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A Characterization of Bergman Spaces on
the Unit Ball of C

n. II

Songxiao Li, Hasi Wulan, and Kehe Zhu

Abstract. It has been shown that a holomorphic function f in the unit ball Bn of Cn belongs to the

weighted Bergman space A
p
α, p > n + 1 + α, if and only if the function | f (z) − f (w)|/|1 − 〈z, w〉| is

in Lp(Bn × Bn, dvβ × dvβ), where β = (p + α − n − 1)/2 and dvβ(z) = (1 − |z|2)β dv(z). In this

paper we consider the range 0 < p < n + 1 + α and show that in this case, f ∈ A
p
α (i) if and only if

the function | f (z) − f (w)|/|1 − 〈z, w〉| is in Lp(Bn × Bn, dvα × dvα), (ii) if and only if the function

| f (z)− f (w)|/|z−w| is in Lp(Bn ×Bn, dvα×dvα). We think the revealed difference in the weights for

the double integrals between the cases 0 < p < n + 1 + α and p > n + 1 + α is particularly interesting.

1 Introduction

Let Bn be the open unit ball in C
n and dv be the normalized volume measure on Bn.

For any α > −1 we introduce the weighted volume measure

dvα(z) = cα(1 − |z|2)α dv(z),

where cα is a positive constant such that vα(Bn) = 1 again.

For 0 < p < ∞ and α > −1 we use the notation A
p
α = H(Bn) ∩ Lp(Bn, dvα)

to denote the weighted Bergman spaces on Bn, where H(Bn) is the space of all holo-

morphic functions in Bn.

It was shown in [2] that for p > n + 1 + α, we have f ∈ A
p
α if and only if

∫

Bn

∫

Bn

| f (z) − f (w)|p

|1 − 〈z, w〉|p
dvβ(z) dvβ(w) < ∞,

where β = (p + α− n − 1)/2. An example in [3] shows that this is no longer true in

general when p = n + 1 + α.

The purpose of this article is to examine the remaining case 0 < p < n + 1 + α.

Our main result is the following.

Theorem 1.1 Suppose α > −1, 0 < p < α + n + 1, and f is holomorphic in Bn.

Then the following conditions are equivalent.

(i) f ∈ A
p
α(Bn).
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(ii) The double integral

∫

Bn

∫

Bn

| f (z) − f (w)|p

|z − w|p
dvα(z) dvα(w)

converges.

(iii) The double integral

∫

Bn

∫

Bn

| f (z) − f (w)|p

|1 − 〈z, w〉|p
dvα(z) dvα(w)

converges.

An interesting special case is obtained when n = 1, α > 0, and p = 2. In this

case, the unit ball Bn becomes the unit disk D, and membership in the Bergman

spaces A2
α(D) and A2

α(D
2) can be described by Taylor coefficients. As a consequence,

we see that for α > 0,

k
∑

i=1

1

iα+1(k + 1 − i)α+1
∼

1

kα+1

as k → ∞. This does not seem to be obvious. Once again, this is not true when

α = 0.

2 Preliminary Estimates

We begin with an identity concerning Möbius maps on the unit ball and derive some

useful inequalities. This will play an important role in the proof of Theorem 1.1.

Lemma 2.1 For all z and w in Bn we have

(2.1) |z − ϕz(w)|2 =

(1 − |z|2)(|w|2 − |〈z, w〉|2)

|1 − 〈z, w〉|2
.

Consequently,

(2.2) |z − ϕz(w)| ≥
|w|(1 − |z|2)

|1 − 〈z, w〉|
,

and

(2.3) |z − ϕz(w)|2 ≤
2(1 − |z|2)

|1 − 〈z, w〉|
.
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Proof To prove the identity in (2.1), we use [5, Lemmas 1.2 and 1.3] along with the

fact that z = ϕz(0). Let S = |z − ϕz(w)|2. Then

S = |z|2 + |ϕz(w)|2 − 〈z, ϕz(w)〉 − 〈ϕz(w), z〉

= |z|2 + |ϕz(w)|2 −
(

1 −
1 − |z|2

1 − 〈z, w〉

)

−
(

1 −
1 − |z|2

1 − 〈w, z〉

)

= −(1 − |z|2) − (1 − |ϕz(w)|2) +
1 − |z|2

1 − 〈z, w〉
+

1 − |z|2

1 − 〈w, z〉

=

1 − |z|2

1 − 〈z, w〉
+

1 − |z|2

1 − 〈w, z〉
− (1 − |z|2) −

(1 − |z|2)(1 − |w|2)

|1 − 〈z, w〉|2

= (1 − |z|2)
[ 1

|1 − 〈z, w〉|2
−

∣

∣

∣
1 −

1

1 − 〈z, w〉

∣

∣

∣

2

−
1 − |w|2

|1 − 〈z, w〉|2

]

=

(1 − |z|2)(|w|2 − |〈z, w〉|2)

|1 − 〈z, w〉|2
.

This proves the identity in (2.1). The inequality in (2.2) follows from (2.1) and the

fact that |〈z, w〉| ≤ |z||w|. The inequality in (2.3) follows from (2.1) and the following

estimates:

|w|2 − |〈z, w〉|2 ≤ 1 − |〈z, w〉|2

= (1 + |〈z, w〉|)(1 − |〈z, w〉|)

≤ 2|1 − 〈z, w〉|.

This completes the proof of the lemma.

Note that Lemma 2.1 appears as Exercise 3.18 in [5]. We believe it never appeared

elsewhere before, so a full proof is given here.

Lemma 2.2 There exists a positive constant C, independent of f , such that

∫

Bn

| f (w)|p

|w|p
dvα(w) ≤ C

∫

Bn

| f (w)|p dvα(w)

for all f ∈ H(Bn) with f (0) = 0.

Proof This is well known. See [4, Lemma 4.26] in the one-dimensional case. The

higher dimensional case is proved in a similar way.

Lemma 2.3 For any r > 0 and z ∈ Bn let D(z, r) be the Bergman metric ball at z.

(i) There exists a positive constant C (dependent on r, p, and α, but not on f and z)

such that

| f (z)|p ≤
C

(1 − |z|2)n+1+α

∫

D(z,r)

| f (w)|p dvα(w)

for all f ∈ H(Bn) and z ∈ Bn.
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(ii) There exists a positive constant C (dependent on r but not on z and w) such that

C−1(1 − |w|2) ≤ |1 − 〈z, w〉| ≤ C(1 − |z|2)

for all z ∈ Bn and w ∈ D(z, r).

Proof This is also well known. See [5, Lemma 2.24], for example.

Lemma 2.4 Suppose α > −1 and t < 0. Then there exists a positive constant C such

that
∫

Bn

dvα(w)

|1 − 〈z, w〉|n+1+α+t
≤ C

for all z ∈ Bn.

Proof This is part of Theorem 1.12 in [5].

3 Main Result

We now proceed to prove Theorem 1.1, the main result of the paper. This will be

accomplished by the following three lemmas.

Lemma 3.1 There exists a positive constant C such that I( f ) ≤ C J( f ) for all f ∈
H(Bn), where

I( f ) =

∫

Bn

∫

Bn

| f (z) − f (w)|p

|z − w|p
dvα(z) dvα(w),

and

J( f ) =

∫

Bn

∫

Bn

| f (z) − f (w)|p

|1 − 〈z, w〉|p
dvα(z) dvα(w).

Proof By Fubini’s theorem and a change of variables (see [5, Proposition 1.13]),

I( f ) =

∫

Bn

dvα(z)

∫

Bn

| f (z) − f ◦ ϕz(w)|p

|z − ϕz(w)|p

(1 − |z|2)n+1+α

|1 − 〈z, w〉|2(n+1+α)
dvα(w).

By (2.2), there exists a positive constant C such that I( f ) is less than or equal to

C

∫

Bn

(1 − |z|2)n+1+α−p dvα(z)

∫

Bn

| f (z) − f ◦ ϕz(w)|p

|w|p|1 − 〈z, w〉|2(n+1+α)−p
dvα(w).

By Lemma 2.2, there exists another constant C > 0 such that I( f ) is less than or equal

to

C

∫

Bn

(1 − |z|2)n+1+α−p dvα(z)

∫

Bn

| f (z) − f ◦ ϕz(w)|p

|1 − 〈z, w〉|2(n+1+α)−p
dvα(w).

Another change of variables then gives

I( f ) ≤ C

∫

Bn

∫

Bn

| f (z) − f (w)|p

|1 − 〈z, w〉|p
dvα(z) dvα(w) = C J( f ).

This proves the lemma.
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Lemma 3.2 There exists a positive constant C such that

∫

Bn

| f (z) − f (0)|p dvα(z) ≤ C

∫

Bn

∫

Bn

| f (z) − f (w)|p

|z − w|p
dvα(z) dvα(w)

for all f ∈ H(Bn).

Proof We use I( f ) again to denote the integral on the right-hand side of the inequal-

ity to be proved. And again we make a change of variables to obtain

I( f ) =

∫

Bn

dvα(z)

∫

Bn

| f (z) − f ◦ ϕz(w)|p

|z − ϕz(w)|p

(1 − |z|2)n+1+α

|1 − 〈z, w〉|2(n+1+α)
dvα(w).

By the inequality in (2.3) of Lemma 2.1, there exists a positive constant C such that

I( f ) is greater than or equal to

C

∫

Bn

dvα(z)

∫

Bn

| f (z) − f ◦ ϕz(w)|p

(1−|z|2)p/2

|1−〈z,w〉|p/2

(1 − |z|2)n+1+α

|1 − 〈z, w〉|2(n+1+α)
dvα(w).

If we let D(z, r) denote the Bergman metric ball, then I( f ) is greater than or equal to

C

∫

Bn

dvα(z)

∫

D(z,r)

| f (z) − f ◦ ϕz(w)|p (1 − |z|2)n+1+α−p/2

|1 − 〈z, w〉|2(n+1+α)−p/2
dvα(w).

This together with Lemma 2.3(ii) shows that there is another positive constant C ,

independent of f and z, such that

I( f ) ≥ C

∫

Bn

dvα(z)

∫

D(z,r)

| f (z) − f ◦ ϕz(w)|p

(1 − |z|2)n+1+α
dvα(w).

Combining this with Lemma 2.3(i), we obtain yet another positive constant C such

that

I( f ) ≥ C

∫

Bn

| f (z) − f ◦ ϕz(z)|p dvα(z),

or

I ≥ C

∫

Bn

| f (z) − f (0)|p dvα(z).

This proves the lemma.

Lemma 3.3 If 0 < p < n + 1 + α and f ∈ A
p
α(Bn), then the double integral

∫

Bn

∫

Bn

| f (z) − f (w)|p

|z − w|p
dvα(z) dvα(w)

converges.
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Proof Once again we use I( f ) to denote the double integral above. By the remark at

the end of [3], there exists a positive continuous function g ∈ Lp(Bn, dvα) such that

| f (z) − f (w)| ≤ d(z, w)(g(z) + g(w)), z, w ∈ Bn,

where

d(z, w) =

|z − w|

|1 − 〈z, w〉|
.

It follows that

I( f ) ≤

∫

Bn

∫

Bn

( g(z) + g(w)

|1 − 〈z, w〉|

) p

dvα(z) dvα(w).

Choose a positive constant C such that (x + y)p ≤ C(xp + y p) for all positive values

x and y. Then

I( f ) ≤ C

∫

Bn

∫

Bn

g(z)p + g(w)p

|1 − 〈z, w〉|p
dvα(z) dvα(w).

This along with Fubini’s theorem gives

I( f ) ≤ 2C

∫

Bn

g(z)p dvα(z)

∫

Bn

dvα(w)

|1 − 〈z, w〉|p
.

Since p < n + 1 +α, it follows from Lemma 2.4 that there is another positive constant

C such that

I( f ) ≤ C

∫

Bn

g(z)p dvα(z) < ∞.

This proves the lemma.

Note that Lemma 3.3 above was obtained in [3] in the one-dimensional case.

Now Lemmas 3.2and 3.3 prove the equivalence of conditions (i) and (ii) in Theo-

rem 1.1. Lemma 3.1 shows that condition (iii) implies condition (ii). That condition

(i) implies condition (iii) follows from the elementary inequality | f (z) − f (w)|p ≤
C(| f (z)|p + | f (w)|p) and the proof of Lemma 3.3. This completes the proof of The-

orem 1.1. We can slightly strengthen Theorem 1.1 as follows.

Corollary 3.4 Fix α > −1 and 0 < p < n + 1 + α. For any holomorphic function f

in Bn let

‖ f ‖
p
1 =

∫

Bn

| f (z)|p dvα(z),

‖ f ‖
p
2 = | f (0)|p +

∫

Bn

∫

Bn

| f (z) − f (w)|p

|1 − 〈z, w〉|p
dvα(z) dvα(w),

‖ f ‖
p
3 = | f (0)|p +

∫

Bn

∫

Bn

| f (z) − f (w)|p

|z − w|p
dvα(z) dvα(w).
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Then there exists a positive constant C such that

C−1‖ f ‖k ≤ ‖ f ‖l ≤ C‖ f ‖k, 1 ≤ l ≤ 3, 1 ≤ k ≤ 3,

for all f ∈ H(Bn).

Proof This follows from Theorem 1.1 and the open mapping theorem.
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