mapping φ from l2(N) into
L2(�, F, P)which is called the coherent mapping. We prove that φ has the continuity
property and other good properties of operation. We then define functionals of the
form φ( f ) with f ∈ l2(N) as the coherent states and prove that all the coherent states
are total in L2(�, F, P). We also show that φ can be used to factorize L2(�, F, P).
Finally, we give an application of the coherent states to calculus of quantum Bernoulli
noise.

Notation and conventions. Let N be the set of all nonnegative integers. We denote
by l2(N) the usual space of square summable real-valued functions on N.

For a subset S ⊂ N, we define 0(S) as the finite power set of S, namely

0(S)= {σ | σ ⊂ S and #σ <∞}, (1.1)

where #σ means the cardinality of σ as a set. If S = {0, 1, . . . , k}, then we simply
write 0k] = 0(S). We set 0−1] = 0(∅).

In the following, we write 0 = 0(N) for brevity (0 is clearly countable) and set

0(n) = {σ ∈ 0 | #σ = n} (1.2)

for n ∈ N. By convention, l2(0) denotes the space of square summable real-valued
functions on 0. For a function on N, we can define a function E f on 0 as

E f (σ )=
∏
k∈σ

f (k), σ ∈ 0, (1.3)

where E f (∅)= 1. It can be shown that E f ∈ l2(0) whenever f ∈ l2(N).

2. Bernoulli noise

We assume throughout that (�, F, P) is a probability space and Z = (Zk)k∈N is an
independent sequence of random variables on (�, F, P) which satisfies

P{Zk = ak} = pk, P{Zk =−1/ak} = qk, k ∈ N, (2.1)

with ak =
√

qk/pk , qk = 1− pk and 0< pk < 1 and, moreover, F is generated by the
sequence (Zk)k∈N, namely

F = σ(Zk; k ∈ N). (2.2)

Such a sequence of random variables does exist (see, for example, [1, 3]). It can be
verified that the sequence Z = (Zk)k∈N satisfies the discrete structure equation

Z2
k = 1+ λk Zk, k ∈ N, (2.3)

with λk = (1− 2pk)/
√

pk(1− pk).
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In the following, we set F−1 = {∅, �} and, for k ∈ N, we denote by Fk the σ -field
generated by (Z j )0≤ j≤k , namely

Fk = σ(Z j ; 0≤ j ≤ k). (2.4)

In this way, the sequence (Fk)k≥−1 forms a filtration of σ -fields over (�, F, P). By
convention, we use E to mean the expectation operator with respect to P.

REMARK 2.1. As will be seen seen, Z is actually a discrete-time Bernoulli stochastic
process. And if we put

Mn =

n∑
k=0

Zk, n ∈ N,

then (Mn)n∈N is a martingale. Hence Z can be viewed as a (discrete-time) Bernoulli
noise. Owing to the relation described by (2.2), random variables on (�, F, P) can
also be interpreted as functionals of Z .

In the following, we always write L2(�)= L2(�, F, P), the space of square
integrable random variables on (�, F, P). The inner product and norm of L2(�)

are denoted 〈·, ·〉L2(�) and ‖ · ‖L2(�), respectively.
Clearly {Zk | k ∈ N} ⊂ L2(�). The next lemma shows that {Zk | k ∈ N} also has the

chaotic representation property (see, for example, [4] for a proof).

LEMMA 2.2. Let Z∅ = 1 and

Zσ =
∏
k∈σ

Zk, σ ∈ 0, σ 6= ∅. (2.5)

Then the set {Zσ | σ ∈ 0} forms a countable orthonormal basis for L2(�).

It is known that l2(0) has an orthonormal basis {δσ | σ ∈ 0}, where δσ is the Dirac
delta function on 0. Hence we come to the next lemma.

LEMMA 2.3. There exists a unique isometric isomorphism J : l2(0) 7→ L2(�) such
that

J( f )=
∑
σ∈0

f (σ )Zσ , f ∈ l2(0), (2.6)

where the series converges in the norm of L2(�).

DEFINITION 2.4 [5]. The isometric isomorphism J stated in Lemma 2.3 is referred to
as the full Wiener integral operator with respect to Z .

3. Coherent mapping

In the present section we will define a continuous mapping φ from l2(N) to L2(�),
which is called the coherent mapping. We will also show basic properties of φ.
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THEOREM 3.1. Let f ∈ l2(N). Then the following infinite product of random
variables converges in L2(�):

∞∏
k=0

(1+ f (k)Zk). (3.1)

PROOF. First we note that
∏
∞

k=0(1+ | f (k)|
2) converges as an infinite product of

positive numbers since
∞∑

k=0

| f (k)|2 <∞.

Now let ηn =
∏n

k=0(1+ f (k)Zk), n ≥ 0. Then ηn ∈ L2(�), n ≥ 0. And for any m,
n ≥ 0 with m < n, by the independence of the sequence (Zk)k∈N,

‖ηn − ηm‖
2
L2(�)

= E
[ n∏

k=0

(1+ f (k)Zk)
2
+

m∏
k=0

(1+ f (k)Zk)
2

− 2
m∏

k=0

(1+ f (k)Zk)
2

n∏
k=m+1

(1+ f (k)Zk)

]

=

n∏
k=0

E(1+ f (k)Zk)
2
+

m∏
k=0

E(1+ f (k)Zk)
2

− 2
m∏

k=0

E(1+ f (k)Zk)
2

n∏
k=m+1

E(1+ f (k)Zk)

=

n∏
k=0

(1+ | f (k)|2)−
m∏

k=0

(1+ | f (k)|2).

Thus the sequence ηn , n ≥ 0, converges in L2(�), that is, (3.1) converges in L2(�). 2

DEFINITION 3.2. The coherent mapping φ is the one from l2(N) to L2(�) given by

φ( f )=
∞∏

k=0

(1+ f (k)Zk), f ∈ l2(N). (3.2)

The next theorem shows some metric properties of the coherent mapping.

THEOREM 3.3. Let f , g ∈ l2(N). Then

〈φ( f ), φ(g)〉L2(�) =

∞∏
k=0

(1+ f (k)g(k)). (3.3)

In particular,

‖φ( f )‖2L2(�)
=

∞∏
k=0

(1+ | f (k)|2). (3.4)
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PROOF. We first note that the infinite product on the right-hand side of (3.3) absolutely
converges since

∞∑
k=0

| f (k)g(k)|<∞.

Now for f , g ∈ l2(N), by the continuity of the inner product as well as the
independence of the sequence (Zk)k∈N, we get

〈φ( f ), φ(g)〉L2(�) = lim
n→∞

〈 n∏
k=0

(1+ f (k)Zk),

n∏
k=0

(1+ g(k)Zk)

〉
L2(�)

= lim
n→∞

n∏
k=0

E(1+ f (k)Zk + g(k)Zk + f (k)g(k)Z2
k )

=

∞∏
k=0

(1+ f (k)g(k)).

This completes the proof. 2

REMARK 3.4. From the above theorem and inequality ln(1+ x2)≤ x2, x ∈ R, it
follows that

‖φ( f )‖L2(�) ≤ exp( 1
2‖ f ‖2l2(N)), f ∈ l2(N). (3.5)

We note that the left-hand side of (3.5) can be strictly less than the right-hand side.

THEOREM 3.5. Let Φ be the function on l2(N)× l2(N) defined by

Φ( f, g)= 〈φ( f ), φ(g)〉L2(�), f, g ∈ l2(N). (3.6)

Then Φ is continuous.

PROOF. It follows from (3.3) that

Φ( f, g)=
∞∏

k=0

(1+ f (k)g(k)), f, g ∈ l2(N).

Now let f , g ∈ l2(N) and fn , gn ∈ l2(N), n ≥ 1, be two sequences satisfying

lim
n→∞

‖ fn − f ‖l2(N) = 0, lim
n→∞

‖gn − g‖l2(N) = 0.

We need to show that Φ( fn, gn)→Φ( f, g) as n→∞.
Since

∑
∞

k=0 | f (k)g(k)|<∞, we can take k0 ≥ 1 such that | f (k)g(k)|< 1/4 for
all k ≥ k0. We can also take n0 ≥ 1 such that

c‖ fn − f ‖l2(N) + ‖ f ‖l2(N)‖gn − g‖l2(N) <
1
4 , n ≥ n0,

where c = supn≥1 ‖gn‖l2(N). Thus for all n ≥ n0 and all k ≥ k0,

| fn(k)gn(k)| ≤ α‖ fn − f ‖l2(N) + ‖ f ‖l2(N)‖gn − g‖l2(N) + | f (k)g(k)|<
1
2 .
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It is well known that

|ln(1+ x)− ln(1+ y)| ≤ 2|x − y| for all x, y ∈ [− 1
2 ,+∞).

Thus, for all j ≥ 0,∣∣∣∣ ∞∑
k=k0

ln[1+ f j+n0(k)g j+n0(k)] −
∞∑

k=k0

ln[1+ f (k)g(k)]

∣∣∣∣
≤

∞∑
k=k0

|ln[1+ f j+n0(k)g j+n0(k)] − ln[1+ f (k)g(k)]|

≤ 2
∞∑

k=k0

| f j+n0(k)g j+n0(k)− f (k)g(k)|

≤ 2‖ f j+n0 − f ‖l2(N)‖g j+n0‖l2(N) + 2‖ f ‖l2(N)‖g j+n0 − g‖l2(N).

This implies that

lim
j 7→∞

∞∑
k=k0

ln[1+ f j+n0(k)g j+n0(k)] =
∞∑

k=k0

ln[1+ f (k)g(k)].

On the other hand, for all j ≥ 0, we see that

Φ( f j+n0, g j+n0) =

k0−1∏
k=0

[1+ f j+n0(k)g j+n0(k)]

× exp
{ ∞∑

k=k0

ln[1+ f j+n0(k)g j+n0(k)]

}
.

This, together with the continuity of exponential function, implies that

lim
j 7→∞

Φ( f j+n0, g j+n0) =

k0−1∏
k=0

[1+ f (k)g(k)]

× exp
{ ∞∑

k=k0

ln[1+ f (k)g(k)]

}
=Φ( f, g).

Thus Φ( fn, gn)→Φ( f, g) as n→∞. This completes the proof. 2

THEOREM 3.6. The coherent mapping φ : l2(N) 7→ L2(�) is continuous.

PROOF. Let f ∈ l2(N) and fn ∈ l2(N), n ≥ 1, be a sequence converging to f in the
norm. Then

‖φ( fn)− φ( f )‖2L2(�)
=Φ( fn, fn)− 2Φ( fn, f )+Φ( f, f ) n ≥ 1.

Thus by Theorem 3.5 we get limn→∞ ‖φ( fn)− φ( f )‖L2(�) = 0. This verifies the
continuity of φ. 2
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Recall that if f ∈ l2(N), then E f ∈ l2(0) (see (1.3) for the definition of E f ). The
next theorem shows the relationship between φ( f ) and E f .

THEOREM 3.7. Let f ∈ l2(N). Then J(E f )= φ( f ), where J is the full Wiener integral
operator.

PROOF. For each n ≥ 0,

n∏
k=0

(1+ f (k)Zk)=
∑
σ∈0n]

E f (σ )Zσ .

Then, by letting n→∞, we get

∞∏
k=0

(1+ f (k)Zk)=
∑
σ∈0

E f (σ )Zσ ,

that is, φ( f )= J(E f ). 2

For S ⊂ N with S 6= ∅, we define FS as the σ -field generated by (Zk)k∈S:

FS = σ(Zk; k ∈ S). (3.7)

As usual, E[·|FS] denotes the conditional expectation given FS . The next theorem
shows an interesting link between the coherent mapping and the conditional
expectation operator.

THEOREM 3.8. Let S ⊂ N with S 6= ∅. Then

E[φ( f )|FS] = φ( f 1S), f ∈ l2(N), (3.8)

where 1S stands for the indicator of S.

PROOF. For f ∈ l2(N), we can show that

φ( f )=
∏
k∈S

(1+ f (k)Zk)
∏

k∈N\S
(1+ f (k)Zk),

which, together with the independence of the sequence (Zk)k∈N, implies (3.8). 2

4. Coherent states

In this section, we will show the totality of the set {φ( f ) | f ∈ l2(N)} in L2(�) and
other related results. We first make some preparations. Let F be the symmetric Fock
space over l2(N), namely

F=
∞⊕

n=0

l2
s (N

n), (4.1)

where l2
s (N0)= R and l2

s (Nn)= {F ∈ l2(Nn) | F is symmetric} for n ≥ 1. It is well
known that {e( f ) | f ∈ l2(N)} is a total subset of F, where e( f ) is the exponential
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vector defined by

e( f )=
∞⊕

n=0

1
√

n!
f ⊗n. (4.2)

See, for example, [2] for general theory of Fock space.

DEFINITION 4.1. For f ∈ l2(N), we call φ( f ) the coherent state corresponding to f ,
where φ is the coherent mapping (see Definition 3.2).

THEOREM 4.2. The coherent state set {φ( f ) | f ∈ l2(N)} is total in L2(�).

PROOF. Let ξ ∈ {φ( f ) | f ∈ l2(N)}⊥. Then there exists F ∈ l2(0) such that ξ =
J(F), where J is the full Wiener integral operator (see (2.6) for its definition).

Define F̃0 = F(∅) and for n ≥ 1 define a function F̃n on Nn as

F̃n(k1, k2, . . . , kn)=


1
√

n!
F({k1, k2, . . . , kn}), (k1, k2, . . . , kn) ∈ 4n;

0, (k1, k2, . . . , kn) ∈ Nn
\ 4n,

where 4n = {(k1, k2, . . . , kn) ∈ Nn
| ki 6= k j for i 6= j , 1≤ i, j ≤ n}. Then we have

F̃ =
∞⊕

n=0

F̃n ∈ F.

On the other hand, for each f ∈ l2(N), in view of J(E f )= φ( f ) and J(F)= ξ ,
we get

〈e( f ), F̃〉F = 〈E f , F〉l2(0) = 〈φ( f ), ξ 〉L2(�) = 0.

This, together with the totality of {e( f ) | f ∈ l2(N)} in F, yields F̃ = 0, that is,

F̃n = 0, n ≥ 0,

which implies that F = 0. Thus ξ = J(F)= 0. This completes the proof. 2

As an immediate consequence of Theorems 3.6 and 4.2, we have the next useful
corollary.

COROLLARY 4.3. If D is a dense subset of l2(N), then the set {φ( f ) | f ∈ D}
remains total in L2(�).

Two functions f , g ∈ l2(N) are called strongly orthogonal if f (k)g(k)= 0 for all
k ∈ N.

THEOREM 4.4. If f , g ∈ l2(N) are strongly orthogonal, then

φ( f + g)= φ( f )φ(g). (4.3)
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PROOF. For each n ≥ 0, by the strongly orthogonal property of f and g,

n∏
k=0

[1+ ( f (k)+ g(k))Zk] =

n∏
k=0

(1+ f (k)Zk)

n∏
k=0

(1+ g(k)Zk).

Note that the left-hand side of this equality converges to φ( f + g) in L2(�), while
the right-hand side converges to φ( f )φ(g) in L1(�). Thus, by letting n→∞, we
get (4.3). 2

For k ∈ N, we simply write 1k] = 1[0,k] and, similarly, 1[k = 1[k,+∞), which are
indicators of [0, k] and [k,+∞), respectively. If S1, S2 ⊂ L2(�) are nonempty, then
we define their algebraic product S1S2 as

S1S2 = {ξη | ξ ∈ S1, η ∈ S2}, (4.4)

which is a subset of L1(�) in general. However, we have the next result, which follows
immediately from Theorem 4.4.

COROLLARY 4.5. Let D = {φ( f ) | f ∈ l2(N)} be the set of all coherent states. Then,
for each k ∈ N,

D =Dk]D[k+1, (4.5)

where Dk] = {φ( f 1k]) | f ∈ l2(N)} and D[k+1 = {φ( f 1[k+1) | f ∈ l2(N)}.

THEOREM 4.6. Let S ⊂ N with S 6= ∅. Then {φ( f 1S) | f ∈ l2(N)} is a total subset of
L2(�, FS, P), where 1S stands for the indicator of S and FS is defined by (3.7).

PROOF. By (3.8), we immediately find that

{φ( f 1S) | f ∈ l2(N)} ⊂ L2(�, FS, P).

Now let ξ ∈ L2(�, FS, P) be such that ξ ⊥ {φ( f 1S) | f ∈ l2(N)}. Then for each
f ∈ l2(N), in view of ξ = E[ξ |FS],

〈ξ, φ( f )〉 = 〈E[ξ |FS], φ( f )〉 = 〈ξ, E[φ( f )|FS]〉 = 〈ξ, φ( f 1S)〉 = 0,

where 〈·, ·〉means 〈·, ·〉L2(�). Thus, by the totality of {φ( f ) | f ∈ l2(N)} in L2(�), we
know that ξ = 0. 2

5. Application

In this final section, we show an application of the coherent states to calculus of
quantum Bernoulli noise [4]. We first make some preparations. For k ∈ N, we write
for brevity

Hk] = L2(�, Fk], P), H[k = L2(�, F[k, P), (5.1)

where Fk] = Fk (see (2.4) for the definition) and F[k = σ(Z j ; k ≤ j <∞). It is
known [4] that the algebraic product Hk]H[k+1 is a dense subset of L2(�) for
each k ∈ N. According to Theorem 4.6, if f ∈ l2(N) then φ( f 1k]) ∈Hk] and
φ( f 1[k) ∈H[k .
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By an operator process we mean a sequence of bounded linear operators on L2(�).
An operator process L = (Lk)k∈N is called semi-adapted if, for each k ∈ N, Lk leaves
Hk] invariant. A semi-adapted operator process L = (Lk)k∈N is called adapted if, for
each k ∈ N, Lk further satisfies

Lk(ξη)= (Lkξ)η, ξ ∈Hk], η ∈H[k+1. (5.2)

In [4], the authors characterized adapted operator processes in terms of quantum
Bernoulli noise. Here, as an application of the coherent states, we present another
characterization of adapted operator processes.

THEOREM 5.1. A semi-adapted operator process L = (Lk)k∈N is adapted if only if,
for each k ∈ N, Lk satisfies

Lkφ( f )= [Lkφ( f 1k])]φ( f 1[k+1), f ∈ l2(N), (5.3)

where Pk stands for the orthogonal projection onto Hk].

PROOF. Obviously, (5.2) implies (5.3). Below we show that (5.3) also implies (5.2).
Let Dk] = {φ( f 1k]) | f ∈ l2(N)} and D[k+1 = {φ( f 1[k+1) | f ∈ l2(N)}. Then, by

Theorem 4.6, we know that Dk] and D[k+1 are total in Hk] and H[k+1, respectively.
Let ξ ∈Hk] and η ∈H[k+1 be such that

ξ =

m∑
i=1

siφ( fi 1k]), η =

n∑
j=1

t jφ(g j 1[k+1),

where si , t j are real numbers and fi , g j ∈ l2(N). Then it follows from Theorem 4.4
that

ξη =

m∑
i=1

n∑
j=1

si t jφ( fi 1k] + g j 1[k+1).

Thus, by (5.3),

Lk(ξη) =

m∑
i=1

n∑
j=1

si t j [Lkφ( fi 1k])]φ(g j 1[k+1)

=

m∑
i=1

si Lkφ( fi 1k])

n∑
j=1

t jφ(g j 1[k+1)

= (Lkξ)η.

For general ξ ∈Hk] and η ∈H[k+1, by using the usual method of approximation, we
can also get Lk(ξη)= (Lkξ)η. This completes the proof. 2

References
[1] M. Émery, ‘A discrete approach to the chaotic representation property’, in: Séminaire de
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