SHORT PAPER

A note on the theory of artificial selection in finite populations and application to QTL detection by bulk segregant analysis

WILLIAM G. HILL*
Institute of Cell, Animal and Population Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK

(Received 19 January 1998 and in revised form 16 March 1998)

Abstract

Summary Formulae are given for computing the distribution of numbers of selected individuals of each genotype and thus change in gene frequency at a locus with a large effect on a quantitative trait under truncation selection in a finite population. Results are illustrated with respect to use of selection for quantitative trait locus (QTL) detection, specifically by bulk segregant analysis with linked markers, for which probabilities that selected samples will comprise almost all one genotypic class are computed.

In an artificial selection programme a number of individuals (M) are recorded for a quantitative trait (which may be an index of several traits), and a number of these (N) are selected as parents of the next generation (M and N may, or may not, be the same in each sex). Selection can also be based on performance of relatives of the individuals, but here selection is assumed to be by truncation on individual phenotype.
The expected change in mean genotypic value of the trait can be computed using order statistics, which take account of finite numbers (e.g. Falconer \& Mackay, 1996), and the change in gene frequency at any locus that affects the trait can be computed (at least approximately) similarly. As the numbers of parents are finite, however, the changes in mean of the trait and in gene frequency are also influenced by stochastic factors. The simplest procedure for computing the distribution of the change in gene frequency is to assume that selection induces a fitness differential at the locus and to use standard methods for stochastic processes for directional changes in gene frequency (e.g. Robertson, 1960). Precise methods can be adopted, however, which make use of order statistic methods to compute the probability distribution of the number of individuals of each genotype among the selected group (Hill, 1969).

During a recent analysis of the fate of genes in a recurrent backcrossing programme with selection

[^0](Hill, 1998), it became apparent that a simpler formulation than given previously (Hill, 1969) was possible that considerably reduces complexity and computation times, and illustrates more clearly the process of truncation selection as it affects an individual locus. In this note the formula is merely spelled out and applied to a topic in quantitative trait locus (QTL) mapping.

For simplicity, first consider a two-state model (e.g. haploid or backcross population) with two (geno)types A_{1} and A_{2}, in which A_{1} has a mean genotypic value a phenotypic standard deviations greater than A_{2}, and in which A_{1}, and A_{2} are sampled with frequencies q_{1} and $q_{2}=1-q_{1}$, respectively. Let $\Phi(x)$ denote the distribution function and $\phi(x)$ the density function of the standardized normal distribution. Among the M individuals available for selection, the number, m_{1}, that are A_{1} has a binomial $\left(M, q_{1}\right)$ distribution, i.e. $\binom{M}{m_{1}} q_{1}^{m_{1}} q_{2}^{m_{2}}$. The number of alternative ways of taking, among the highest scoring N, n_{1} of type A_{1} from m_{1} and $n_{2}=N-n_{1}$ of type A_{2} from $m_{2}=M-m_{1}$ is $\binom{m_{1}}{n_{1}}\binom{m_{2}}{n_{2}}$. Assume first that the lowest-scoring selected individual has phenotypic value x and is one of the $n_{1} A_{1}$ individuals. Therefore, among those selected there are a further $n_{1}-1$ individuals of type A_{1}, each with probability $1-\Phi(x)$, and n_{2} of type A_{2}, each with probability $1-\Phi(x+a)$, that have higher phenotype; and there are $m_{1}-n_{1}$ of type A_{1} and $m_{2}-n_{2}$ of type A_{2} that have lower phenotype and are

Table 1. Exact probabilities $P\left(n_{1}, n_{2}\right)$ of selecting $n_{1} A_{1}$ and $n_{2} A_{2}$ alleles from N selected out of M recorded, for two classes (e.g. a backcross) for a gene A_{1} with effect a standard deviations, expected frequency $q_{1}=1 / 2$ among those recorded and q_{1}^{\prime} among those selected

n_{1}		$M=50$	$N=10$					$\frac{M=100}{2 \cdot 0}$	$N=10$	
	$a:$	$2 \cdot 0$	$1 \cdot 5$	1.0	$0 \cdot 5$	$0 \cdot 25$	$0 \cdot 0$		1.0	0.5
10		0.7185	0.4033	$0 \cdot 1272$	$0 \cdot 0180$	0.0048	0.0010	0.8827	0.2378	0.0318
9		$0 \cdot 2345$	0.3708	0.2840	0.0883	0.0336	0.0098	$0 \cdot 1100$	$0 \cdot 3620$	$0 \cdot 1300$
7-8		0.0464	$0 \cdot 2145$	0.4798	0.4543	$0 \cdot 3078$	0.1611	$0 \cdot 0073$	$0 \cdot 3621$	0.5057
4-6		0.0005	0.0113	$0 \cdot 1081$	0.4192	0.5869	0.6562	$0 \cdot 0000$	0.0379	$0 \cdot 3230$
0-3		$0 \cdot 0000$	$0 \cdot 0000$	0.0008	0.0202	0.0670	0.1719	$0 \cdot 0000$	$0 \cdot 0001$	0.0096
q_{1}^{\prime}		$0 \cdot 9665$	0.9105	0.8098	0.6672	0.5852	0.5000	0.9875	$0 \cdot 8645$	0.7069
		$M=100$	$N=20$				n_{1}	$M=50$	$N=5$	
n_{1}	a :	20	1.0	0.5				$a: 2.0$	1.0	0.5
19-20		0.8717	0.0941	0.0037			5	0.9317	0.4754	$0 \cdot 1746$
17-18		$0 \cdot 1240$	0.3783	0.0606			4	0.0659	$0 \cdot 3764$	$0 \cdot 3625$
13-16		0.0043	0.5027	$0 \cdot 6041$			2-3	$0 \cdot 0024$	$0 \cdot 1462$	0.4330
7-12		$0 \cdot 0000$	0.0248	$0 \cdot 3307$			0-1	$0 \cdot 0000$	$0 \cdot 0020$	0.0299
0-6		$0 \cdot 0000$	$0 \cdot 0000$	$0 \cdot 0009$						
q_{1}^{\prime}		0.9693	0.8129	$0 \cdot 6689$			q_{1}^{\prime}	$0 \cdot 9859$	$0 \cdot 8603$	0.7041

rejected. Summing over the values of m_{1} and integrating over x, the probability $P\left(n_{1}, n_{2} ; A_{1}\right)$ that n_{1} individuals of type A_{1} are selected with an A_{1} the poorest of these is

$$
\begin{aligned}
P\left(n_{1}, n_{2} ; A_{1}\right)= & \sum_{m_{1}-n_{1}}^{M-n_{2}}\binom{M}{m_{1}} q_{1}^{m_{1}} q_{2}^{m_{2}}\binom{m_{1}}{n_{1}}\binom{m_{2}}{n_{2}} \\
& \times n_{1} \int_{-\infty}^{\infty}[1-\Phi(x)]^{n_{1}-1}[1-\Phi(x+a)]^{n_{2}} \\
& \times[\Phi(x)]^{m_{1}-n_{1}}[\Phi(x+a)]^{m_{2}-n_{2}} \phi(x) \mathrm{d} x,
\end{aligned}
$$

which reduces to

$$
\begin{aligned}
P\left(n_{1}, n_{2} ; A_{1}\right)= & \frac{M!q_{1}^{n_{1}} q_{2}^{n_{2}}}{(M-N)!n_{1}!n_{2}!} \\
& \times n_{1} \int_{-\infty}^{\infty}[1-\Phi(x)]^{n_{1}-1}[1-\Phi(x+a)]^{n_{2}} \\
& \times\left[q_{1} \Phi(x)+q_{2} \Phi(x+a)\right]^{M-N} \phi(x) \mathrm{d} x .
\end{aligned}
$$

In previous analyses, the two steps of sampling M individuals and selecting N of them were not combined, and the summation over m_{1} within the integral not undertaken (Hill, 1969); or selection of only $N=$ 1 individual was considered (Hill, 1998). The probability $P\left(n_{1}, n_{2} ; A_{2}\right)$ that an A_{2} is the poorest of the n selected individuals follows by substitution; and the overall probability that n_{1} of type A_{1} are selected is $P\left(n_{1}, n_{2}\right)=P\left(n_{1}, n_{2} ; A_{1}\right)+P\left(n_{1}, n_{2} ; A_{2}\right)$.
Hence consider the general case where there are k different genotypes, of which the j th has genotypic
value a_{j} phenotypic standard deviations, relative to some approximate zero mean, and frequency q_{j}. The probability $P\left(n_{1}, \ldots, n_{j}, \ldots, n_{k}\right)=P(\mathbf{n})$ that, for $j=$ $1, \ldots, k$, there are n_{j} selected of genotype j, where Σn_{j} $=N$, out of a total of M recorded is therefore

$$
\begin{align*}
P(\mathbf{n})= & \frac{M!}{(M-N)!}\left(\Pi_{j} \frac{q_{j}^{n_{i}}}{n_{j}!}\right) \int_{-\infty}^{\infty}\left\{\Pi_{j}\left[1-\Phi\left(x-a_{j}\right)\right]^{n_{j}}\right\} \\
& \times\left[\sum_{j} q_{j} \Phi\left(x-a_{j}\right)\right]^{M-N}\left\{\sum_{j} \frac{n_{j} \phi\left(x-a_{j}\right)}{1-\Phi\left(x-a_{j}\right)}\right\} \mathrm{d} x . \tag{1}
\end{align*}
$$

It can be shown that, as must be the case, the probabilities of all possible outcomes sum to one, and that if $a_{j}=0$ for all j, (1) reduces to the multinomial distribution, $P(\mathbf{n})=N!\Pi_{j}\left(q_{j}^{n_{j}} / n_{j}!\right)$.

These results can be used to compute the mean and distribution of change in gene frequency from truncation selection. Examples are given in Table 1 from results computed for a different purpose. With selection of $N=10$ from $M=50$, a two-genotype model with $q_{1}=0.5$ and $a=0.5$, the expected gene frequency in selected individuals is $q_{1}^{\prime}=0 \cdot 6672$. An approximate prediction (Robertson, 1960) is $q_{1}^{\prime}=$ $q_{1}+i a q_{1} q_{2}=0.6715$, where $i=1.372$ is the selection intensity from order statistic tables (Falconer \& Mackay, 1996). Whilst the approximation is satisfactory in this example, for $a=2$ it predicts $q_{1}^{\prime}>1$. Further analyses conducted previously showed that approximations based on relating gene effects to fitness differences could be used to analyse long-term changes in gene frequency from artificial selection in finite populations, except when gene effects are large
and selection very intense (Hill, 1969). As no family effects are included in the model, the results apply exactly only when there is selection within families or there are no other loci affecting the trait and no family environmental effects.

QTL detection and bulk segregant analysis

Selection on a quantitative trait can be used to identify QTL from the change in gene frequency at putative QTL or at closely marker genes in linkage disequilibrium, for example following a cross (Lebowitz et al., 1987; Ollivier et al., 1997). The formulae given here can be used to predict the power and efficiency of such methods more precisely and to generalize recurrent backcrossing and selection methods (Hill, 1998).

A technique that has been proposed for efficiently identifying the location of a QTL is that of bulk segregant analysis (Michelmore et al., 1991), in which an F_{1} cross of two inbred lines is backcrossed to one of the parent lines, and a group of high-scoring and a group of low-scoring individuals for a trait of interest are selected. DNA from members of each selected group is pooled, and typed for large numbers of markers. Provided a QTL has a sufficiently large effect
that there is a high probability that the high and low pools each comprise almost all individuals of the same genotype, then the two should differ clearly in lanes on a gel for markers closely linked to the QTL. Thus the location requires only two samples (per replicate) for each marker. The results derived here can be used to show the probability that particular numbers, 0 , $1, \ldots$, of individuals of each genotype are found in each selected pool, and thus the requirements for discriminating among bands on a gel of different intensity. Some examples are given in Table 1 (by integrating (1) using Simpson's rule), for pools of 50 or 100 individuals having equal expected frequencies of the two types $\left(q_{1}=1 / 2\right)$ and selected pools of 5, 10 or 20 individuals. It is shown that unless the QTL, assumed to be unlinked to other QTL, has an effect of almost 2 SD , there will be considerable mixing.

The results in Table 1 apply to a marker locus located at the QTL, i.e. with no crossovers between marker and QTL and complete linkage disequilibrium between them, as would be the case if the parental lines are inbred. Assume that crossovers occur with probability r between the QTL (locus A) and the marker (locus B, with alleles B_{1} and B_{2} initially in coupling with alleles A_{1} and A_{2}, respectively) and let $P^{*}\left(n_{1}, n_{2}\right)$ denote the probability there are n_{1} and n_{2}

Table 2. Exact probabilities $P^{*}\left(n_{1}, n_{2}\right)$ of obtaining $n_{1} B_{1}$ and $N-n_{2} B_{2}$ alleles and expected frequency $\left(p_{1}^{\prime}\right)$ at a marker locus in a sample of N selected out of M recorded, for two classes (e.g. a backcross) for a marker locus initially in coupling and linked, with recombination fraction r, to a QTL with frequency $1 / 2$ and effect a standard deviations

	$M=50$	$N=10$	$a=2$					
n_{1}	$r: 0$	$0 \cdot 005$	0.01	0.02	0.05	$0 \cdot 1$	$0 \cdot 2$	$0 \cdot 5$
10	0.7185	0.6845	0.6519	$0 \cdot 5910$	0.4376	$0 \cdot 2598$	0.0837	$0 \cdot 0010$
9	$0 \cdot 2345$	$0 \cdot 2579$	0.2787	0.3135	$0 \cdot 3730$	$0 \cdot 3726$	$0 \cdot 2351$	$0 \cdot 0098$
7-8	$0 \cdot 0465$	$0 \cdot 0569$	0.0684	0.0938	$0 \cdot 1828$	$0 \cdot 3379$	0.5219	$0 \cdot 1611$
4-6	$0 \cdot 0005$	$0 \cdot 0007$	$0 \cdot 0010$	0.0017	$0 \cdot 0066$	$0 \cdot 0296$	$0 \cdot 1577$	0.6562
0-3	$0 \cdot 0000$	$0 \cdot 0001$	0.0016	$0 \cdot 1719$				
p_{1}^{\prime}	$0 \cdot 9665$	$0 \cdot 9618$	0.9572	0.9479	0.9199	$0 \cdot 8732$	$0 \cdot 7799$	$0 \cdot 5000$
	$M=50$	$N=10$	$a=0 \cdot 5$		$M=50$	$N=10$	$a=1$	
n_{1}	$r: 0$	0.02	0.05	$0 \cdot 1$	0	0.02	0.05	$0 \cdot 1$
10	$0 \cdot 0180$	0.0163	0.0139	$0 \cdot 0107$	$0 \cdot 1272$	$0 \cdot 1087$	0.0856	0.0567
9	$0 \cdot 0883$	$0 \cdot 0822$	0.0737	$0 \cdot 0610$	0.2840	$0 \cdot 2641$	$0 \cdot 2340$	$0 \cdot 1858$
7-8	$0 \cdot 4543$	$0 \cdot 4440$	0.4277	0.3986	0.4798	$0 \cdot 4974$	0.5159	$0 \cdot 5262$
4-6	$0 \cdot 4192$	$0 \cdot 4350$	0.4582	$0 \cdot 4955$	$0 \cdot 1081$	$0 \cdot 1285$	$0 \cdot 1625$	$0 \cdot 2271$
0-3	0.0202	$0 \cdot 0226$	0.0265	0.0342	$0 \cdot 0008$	$0 \cdot 0012$	0.0020	0.0041
p_{1}^{\prime}	$0 \cdot 6672$	$0 \cdot 6605$	0.6504	0.6337	$0 \cdot 8098$	0.7974	0.7788	0.7478
	$M=50$	$N=5$	$a=1$		$M=50$	$N=5$	$a=2$	
n_{1}	$r: 0$	0.02	0.05	$0 \cdot 1$	0	0.02	0.05	$0 \cdot 1$
5	$0 \cdot 4754$	$0 \cdot 4367$	0.3835	$0 \cdot 3064$	0.9317	$0 \cdot 8434$	$0 \cdot 7236$	$0 \cdot 5545$
4	$0 \cdot 3764$	0.3893	0.4016	$0 \cdot 4063$	$0 \cdot 0659$	$0 \cdot 1457$	$0 \cdot 2414$	$0 \cdot 3468$
2-3	0.1462	$0 \cdot 1712$	$0 \cdot 2104$	$0 \cdot 2785$	$0 \cdot 0024$	$0 \cdot 0109$	0.0348	0.0980
0-1	$0 \cdot 0020$	$0 \cdot 0028$	0.0045	0.0088	$0 \cdot 0000$	$0 \cdot 0000$	0.0001	0.0007
p_{1}^{\prime}	$0 \cdot 8603$	$0 \cdot 8459$	0.8243	0.7883	0.9858	$0 \cdot 9664$	0.9373	0.8887

individuals with marker alleles B_{1} and B_{2} in the sample. Then,

$$
\begin{aligned}
P^{*}\left(n_{1}, n_{2}\right)= & (1-r)^{N} P\left(n_{1}, n_{2}\right)+r(1-r)^{N-1}\left[\left(n_{1}+1\right)\right. \\
& \left.\times P\left(n_{1}+1, n_{2}-1\right)+\left(n_{2}+1\right) P\left(n_{1}-1, n_{2}+1\right)\right]
\end{aligned}
$$

+ corresponding terms in 2,3 or more crossovers.
(The items denote, respectively: no recombination, a recombination of one of the $n_{1}+1 A_{1} B_{1}$ haplotypes to $A_{1} B_{2}$, and a recombination of an $A_{2} B_{2}$ to $A_{2} B_{1}$). If the expected frequency of the QTL in the selected sample is q_{1}^{\prime}, that of the marker is $p_{1}^{\prime}=(1-r)$ $q_{1}^{\prime}+r\left(1-q_{1}^{\prime}\right)$.

Examples are given in Table 2 of the distributions of the numbers of markers linked to QTL in bulk segregant samples. An approximation to the marker gene frequency in the selected group, assuming there is initially complete coupling between marker and QTL, is $p_{1}^{\prime}=q_{1}+\operatorname{iaq}_{1} q_{2}(1-2 r)$. For example, for M $=50, N=10, q_{1}=p_{1}=1 / 2$ and $r=0.05$, the prediction is $p_{1}^{\prime}=0.65435$. The binomial distribution can then be used to predict the number in each class: which for this example gives $P(10,0)=0.65435^{10}=$ $0 \cdot 0144$, close to the exact value ($0 \cdot 0180$, Table 2). This approximation is poor, however, if $i a>1$.

The results in Table 2 show, as in Table 1, that bulk segregant analysis is likely to produce uniform selected groups for the QTL only if its effect approaches 2 SD ,
unless selection is very intense; as a rough guide $i a \geqslant$ 2 is needed if the selected groups are to be unlikely to have few of the 'wrong' genotype. Discrimination using a marker is not greatly reduced, however, if it is less than about 5 cM from the QTL.

I am grateful to Peter Keightley for helpful comments.

References

Falconer, D. S. \& Mackay, T. F. C. (1996). Introduction to Quantitative Genetics, 4th edn. Harlow, Essex: Longman. Hill, W. G. (1969). On the theory of artificial selection in finite populations. Genetical Research 13, 143-163.
Hill, W. G. (1998). Selection with recurrent backcrossing to develop congenic lines for QTL analysis. Genetics 148, 1341-1452.
Lebowitz, R. J., Soller, M. \& Beckmann, S. J. (1987). Traitbased analyses for the detection of linkage between marker loci and quantitative trait loci in crosses between inbred lines. Theoretical and Applied Genetics 73, 556-562.
Michelmore, R. W., Paran, I. \& Kessali, R. V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genome region by using segregating populations. Proceedings of the National Academy of Sciences of the USA 88, 9828-9832.
Ollivier, L., Messer, L. A., Rothschild, M. F. \& Legault, C. (1997). The use of selection experiments for detecting quantitative trait loci. Genetical Research 69, 227-232.
Robertson, A. (1960). A theory of limits in artificial selection. Proceedings of the Royal Society of London, Series B 153, 234-249.

[^0]: * Telephone: $+44(0) 131650$ 5705. Fax: $+44(0) 1316506564$. email: w.g.hill@ed.ac.uk.

