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ON APPROXIMATION IN SPACES
OF CONTINUOUS FUNCTIONS

HEINZ H. GONSKA

This paper deals with approximation of certain operators defined

on the space C(X) of real-valued continuous functions on an

arbitrary compact metric space (X, d) . In particular the

problem of giving quantitative Korovkln type theorems for

approximation by positive linear operators is solved. This is

achieved by using a smoothing approach and the least concave

majorant of the modulus of continuity of a function / in

C(X) . Several new estimates are given as applications,

including such for Shepard's method of metric interpolation.

1. Introduction

The present note deals with quantitative Korovkin type theorems for

approximation by positive linear operators defined on C(X) . Here

C(X) = (y.[(X, d)} denotes the Banach la t t ice of real-valued continuous

functions defined on the compact metric space (X, d) . No further

assumptions are made on X .

The first such theorem for general positive linear operators and

X = [a, b] equipped with the euclidian distance seems to be due to Mamedov

[74]. For spaces (X, d) being metrically convex in the sense of Menger

[75], Newman and Shapiro [7S] proved a theorem similar to that of Mamedov
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4 12 He i nz H. Gonska

(see also Muller and Walk [77, p . 225]). This approach was further

developed in two recent papers of Nishishiraho [79, 20] where additional

references can be found. For compact spaces (X, d) having a so-called

coefficient of convex deformation p < °° , Jimenez Pozo [9] published a

general izat ion of the resul t of Newman and Shapiro mainly involving the

modulus of continuity of / , given by

o)(/s e) := sup{ | / (x)- / ( t , ) | : d(x, y) 2 e} .

See [77, 72] for a discussion of ear l ier r e su l t s .

Furthermore, for arbi t rary compact (X, d) , Jimenez Pozo [7, I I ]

proved a generalization of the following

THEOREM A. Let L : C(X) •*• C(X) be a positive linear operator.

Then for all f € C{X) , all x € X and all a > 0 the following

inequality holds:

\L(f, x)-f(x)\ 5 w( / , a) • L(lx, X) + | f ( x ) | • \L[IX, x ) - l |

+ ' L ( d ( - , x ) ; x ) .

Here \\f\\v = sup{|/(x) | : x € X] and lv : X ? x i-f 1 € R .

A disadvantage of this type of estimate is the fact that the upper

bound is not given in terms of moduli of continuity. The main point of

this paper is thus to show that the assumption of metric convexity or of

existence of a f inite coefficient of convex deformation can be completely

dropped when using the least concave majorant of (D(/, •) instead of

UJ(/, •) i t se l f . As will be seen below, our general results imply

estimates similar to (and sometimes even better than) those of Nishishiraho

and Jimenez Pozo if (X, d) satisfies the assumptions made by them.

I t was observed by Berens and Lorentz [ I ] imong others that the

results on approximation of l a t t i ce homomorphisms A : C(X) •*• E , E a

Banach l a t t i c e , by positive linear operators are similar to those for

approximation of the injection i : C(X) ->• B(X) . Here B{X) is the space

of bounded real-valued functions on X . This is our motivation for

proving estimates on approximation of mappings A : C{X) -*• B(Y) , Y # 0 ,

given by A(f, y) = <l>A(y) ' f{gA(y)) , where IJJ, is a bounded real-valued

function on Y and g. maps Y into X . For the relationship between

https://doi.org/10.1017/S0004972700021134 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021134


S p a c e s o f c o n t i n u o u s f u n c t i o n s 413

such mappings and la t t i ce homomorphisms see, for example, Wolff [25].

For the sake of brevity we do not strive for utmost generality in this

paper. For instance, following the approach of Nishishiraho, more general

results can be proved like such involving s t r ic t ly positive functions g

(instead of ly ) and operators T •. . See, for example, [20] for

details. I t is also possible to drop the assumption of positivity of L ,

or to generalize the operators to be approximated. Some recent results in

this direction are due to Jimenez Pozo [&, 70] and to the author [3] .

2. Auxiliary results

As mentioned before our results below will be obtained by using a

smoothing approach.

For 0 < r 2 1 let Lip r denote the set of al l functions g in

C{X) such that

= S U P \g(x)-g(y) I/<***( x , y) < °° .

d(x,y)>0

Then Lip r i s a dense subspace of C(X) , and I*IT- i s a seminorm on

Lip r . Thus i t makes sense to use the X-functional with respect to

(Lip r , I ' L . „) in order to prove quant i ta t ive asse r t ions . This
functional i s given by

K{t, f; C{X), Lip r) := inf{ Wf-gWft- M L i p r : g € Lip r} ,

where f i C{X) and t > 0 .

As an immediate consequence of the definition, for any X - 0 the

inequality

K(U, f; C{X), Lip r) < maxd, A} • K[t, f; C(X) , Lip r)

holds.

Another tool for our proofs will be the following lemma of Brudnyi.

For a proof see Mitjag in and Semenov [76].

LEMMA 2.1. Every continuous function f on X satisfies

K(e/2, f; c(X), Lip l) = h • <5(/, e) , 0 < e < d{X) .

Here u>(/, •) denotes the least concave majorant of to(/, •) given
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4 14 He i nz H. Gonska

sup
y-x

% e) =

<3(/, e) = «o(f, d(*)) i f e > dU) ,

and d{X) < °° is the diameter of the compact space X .

The definition of w(/, •) shows that w(/, •) 5 oi(f, •) . However,

an estimate from above by some multiple of u( / , •) is not possible for

a l l metric spaces (X, d) , as will be seen below. For some further

properties of (2(f, •) see, for example, Dzjadyk [2, p. 153ff].

3. Main theorems

In this section we prove quantitative theorems on approximation of

operators A given by A(f, y) = tyAy) ' fidAy)} by means of positive

linear operators L . Here / € C{X) , Y + 0 is some set , y € Y , tĵ

is a bounded real-valued mapping on Y and gA maps Y into X . The

key result of this section is

THEOREM 3 . 1 . Let A be given as above and L # 0 be a positive

linear operator both mapping C{X) into B{Y) . Then the following

inequality holds for all f € C(X) , y € Y , and e > 0 ;

\Uf, y)-A(f, y)\ 5

Proof. Let A be given by d(f, y) = ^ ( y ) • / (^( j / ) ) , and le t

L : C(X) -*• B(Y) be positive and linear. Then we have

Aif, y) = i>Aiy) • f{gA(y)) = ^ (1^ , y) • f{gA(y)) •

Thus, for al l / € C(X) and a l l y € Y ,

| i ( / , y ) -^ ( / , y)\ s | M / , y ) - i ( i x , j / ) - / f ^ (y ) ) |

The second term on the right hand side is a l l right.
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Defining A(f, y) := L[\x, y) ' f{gA(y)} , we have to consider

, y)~Mf, y)\ • Note tha t L[lx) = A(lx) .

Let g be arbitrarily given in Lip 1 . Then

U ( f , y ) - M f , y ) \ S \ ( L - A ) ( f - g , y ) \ + \ ( L - A ) ( g , y ) \ .

For the first term on the right hand side obviously

\ { L - A ) { f - g , y ) \ 2 \ L { f - g , y ) \ + \ A ( f - g , y ) \

S 2 • IlLlI • \\f-g\\x .

For the second term one gets

\(L-A)(g, y)\ = \l(g, y)-L[lr y)'g[gA(y))\

, y)\

, y)

Thus we have for any g in Lip 1 the inequality

\Uf, y)-Mf, y)\
S 2 • ||£|| • \\f-g\\x + L{d{-, gA(y))- y) • \g\

= 2 • ||L|| • {\\f-g\\x + j j ^ • L[d{-, gA(y));

This implies

\L(f, y)-Mf, y)\

I | " ( M W) ) () Lip

Now introducing an arbitrary number 0 < £ S d(X) we obtain

\L(f, y)-A(f, y ) \

5 2 • ||L|| • x [ | j ^ • L(d(., gA(y))i y) • ± • f, / ; C(X), Lip

< 2 • ||L|| • max|l, j ^ ' L{d{-, g/y)}; y)j • x [ | , / ; C(AT) , Lip

Brudnyl's Lemma 2.1 shows that K(e/2, f; C(X), Lip l ) = h ' w(/, e) which

yields

\Uf, y)-~A(f, y)\ 5 maxj||L||, ± - i ( d ( - , g/y)}; y)\ • 5 ( / , e) .
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If e > d(X) the estimate is also correct since in this case

\Hf, y)-~A(f, y)\

< 2 • ||£|| • xfgqjzif ' L(d('> 9A(y)); y) ' d h ) ' ^f-- f> cix), u P

5 2 • ||L|| • max{l, ^ • L(d(-, g^y)); y){
• K^f-, f; C(X), Lip l]

= max|||L||, ^ - • L{d{-, g^y)); i / ) | • ai(/ , dU) )

= max{||£||, J- • L[d{-, g/y)) ; j/)j • fi(f, e) .

Here the last equation follows from the fact that for e > d(.X) we have
1/e • L[d[-, gA(y)); y) S ||L|| and u(f, e) = w(/, d{X)) . Both

observations imply the inequality in Theorem 3-1- D

The following corollary gives an analogue of Theorem 3-1 for a-wider
class of test functions.

COROLLARY 3.2. Let the assumptions of Theorem 3.1 be fulfilled. Let

$ be a function on X such that <*>(•, y) i C(x) for all y € X .

Moreover, we assume that for some q i 1 the condition

d(x, y)q < *(x, y) for all x , y € X

is satisfied. Then

\L(f, y)-A(f, y)\ 5 maxjjLH, ^ • C{L, $ , A, y)j ' £ ( / , e)

+ |L( i r y)-A[lx, y)\ • \f(0A(y))\ ,

where

C(L, • , A, y) := inf { L ( * ( . ,

Proof. I t is only necessary to estimate L[d[%, gAy)}; y] in order

to obtain the claim of Corollary 3-2.

For y fixed, the functional L[*, y) is a positive linear form on
C(X) . Thus i f q > 1 , Holder's inequality implies
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L[d{-, gA(y));y) ± i(d(-, gA(y))
p;

If q 2 1 is fixed and such that

£{x, y) < $(x, y) for all (x, y) € X2 ,

we have

Hence

L[d{-, gAy)); y) S inf
POL

Combining t h e above i n e q u a l i t i e s we a r r i v e a t

\ y)-Mf, y ) \

\\L\\, J • inf {LU{-, gAy))p/q; y\ P - l ( i y ; j / ) 1 " 1 ^ ) • S(/, e)
pil *• l -1 {]

+ I^C1^. y ) - A b - x , y ) \ • \f[gA(y))\ ,

which is the claim of the corollary. •

For the special case Y = X , A(f, x) = f(x) , Ll = 1 the

inequality in Corollary 3.2 reduces to the one in

COROLLARY 3.3. Under the assumptions just mentioned one has

\L(f, x)- / (x) | < maxfl, J • inf { L ( * ( « , x)p/q; x)1 / pj~| • fi(/, e) .

Our next theorem is a generalization of Theorem 3.1. It shows that

this theorem implies a variety of estimates including uniform ones or such

in L spaces.

THEOREM 3.4. Let (X, d) be a compact metric space and Y t 0 be

some set. Let L t 0 be a positive linear operator and A be given by

Af = \\>A • [f o g ) , both mapping C(X) into B(Y) . Moreover, let

M = {u} be a set of positive linear functionals on B{Y) such that
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4 18 He i nz H. Gonska

PM[h] := sup{y(|fc|) : u € M} < °° for all hi B(Y) , and PM&y] > 0

Then for all f i C(X) and all e > 0 the following inequality

holds:

PMlLf-Af] < p

, p^Q^K ^(*)) ; *)]} • £>(/, e) .

ffere L i s applied with respect to the variable indicated by "•" , and
\s (. M is applied with respect to "*" .

Proof. If g £ Up 1 is arbitrarily given, then the proof of Theorem
3.1 shows that for a l l y € Y we have

\(L-A)(f, y)\ 5 \(L-A)[lx, y)\ • \f(gA(y))\

+ 2 • ||L|| • Hf-ffll^ + L{d{-% gA(y)); y)

Applying \i € M to this inequality means

v(.\Lf-Af\)
5 \l{\Llx-Alx\'\f o

* 2

T h u s

u ( | £ / - 4 / | ) < p ^ ^ ^ A

* 2 • Hill • r ^ v l ^ - l l L l l V V * p*&(d(% ^ ( * ) ) ; * ) L / ; CU)> Lip

Proceeding exactly as in the proof of Theorem 3-1 yields

u( \Lf-Af\) 5 pMl{Llx-Alx)-{f o gA)]

+ max{||L||-pwCLy], \

Passing to the supremum in A/ now gives the estimate in Theorem 3-1*. E

COROLLARY 3.5. J / t^e assumptions of Theorem 3.1* are fulfilled, and
if * i s given as in Corollary 3-2,
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7 * C{M, L, * , /1) | • ui(/, e)

C(M, L, *, A) = inf

Proof. The assertion in Corollary 3.5 results from an estimate of

> ?/](*))» *)3 :i-n Theorem 3.**. For any p > 1 we have

f., g/*))p/q; *)1/P'£(V *)1

Applying Holder's inequality again, we conclude as in the proof of Theorem

3.*t that

Passing to the inf over all p > 1 implies

pM[L(d(-, ff/](*)).; *1J

P2l

This yields the claim of Corollary 3.5- O

If in Theorem 3.^ or Corollary 3-5, M = {e } for some point evaluation

functional e , y £ Y , then the estimates given reduce to the ones in

Theorem 3-1 and Corollary 3.2, respectively.

REMARK 3.6. The estimates given in Theorems 3.1 and 3.1* are best

possible in a certain sense. To show this, let Y = \xA ,

A[f, xn) = f[x) , and L{± , x ) = 1 for some fixed point x in X .

In this case the inequality in Theorem 3.1 (or the one in Theorem 3.1* for

M = je } ) reduces to
X0
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IM/, *0)-/(*0)l ^ maxjl, i • L{d{', xQ)5 xQ)j • £(/ , e) .

For L(d[', xQ); xQ) = 0 we have \L[f, xQ)-f (xQ) | 5 ui(/, e) for a l l

e > 0 and thus

I f L[d{', x ) ; x ) > 0 , then choose e = L[d[m, x) ; x ) , and this gives

the same inequality.

Now take /( •) = d{', xQ) . Hence

(3-D \L{d{', xQ); xo)-d(xQ, xQ)|

= L[d{>, x Q ) ; xQ) 5 ui(d(-, x Q ) , L[d{-, xQ) ; xQ)) .

I f for instance X = [a, b] and d(x, y) = \y-x\ , then

for each h € [0, b-a] . Thus w(|*-x | , h) is a concave function and

<3(|*-*ol, h) = «o(|--aso| , h) .

Hence inequality (3.1) becomes an equality, which shows that the constant

1 in

\L[f, «0)- /(*0) l = 1 * <3(/, L[d{-, xQ); xQ))

cannot be improved in general. •

We shall now look at spaces {X, d) with the following property:

there exists a constant n > 0 such that for all 5, e > 0 and all

f £ C(X) , the inequality

(3.2) u)(/, 5-e) < (1+nC) • w(/, e)

holds.

Examples of such spaces are, for example, compact metric spaces being

convex in the sense of Menger [75], or compact convex subsets [X, d) of a

metric linear space (Y, d) with translation invariant metric and s tar-

shaped d(• , 0) (see Nishishiraho [20]). in both cases the above

inequality holds for r) = 1 . Other examples are given by spaces {X, d)
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having a coefficient of convex deformation p = p(X) . In this case the

above inequality holds for n = p (see Jimenez Pozo [9, Theoreme 2]).

In these cases toC/, •) and (»>(/, •) are related in the following

way.

LEMMA 3.7. If (X, d) is a compact rmtric space such that (3.2)

holds, then for f € C(X) there holds

u)(/, e) s &(f, e) 5 (1+n) • t*if, e) 3 E > 0 .

Proof. As mentioned earlier,

fi(/, e) = sup (

Putting, for example, x = e shows that u(/, e) 5 w(/, e) .

For the proof of the second inequality let 0 5 x '< e < y . Write

o)(e) = u)(/, e) for the sake of brevity. Then

= (l+n) • u(e) .

This yields the estimate from above for 0 5 e 5 d{X) . Note that i t is

also true for £ > d(X) . •

REMARK 3.8. The second inequality in Lemma 3.7 does not hold for an

arbitrary compact metric space. This can be seen from the following simple

example.

Let X = [0, k] " [\, 1] and d(x, y) = \x-y\ for x, y € X . The

function / given by

1 for 0 < x 5 k ,

fix) = •

2 for £ 5 x 5 1 ,

is continuous on X . Its modulus of continuity is

0 for 0 < e < h ,

1 for
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Thus the least concave majorant w(/, •) is the function

to(/, e) = min{2e, 1} . Hence u>(f, e) 5 a • w(f, e) cannot hold for any

<? > 0 and al l e > 0 . In fact, i t is easily verified that there is no

r| > 0 such that for al l £,, e > 0 we have

co(/, C-e) S (1+nC) • u>(/, e) . D

Using Lemma 3-7 i t is now easy to give estimates involving u)(/, e)

i t se l f . We restr ic t ourselves to quote the following consequence of

Theorem 3.**.

THEOREM 3.9. Let (X, d) be a compact metric space satisfying (3.2)

and let the assumptions of Theorem 3.h be satisfied.

If the function f € C{X) has a concave modulus of continuity, then

PM[Lf-Af] 5 pM£(Llx-Alx) • [f o gAy]

+ maxjllLH-p^], i • pjL{d{-, g/*)); *)]] • u(/, e) .

Otherwise we have

PM[Lf-Af] S pM£[Llx-Alx) ' {f o g^

+ (1+n) • max|||L||.pwCly], i • PM{L{d{', g^*)) ; *)]} • u ( / , e) .

REMARK 3.10. ( i ) In order to compare the resu l t in Theorem 3.9 to

one obtained by Nishishiraho [19] , we consider the following s i tua t ion :

Y = X , M = {e } for some fixed point evaluation functional e ,

A{f,x)=f{x) , L±x = lx . Then for an / € C{X) having a concave

modulus of continuity the above inequali ty y i e l d s , for any e > 0 ,

\L(f, x)-f(x)\ < maxjl, \ • L[d{-, x) ; x ) | • co(f, e) .

If in Lemma k of [19] we take g = 1 and *(x, y) = d(x, y) , then the

lemma implies

\L{f, x)-f(x)\ « [ l + | • n • L{d{-, x); x)J • o)( / , e) .

Thus, for n - 1 (which is the case for every coefficient of convex

deformation) and for functions f with the property mentioned above our

theorem gives better constants in front of (o(/, e) .

https://doi.org/10.1017/S0004972700021134 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021134


Spaces o f c o n t i n u o u s f u n c t i o n s 423

( i i ) A s ta tement ak in t o ( i ) ho lds w i th r e s p e c t t o Theorem k i n

Jimenez Pozo ' s paper [ I I ] .

As a f u r t h e r consequence of Theorem 3 .1 we mention

THEOREM 3.11 {of. N i s h i s h i r a h o [ 2 0 , Theorem U] ) . Let X be a

compact subset of a real pre-Hilbert space with inner product < •, *> .
Let e > 0 .

If L : C(X) •*• C(X) is a positive linear operator, then for all
f € C(X) and x € X there holds

\L(f, x)-fix)\ < | / ( x ) | • \L{lx, X)-1\

+ max(||L||, i • L{d{-, xf; x)h-L{\x, x) *} • «(/ , e) .

Here d(x, y) = < x-y, x-yfi . If L[±x, X) = 1 , then

\L(f, x)-f(x)\ < max{||i||, J • L[d{-, xf; x'j^} • C(f, e) .

Proof. Use Corollary 3.2 with *(x, y) = d(x, y) and p = 2 .

Under the assumptions of Theorem 3-11 i t is also possible to give

estimates similar to those in Theorem 3.1* or Corollary 3-5-

4. Applications

As i l l u s t r a t i o n s of our general r e su l t s we consider three examples.

4.1 A MODIFICATION OF LEHNHOFF'S TIMAN TYPE THEOREM

Recently in a very in te res t ing paper Lehnhoff [13] invest igated the

sequence of posi t ive l inea r polynomial operators on C [ - l , l ] given by

H (f, x) = — I ffcos(arccos x + v)) • K. Av)dv
n ir I '• ' 3«-3

J-TT

with kernel

i ) = 10 fsiniw/2)"*6

3n-3

He showed that for a l l / i t s image H f is a polynomial of degree

3n - 3 satisfying
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n2

From Theorem 3.11 we see that for f € C[-l, l] , |x| 5 1 , and e > 0

one has

i . *

A proper choice of E then implies

\Hjf, x)-/(x)| 5 1.66 • a /, ̂ F ^ + -14

However, the question for the bes t possible constant in a Timan type

es t imate in terms of <2(/, •) s t i l l remains open. D

4.2 APPROXIMATION BY BIVARIATE BERNSTEIN-STANCU OPERATORS

In h i s paper [ 23 ] , Stancu invest igated a general izat ion of the b i -

v a r i a t e Bernstein opera tor , given by

,3> < a > /

=0 J=C

where

V( = 0 T T (l-t+vy)]/!^
v=0 J v=0

/ € C([O, I]2) , (x, y) € X = [0, l] 2 , n, m > 1 , a, 6 > 0 .

Obviously L ' is a positive linear operator and hence Theorem

3.11 is applicable. Note that L ' reprocudes 1 . Using the

euclidian metric d on X we have to consider

<ot>,
(

i=0 ,7=0

1+0U7?
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Here some known facts about univariate Bernstein-Stancu operators were used

(see, for example, [4]). Theorem 3-11 implies

For a = B = 0 this reduces to an inequality for bivariate Bernstein

operators on X , namely

4.3 SHEPHARD'S "METRIC INTERPOLATION"

While the l a s t two examples were mainly given in order to i l l u s t r a t e

the magnitude of the constants in our general theorems, we now turn to an

example that l ives in metric spaces (X, d) .

Let / be a real-valued function defined on X , and l e t x , . . . , £„

be a f in i te collection of d is t inc t points in X . We assume further tha t

for each tf-tuple [x , . . . , x,.) we are given a f in i te sequence

[\L, , u..) of real numbers u. > 0 . Then Shephard's method of "metric

interpolation" is described by the operators S« given by

= S
1

(f, x)

I fixj • Tl d{x, x) A/[l TT d(x, xk)
 k}\

for x fc

f[x.) otherwise.

An alternative representation of the sum is

It is immediately clear that S« is a positive linear operator on C(X) ,

say, and that S^f/, x^) = /(x^) for all x^ . Moreover, ^(l^., x) = 1

for all x € X . The S's were introduced by Shepard [21]; for further
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information see, for example, Gordon and Wixom [5].

In the sequel we res t r ic t ourselves to the case where

1 £ y = y. = . . . = y^ . For the estimates given below we shall make use of

the conventions 1/°° = 0 , 1/0 = °° , and a + °° = °° for a > 0 .

THEOREM 4 . 1 . If y > 1 , then the Shepard operator sjjj satisfies

for f £ C(X) and x € X the inequalities

(i) S^(f, x)-/(x) < <3(/, T^(x)j , where

I d(x, s ,)-^1 d{x i -y

and

(ii)

i=i

whereSjj(f, x)-f(x) £ ui(/, Xff(x)1

harmonic mean of d[x, xA , . . . , d[x, %J) , that is

- 1

Proof. The proof of (i) is an immediate consequence of the second
representation of S given above, of Theorem 3-1 and the fact that

V * • xx •

Proof of (ii) . Corollary 3-2 gives

u 11
s;., * , Id , x\\ - S>{f, e) ,ATf, x)-f(x) 2 max

where

j . *. Id, x) = inf {sj(*(., «)P^. ,x

and * is a function on x , such that for some q t 1 and x, y €

inequality d(x, yy 5 $(x, y) holds. Choose q = 1 and
*(x, y) = d(x, t/) . Thus
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, d, Id, x] - inf

Using the second representation of S^ i t is immediately seen that

Hence the above estimate reads

ui(/, e)

and a proper choice of e for x t x, yields the above estimate. Due to

u
the interpolation properties of S^f i t remains true if x is one of the

interpolation points. D

REMARK 4.2. (i) In the example to follow we shall apply the first

assertion of Theorem U.I. Although the second one is often useful for

proving non-quantitative convergence theorems, the evaluation of T

rather than of XM i-s °? advantage for quantitative purposes. This

observation corresponds to the well known fact that, when investigating the

quantitative behavior of a sequence of positive linear operators L , the

Cauchy-Schwarz inequality should only be used if L [d(•, x); x) and

L [d(•, x) ; x) vanish of the same order.

( i i ) Since the harmonic mean x« an^i "the geometric mean I\. of N

posi t ive numbers are re la ted by XM — ^« , the second estimate in Theorem

k.1 implies

{ N/~N I
<a / , • TT d{x, xM .

Although the right hand side still shows that SZ. is an interpolation

operator, it seems to be hardly of advantage to use geometric means (see

also Remark h.k).

In order to illustrate our general estimates for Shepard operators, we
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again consider a univariate case, namely X = [0, l ] , d(x, y) = \x-y\ ,

x. = i/n for 0 2 i < n , and 1 2 \x 2 2 . The cases \i > 2 were
tr

investigated by Somorjai [22] (see also Szabados [24] for \i = h ) . For

X = [-1, l ] and x, = cos ((2?c-l)/2n)iT , 1 < k 2 n , see Hermann and

VeYtesi [6 ] .

THEOREM 4.3. Let X = [0, l ] , d{x, y) = \x-y\ , and SV be the

Shepard operator based on the points x. = i/n , 0 5 i 5 n , and exponent
"Is

y with 1 5 p £ 2 . Then for all f € C[0 , l ] and a l l n i l we have

(i) \s\f-f\ S ^ • <3(/, l / l n ( 2 n + 2 ) ) ,

5 ^ • 5 ( / , l/(n+l)lJ-1) /or 1 < p < 2 ,

Proof, (i) The second estimate in Theorem h.1 shows that for all

x € [0, 1] we have

where X

that i s ,

i s the harmonic mean of the numbers \x-(i/n) \ , 0 < i 5 n ,

N
i =0

l/|x-U/n)|

- 1

, where N = n + 1 .

Here we may assume that x is none of the interpolation points since in

this case the above estimate holds anyway. In order to determine how fast

this expression tends to zero we have to find out how fast

n

N i=0

t e n d s t o i n f i n i t y . L e t i b e d e f i n e d b y i/n < x < [i +l)/n . T h e n
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^=0
[ i0 +l- i) + m I

which in turn shows that XHC

l n ( 2 n + 2 ) ,

(n+l)/n • l/ln(2n+2) . This gives (£,).

(ii) and (££i>> . For the case u > 1 we use the first inequality in

Theorem ^.1 and thus have to estimate the quantity

n

I
i=0

for x $ {xQ, ..., xj .

Let Z. be defined by \x-x~ | = min{ |x-x7 | : 0 5 I £ n} . Then the las t

sum is less than or equal t o

n

l0 i=0 v

n n k=0

where either of the sums may be empty. For 0 2 I < n the quantity in

accolades is less than or equal to

[n/2]
2 • ( W ) ^ - 5 2 ' 2-p

2-y
for 1 < y < 2 ,

2 + ln(n+l) for u = 2 .

This implies estimates CiiJ and (Hi) of Theorem it.3. D

REMARK 4.4. We follow up Remark U.2 (ii). If in Theorem *t.3, with

U = 1 for example , we would have used geometric means instead of harmonic
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ones, the parameter in the modulus of continuity would have become
1/N

, and, for an arbitrary choice of N = n + 1 points
[1=0

I
x~n

xQ, ..., x in the interval [0, l] , m
1=0

x-x.,

1/N

respectively. The

quantity under the root is the modulus of a polynomial of degree n + 1
with leading coefficient equal to one. As is well known, the sup norm of
such a polynomial cannot become arbitrarily small. For instance, on
[-1, l ] i t is minimal for the Cebysev polynomials T where

n
1

1=0
[-1,1]

> 1/2 for all possible choices of x, ..., x , even

in IR . This means that

uniformly in [0, 1] .

I I |a>-a:7| cannot become a r b i t r a r i l y small
1=0
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