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Maps on Quantum States in C∗-algebras
Preserving von Neumann Entropy or
Schatten p-norm of Convex Combinations

Marcell Gaál

Abstract. Very recently, Karder and Petek completely describedmaps on densitymatrices (positive
semideûnitematriceswith unit trace) preserving certain entropy-like convex functionals of any con-
vex combination. As a result, maps could be characterized that preserve von Neumann entropy or
Schatten p-normof any convex combination of quantum states (whosemathematical representatives
are the density matrices). In this note we consider these latter two problems on the set of invertible
density operators, in a much more general setting, on the set of positive invertible elements with
unit trace in a C∗-algebra.

1 Introduction and Statements of the Results

In [8], Karder and Petek completely described maps on density matrices preserving
certain entropy-like convex functionals of any convex combination. More precisely,
for a given strictly convex function f ∶ [0, 1] → R and density matrix A, they intro-
duced the numerical quantity

F(A) ∶=
n

∑
k=1
f (λk)

where the numbers λk-s are the eigenvalues of A counted with multiplicity, and de-
scribed the structure of those transformations on density matrices satisfying

F( tA+ (1 − t)B) = F( tϕ(A) + (1 − t)ϕ(B))
for all t ∈ [0, 1] and density matrices A, B. By particular choices of the function f ,
maps could be characterized that preserve vonNeumann entropy or Schatten p-norm
of any convex combination of quantum states. Driven by the aforementioned result, in
this note we consider these latter two problems in the setting of C∗-algebras carrying
faithful normalized traces, on the set of positive invertible elements with unit trace.

To formulate our results, we need a short summary of some notation, basic con-
cepts and facts, which is given in the next paragraphs.

_roughout the sequel, A denotes a unital complex C∗-algebra with unit e. _e
symbolsAsa ,A+ ,A+

−1 stand for the space of self-adjoint elements, the cone of positive
elements, and the cone of positive invertible elements inA, respectively. Furthermore,
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we shall assume that A admits at least one faithful normalized trace τ, by which we
mean a linear functional τ∶A→ C satisfying
(a) τ(ab) = τ(ba),
(b) τ(a∗a) ≥ 0,
(c) τ(a∗a) = 0 if and only if a = 0,
(d) τ(e) = 1
for all a, b ∈ A. Fundamental examples for such algebras are the irrational rotational
algebras (or, in anotherwords, noncommutative tori) andûnite vonNeumann factors.

In the operator algebraic framework of quantum mechanics, quantum states are
o�en identiûed with positive elements with unit trace [4]. As this deûnition depends
on the choice of τ, the set

Dτ ∶= {a ∈ A+ ∶ τ(a) = 1}
is called the τ-density space ofA. _e set of invertible elements inDτ will be denoted
byMτ , that is,

Mτ ∶= {a ∈ A+
−1 ∶ τ(a) = 1}.

In certain applications in quantum theory, especiallywhen diòerential geometric con-
siderations are made and corresponding analytic tools are applied, it is very natural
to deal with Mτ instead the wholeDτ (see e.g., [6] and the references therein).

Let η(x) ∶= x log x be the so-called standard entropy function. Note that if a faith-
ful normalized trace τ exists on A, then the von Neumann entropy and the Schatten
p-norm of an element a ∈ A could be deûned as

S(a) ∶= −τ(η(a)) and ∥a∥p ∶= (τ(∣a∣p))1/p ,

respectively, without any diõculty. We remark that ifA is such an algebra, then ∥ ⋅ ∥p
is indeed a norm on A for any number p ≥ 1; see e.g., [3]. Moreover, we recall that
a linear bijection J of A is called a Jordan ∗-isomorphism if it satisûes J(a2) = J(a)2

and J(a∗) = J(a)∗ for any a ∈ A.
Our main result reads as follows.

_eorem 1.1 For a C∗-algebraAwith faithful normalized trace τ and a bijectivemap
ϕ∶Mτ →Mτ , the following statements are equivalent:
(i) ϕ preserves the von Neumann entropy of any convex combination, that is, it satis-

ûes

S( ta + (1 − t)b) = S( tϕ(a) + (1 − t)ϕ(b)) ( a, b ∈Mτ , t ∈ [0, 1]) .
(ii) For a ûxed number p > 1, ϕ preserves the Schatten p-norm of any convex combi-

nation; that is, we have

∥ta + (1 − t)b∥p = ∥tϕ(a) + (1 − t)ϕ(b)∥p (a, b ∈Mτ , t ∈ [0, 1]).
(iii) _ere exists a trace preserving Jordan ∗-isomorphism J ofA such that

ϕ(a) = J(a) (a ∈Mτ).

Jordan ∗-isomorphisms are quite general, but somewhat more information can be
elicited under certain restrictions on the underlying C∗-algebra. Recall that a von
Neumann algebra with center {λe ∶ λ ∈ C} is called a factor.
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Corollary 1.2 Let A /= {λe ∶ λ ∈ C} be a ûnite von Neumann factor.
(i) A unique faithful normalized trace τ exists on A.
(ii) _e bijective transformation ϕ∶Mτ →Mτ satisûes

S( ta + (1 − t)b) = S( tϕ(a) + (1 − t)ϕ(b)) (a, b ∈Mτ)
or

∥ta + (1 − t)b∥p = ∥tϕ(a) + (1 − t)ϕ(b)∥p (a, b ∈Mτ)

for all t ∈ [0, 1] if and only if ϕ extends to a trace preserving map ϕ̃ on A that is
either an algebra ∗-isomorphism or an algebra ∗-anti-isomorphism.

In the classical setting ofmatrix algebras, the following known result (cf. [10,_e-
orem 1]) is recovered.

Corollary 1.3 Let A be the matrix algebra of all n by n complex matrices and let
M ⊆ A be the set of invertible density matrices. _e bijectivemap ϕ∶M→M satisûes

S(tA+ (1 − t)B) = S(tϕ(A) + (1 − t)ϕ(B)) (A, B ∈M)
for all t ∈ [0, 1] if and only if there exists a unitary matrix U ∈ A such that ϕ is of one
of the following forms:
(i) ϕ(A) = UAU∗ (A ∈M);
(ii) ϕ(A) = UAtrU∗ (A ∈M).

Here, the symbol tr refers for the transposition. _e following result is new in the
matrix algebra setting as well.

Corollary 1.4 Keeping the notation in Corollary 1.3, the bijection ϕ∶M→M satisûes

∥tA+ (1 − t)B∥p = ∥tϕ(A) + (1 − t)ϕ(B)∥p (A, B ∈M)
for all t ∈ [0, 1] if and only if there exists a unitaryU ∈ A such that ϕ is of either of form
(i) or form (ii).

2 Proofs

In the proofs, ourmajor tool is the following formula,which is known as theDixmier–
Kadison–Fuglede diòerential rule [2, p. 119, Lemma 3].

Lemma 2.1 LetA be a C∗-algebrawith a normalized trace τ and assume that f ∶Ω →
C is a holomorphic function on an open set Ω ⊆ C. Let t ↦ ht (t ∈ ]0, 1[) be a
continuously diòerentiable path of elements in Asa such that ⋃t∈]0,1[ σ(ht) ⊆ Ω. _en
themap t ↦ f (ht) (t ∈ ]0, 1[) is diòerentiable and

d
dt

τ( f (ht)) = τ( f ′(ht)
dht

dt
) (t ∈ ]0, 1[).

We remark that Lemma 2.1 was originally formulated for von Neumann algebras
but a closer look at its proof shows that the statement remains true for C∗-algebras
equipped with a normalized trace.
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We also need the following observation, which is a part of [9, Lemma 6].

Lemma 2.2 Assume thatA is a C∗-algebra that possesses a faithful normalized trace
τ. For any given a ∈ A, we have τ(ax) = 0 for all x ∈ A+

−1 if and only if a = 0.

Now we are in a position to present the proof of our ûrst result.

Proof of_eorem 1.1 _e condition in the theorem implies that

(2.1) τ(η(ta + (1 − t)b)) = τ(η(tϕ(a) + (1 − t)ϕ(b))) (a, b ∈Mτ)
holds for all t ∈ [0, 1]. Diòerentiating both sides of (2.1) at t = 0+ and an application
of Lemma 2.1 yield that

τ((log b + e)(a − b)) = τ(( log ϕ(b) + e)(ϕ(a) − ϕ(b))) (a, b ∈Mτ).
Rearranging this equality and taking into account that τ(a) = τ(b) = τ(ϕ(a)) =
τ(ϕ(b)) = 1, we get

τ((log b)a)−τ((log b)b) = τ((log ϕ(b))ϕ(a))−τ((log ϕ(b))ϕ(b)) (a, b ∈Mτ).
We also obtain from (2.1) and by taking t = 0 that

τ(η(b)) = τ((log b)b) = τ((log ϕ(b))ϕ(b)) (a, b ∈Mτ),
and thus

τ((log b)a) = τ((log ϕ(b))ϕ(a)) (a, b ∈Mτ).
Deûne ψ∶A+

−1 → A+
−1 by the formula

ψ(a) ∶= τ(a)ϕ( a
τ(a)) .

We assert that the transformation ψ is a bijection. To verify this, assume ûrst that
ψ(a) = ψ(b) holds. As ϕ maps into Mτ , ψ preserves the trace. Hence, τ(a) =
τ(ψ(a)) = τ(ψ(b)) = τ(b) implying that ϕ(a/τ(a)) = ϕ(b/τ(b)). Now the injec-
tivity of ψ follows from that of ϕ. As for the surjectivity, let y ∶= τ(a)ϕ−1(a/(τ(a)))
with some a ∈ A+

−1. _en we have ψ(y) = a, which veriûes our claim.
We proceed as follows. For any a, b ∈ A+

−1, we have

(2.2) τ([ log ( b
τ(b))]

a
τ(a)) = τ([ log ( ψ(b)

τ(b) )]
ψ(a)
τ(a) ) .

Multiplying both sides of (2.2) by τ(a) and taking into account that log(c/τ(c)) =
log c − (log τ(c))e, one ûnds that

τ((log b)a) − ( log τ(b)) τ(a) = τ((logψ(b))ψ(a))
− ( log τ(b)) τ(ψ(a)) (a, b ∈ A+

−1).
_e aforementioned trace preserving property of ψ yields that

(2.3) τ((log b)a) = τ((logψ(b))ψ(a)) (a, b ∈ A+
−1)

is also satisûed.
As log b runs through the whole Asa ⊇ A+

−1, an application of Lemma 2.2 shows
that the transformation ψ is additive. _e structure of additive bijections on A+

−1
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is described in [1]. According to [1, Lemma 8] there exist a Jordan ∗-isomorphism
J∶A→ A and an invertible element c ∈ A+

−1 such that

ψ(a) = cJ(a)c (a ∈ A+
−1).

From (2.3), we infer that

τ((log b)a) = τ((log cJ(b)c)cJ(a)c)
= τ( c(log cJ(b)c)cJ(a)) (a, b ∈ A+

−1).
(2.4)

As any Jordan ∗-isomorphism sends the unit to itself, substituting b = e into (2.4)
yields that

0 = τ( c(log c2)cJ(a)) = 2τ( c(log c)cJ(a)) (a ∈ A+
−1).

By Lemma 2.2, again, we obtain that c(log c)c = 0. Hence, log c = 0 or, equivalently,
c = e. _is gives us the necessity part of the statement in the theorem.
As for the suõciency, it can be checked straightforwardly by referring to the fact

that Jordan ∗-isomorphisms are compatible with the continuous function calculus in
the sense that J( f (a)) = f (J(a)) holds true for any self-adjoint element a ∈ Asa ,
and complex-valued continuous function f deûned on the spectrum of a. (_is as-
sertion follows from the well-known fact that a Jordan ∗-homomorphism J respects
the Jordan triple product (a, b) ↦ aba (see e.g., [5, Lemma 2]) from which it can be
seen that J is compatible with the power operations whenever J is unital, and from
polynomial approximation of continuous functions.) _e proof is complete.

Proof of Corollary 1.2 (i) is well known (cf. [7, 8.2.8. _eorem]). As for (ii), we re-
call that an algebra is called primewhenever, for any a, b ∈ A, the equality aAb = {0}
implies that a = 0 or b = 0. By an old result ofHerstein [11, 6.3.7_eorem], any Jordan
∗-homomorphism onto a prime ring is either multiplicative or anti-multiplicative.
_us Jordan ∗-isomorphisms onto ûnite von Neumann algebras are either algebra ∗-
isomorphisms or algebra ∗-anti-isomorphisms, because any von Neumann factor is
a prime algebra. _e result now follows from _eorem 1.1.

Proof of Corollaries 1.3 and 1.4 It is apparent that the matrix algebra M is a ûnite
von Neumann factor. Every algebra ∗-isomorphism on M is implemented by a uni-
tary similarity transformation, and every algebra ∗-antiisomorphism can be obtained
as a unitary similarity transformation composed by transposition, whence the re-
sult.

Acknowledgements _e author is grateful to Tatjana Petek for sharing the manu-
script version of [8] and to Douglas Farenick for the reference [3]. _e author also
thanks Lajos Molnár and the referee for helpful comments and suggestions.

References

[1] R. Beneduci and L. Molnár, On the standard K-loop structure of positive invertible elements in a
C∗-algebra. J. Math. Anal. Appl. 420(2014), 551–562. http://dx.doi.org/10.1016/j.jmaa.2014.05.009

[2] J. Dixmier, Von Neumann algebras. North-HollandMathematical Library, 27, North-Holland
Publishing Company, Amsterdam-New York, 1981.

[3] T. Fack and H. Kosaki, Generalized s-numbers of τ-measurable operators. Paciûc J. Math.
123(1986), 269–300. http://dx.doi.org/10.2140/pjm.1986.123.269

79

https://doi.org/10.4153/CMB-2018-011-3 Published online by Cambridge University Press

http://dx.doi.org/10.1016/j.jmaa.2014.05.009
http://dx.doi.org/10.2140/pjm.1986.123.269
https://doi.org/10.4153/CMB-2018-011-3


M. Gaál

[4] D. Farenick, S. Jaques, andM. Rahaman,_e ûdelity of density operators in an operator-algebraic
framework. J. Math. Phys. 57(2016), 102202. http://dx.doi.org/10.1063/1.4965876

[5] I. N. Herstein, Jordan homomorphisms. Trans. Amer. Math. Soc. 81(1956), 331–341.
http://dx.doi.org/10.1090/S0002-9947-1956-0076751-6

[6] A. Jenčová, Geodesic distances on density matrices, J. Math. Phys. 45(2004), 1787–1794.
http://dx.doi.org/10.1063/1.1689000

[7] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras. Vol II., Pure
and AppliedMathematics, 100, Academic Press, Orlando, FL, 1986.

[8] M. Karder and T. Petek,Maps on quaternion states preserving generalized entropy of convex
combination. Linear Algebra Appl. 532(2017), 86–98. http://dx.doi.org/10.1016/j.laa.2017.06.003

[9] L. Molnár,Maps on the positive deûnite cone of a C*-algebra preserving certain quasi-entropies. J.
Math. Anal. Appl. 447(2017), 206–221. http://dx.doi.org/10.1016/j.jmaa.2016.09.067

[10] L. Molnár and G. Nagy, Transformations on density operators that leave the Holevo bound
invariant. Int. J. _eor. Phys. 53(2014), 3273–3278. http://dx.doi.org/10.1007/s10773-013-1638-8

[11] T. W. Palmer, Banach algebras and the general theory of ∗-algebras. Vol. I. Encyclopedia of
Mathematics and its Applications, 49, Cambridge University Press, Cambridge, 1994.
http://dx.doi.org/10.1017/CBO9781107325777

Functional Analysis Research Group, University of Szeged, H-6720 Szeged, Hungary
e-mail: marcell.gaal.91@gmail.com

80

https://doi.org/10.4153/CMB-2018-011-3 Published online by Cambridge University Press

http://dx.doi.org/10.1063/1.4965876
http://dx.doi.org/10.1090/S0002-9947-1956-0076751-6
http://dx.doi.org/10.1063/1.1689000
http://dx.doi.org/10.1016/j.laa.2017.06.003
http://dx.doi.org/10.1016/j.jmaa.2016.09.067
http://dx.doi.org/10.1007/s10773-013-1638-8
http://dx.doi.org/10.1017/CBO9781107325777
mailto:marcell.gaal.91@gmail.com
https://doi.org/10.4153/CMB-2018-011-3



