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Professor Sir Thomas Cherry, F.A.A., F.R.S., died at his home in
Melbourne on 21st November 1966 at the age of 68. He was widely known
and highly respected as Australia's most distinguished mathematician and
a leader in university affairs. He was associated with the University of
Melbourne for most of his life, and latterly with La Trobe University as
first chairman of its Academic Planning Board. He was a foundation mem-
ber and a president of both the Australian Academy of Science and the
Australian Mathematical Society. His greatest contributions to knowledge
were probably made in the mathematics of air flow in trans-sonic flight,
simultaneously with Lighthill in Britain; but he also made major contri-
butions to global differential equation theory and general dynamics, and
solved some difficult special problems in various branches of applied
mathematics. He was a most distinguished teacher, amongst whose students
are numbered two Fellows of the Royal Society and several professors in
Australian and overseas universities. He was a man of wide interests and
great ability, of keen insight and broad vision. He knew much more than
he ever wrote, and his influence will live on in the minds of innumerable
people with whom he worked.

He leaves a widow, Lady Olive Cherry, and a daughter, Jill, Mrs.
J. D. Stowell of Newcastle, N.S.W. To both of them I accord my warmest
thanks for much kind help in many matters connected with the writing of
this article. I also thank his secretary, Miss Shirley Flinn, for her valuable
assistance.

For help in preparing the research portion of this article I am grateful
to W. A. Coppel, J. W. Craggs, D. Elliott, A. R. Jones and W. W. Wood.
I hope that the account presented is both accurate and balanced. For any
departure from these aims I must accept responsibility. I also thank
C.S.I.R.O. (Australia) for permission to comment on some reports sponsored
by that organization.

It is expected that articles describing Professor Cherry's life and work
will also appear in the papers of The Royal Society of London and in the
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Journal of the London Mathematical Society. Articles of a more general
nature about his life are also expected to appear in the papers of the Austra-
lian Academy of Science, in the Australian Journal of Science and in the
Australian Mathematics Teacher.

Thomas MacFarland Cherry was born at Glen Iris, Melbourne, on 21st
May 1898, the second son of Thomas and Edith Cherry. His mother was a
Melbourne graduate in classics, and daughter of Dr. Gladman, the first
principal of the Melbourne Teachers' College. His father, Dr. Cherry, was
a bacteriologist of distinction and a most versatile man, interested in matters
ranging from classics to tuberculin-free milk. He held the Melbourne degrees
of M.D., M.S.; he became State Director of Agriculture, and then in 1911
first Professor of Agriculture in the University of Melbourne. He served as a
Major in the R.A.M.C. in Egypt in World War One, discovering the mecha-
nism of dysentery there; and from that time on actively carried on cancer
research until his death in 1945 at the age of 82. Dr. Cherry's father,
Edward Cherry, had come from England to the Victorian gold fields in 1855,
then built up a family business manufacturing 'Cherry churns' and other
dairy appliances in Gisborne, of which he became a shire councillor. His
grandson's last resting-place is beside him at Gisborne, among the English
trees which as a councillor he had been instrumental in planting.

In his secondary schooling, at Scotch College, Melbourne, young Tom
Cherry came under the scholarly and kindly eye of W. S. Littlejohn, who
in after years often remarked on his special excellence. It was a foregone
conclusion that his school career would culminate, as it did in 1914, in his
being a prefect and dux of the school.

At the University of Melbourne from 1915 to 1917 Cherry was taught
by E. J. Nanson, Professor of Mathematics, and J. H. Michell, F.R.S., a
distinguished worker in elasticity and hydrodynamics who in 1923 succeed-
ed Nanson. Cherry esteemed these men highly, but it must have been his
own peerless intellect and unerring insight which brought him to graduate
two months before his twentieth birthday, with first class honours and the
Dixson and Wyselaskie Scholarships. In Ormond College, where he resided,
he had a special regard for D. K. Picken, the Master, and C. E. Weather-
burn, the Tutor in Mathematics. Picken tirelessly emphasized fundamentals,
especially the laws of algebra now called the properties of fields, and
Weatherburn staunchly advocated vector methods which have now become
so central in mathematics. Cherry retained a small but lifelong interest
in Ormond College, and so it was that the first Meeting of the Australian
Mathematical Society was held in residence in Ormond in 1956.

After a sojourn in the armed forces in 1918 Cherry began a medical
course; but he abandoned it when his godfather, Sir John MacFarland, then
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Chancellor of the University of Melbourne, lent him £ 150 per annum for
three years to go to Cambridge for more mathematics. After one year he was
a Wrangler with B*, and Trinity College made him a Senior Scholar and
then Isaac Newton Student. He went on to research in celestial mechanics
and statistical mechanics, apparently under the supervision of H. F. Baker
and (to a small extent) of J. E. Littlewood. By 1924 he had published five
substantial papers and received the Smith's Prize, the Senior 1851 Exhibi-
tion, and the then rare degree of Ph.D.. In the same year his college elected
him into a fellowship, setting the seal on an association which was to be
lifelong: whenever he was in England he would make time to visit Trinity.
In reference to his fellowship the Master of Trinity, Sir J. J. Thomson, wrote:
'He had previously been granted the degree of Ph.D. by the University, a
distinction which is only given to those who have done original work of
great merit and promise. I am of the opinion that Dr. Cherry is one of the
most promising of the younger mathematicians, and likely to rise to great
eminence.'

In the four years of his fellowship Cherry wrote several papers on Ha-
miltonian systems of differential equations. The twin founts of his inspira-
tion were Poincare"'s 'Les Me"thodes Nouvelles de la Me"canique Celeste' and
Whittaker's 'Analytical Dynamics'. During this time he spent three terms
as Associate Professor of Applied Mathematics in Manchester, deputizing
for E. A. Milne, and one term in a similar position in Edinburgh deputizing
for C. G. Darwin. His conduct under these responsibilities supplemented
the high reputation he was building by his research, and his teaching was
even compared with that of the illustrious Sir Horace Lamb. In Edinburgh
he was associated with Sir Edmund Whittaker, who was very impressed not
only by his contributions to analytical dynamics but also by his skill and
originality as a teacher and his good relations with students and staff.

Cherry's Cambridge years were full of other activities too. He played
tennis for Trinity, and was for one year captain of the team. He held office
in the Trinity Mathematical Society, the Cambridge Mathematical Club
and the V2F Club. His contemporaries remember especially his keenness for
scouting and mountaineering. After extensive experience on British moun-
tains he not only climbed the Matterhorn, but also traversed the Pyrenees
from end to end without a guide in winter. As Scoutmaster and later as
Commissioner he worked with boys and men of both town and gown. At
least one of his Cambridge friends acknowledges Tom Cherry as the origin
of his lifelong interest in scouting. And in Edinburgh it is still said that he
took lodgings close to Waverley Station so that at week-ends he could
reach the mountains more speedily.

On the retirement of his former teacher J. H. Michell from the Melbourne
chair at the end of 1928, Cherry returned to the University of Melbourne as
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Professor of Mathematics, Pure and Mixed. This, his official title, described
him with rare aptness. Few mathematicians since Poincare" have been so
universally well-informed and able to speak authoritatively about most
branches of mathematics and a great deal else besides. For the next 35 years
he devoted himself without reserve to the welfare of his Department, in-
spiring staff and students alike; and his unerring judgment, his breadth
of vision, and his tremendous capacity for work soon made him the unques-
tioned leader of mathematics in Victoria, and ultimately a leader of science
in Australia.

In the lecture room Cherry was terse, well-organized and often exciting.
He developed his themes from the simplest starting points, and his teaching
had a compelling common sense. Despite what he called the 'vertical struc-
ture' of mathematics, he preferred 'first principles' whenever practicable.
At one time or another he taught every subject, pure and applied, at all
levels in the undergraduate courses, and always with complete mastery.
He would stand in for a sick member of staff with barely any notice, even
when it involved three hours' consecutive lecturing. In the 1930s the stint
was four courses simultaneously, for him and for his staff. But he found
this no burden, for he loved teaching and regarded it as his main responsi-
bility. He was inclined to ascribe the success of his students to their under-
graduate course rather more than to their research training.

Cherry's attitude to his official responsibilities was ideal. He gave them
all due attention, from homework marking to committees and from school
examining to research; and he still found time to undertake extra tasks
that colleagues in his own or other departments might ask of him. He seemed
to regard nothing as a hindrance; everything was part of one great game
which was supremely worth playing. Idleness was just not in his programme.
He used to say, about teaching and administration, 'the reward for work
is — more work'; and about research, 'genius is 10 % inspiration and 90 %
perspiration'. As the years went on his own research became more and more
a nocturnal affair, even though it was one of his greatest loves. He thought
of research and teaching as complementary, not exclusive; both held top
priority with him, and he encouraged his staff in both activities too. He
once lectured to staff and senior students on the mechanism of research,
and two memories of this stand out: 'After hard thinking, ideas begin to
come, perhaps at unexpected moments'; and, to the astonishment of some,
'I'm happiest when I'm working'.

A year after leaving England he had made a brief return to marry Olive
Ellen Wright, of Walkern, Hertfordshire. Scouts and guides were among
their common interests, but Tom and Olive were interested too in people of
all kinds. Their hospitality was quite extraordinary. Whenever one visited
them there would be someone staying with them; often a young man or
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woman making a start in a new country, and not infrequently a whole
family. Sometimes the visitors were mathematicians, especially in later
years, and Tom delighted in taking them to see the nearer mountains and
the bush which he knew and loved so well. But more often they were young
folk who could do with a little support and encouragement, and the Cherry
home became for the time being their home. Besides this individual care
that they gave so often though so discreetly, they were hospitable in a
large but informal way, and a holiday with the Cherrys was often a communi-
ty enterprise in which friends from various spheres enjoyed the stimulus of
new company and climbed whatever mountains were within reach.

To promote informal contact between students and staff Cherry early
founded the Melbourne University Mathematical Society. As he hoped,
this soon came to be run mostly by students. Talks were given by visitors
and staff members, and also by students themselves. Cherry's comments
and questions at the end of a talk were always apt and well-informed, and
often clarified things or led on to discussion. The meetings, for many years
held in the evenings, were followed by informal conversation over tea and
biscuits.

The Mathematical Association of Victoria soon made Cherry its presi-
dent, an office he held from 1929 to 1934 and from 1946 to 1948. His real
interest in the school teachers and their problems, and his hard work for the
Association, gained not only their confidence but their enthusiasm and full-
est allegiance, and eventually they made him one of their very few life mem-
bers.

He was also on the University's Schools Board, and chairman of its
Mathematics Standing Committee from 1929 to 1952, and was never far
removed from syllabuses and question papers. (Such duties have been nor-
mal for many Australian professors until quite recently.) He was respon-
sible for two major re-draftings of school syllabuses, for the suitability and
correctness of about a dozen public examination question papers each year,
and for the fairness with which they were marked. He did this mainly by
supervising the work of teachers appointed to examinerships by the Uni-
versity. He also carried certain important overall responsibilities for the
fairness of school examining in all subjects. He exercised these far-reaching
powers with fair-mindedness and tolerance, and he regarded the welfare of
the children as the thing of supreme importance.

Despite the vastness of his labours, Cherry actively kept up his interests
in scouting, hiking and mountaineering. He instituted the Melbourne Uni-
versity Mountaineering Club, became its first President, and is remembered
by 'Cherry's Flake' as well as by generations of young men and women,
mathematical and otherwise. As in Cambridge he became a Scout Commis-
sioner and Leader of the University Rovers, and for twenty years he also led
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sociate at the California Institute of Technology, and in 1963 to deliver a
lecture at a Symposium on Non-Linear Problems at the University of
Delaware. Returning through London he addressed the Royal Society. He
also gave a few lectures of a more general character, on the occasions of
honorary degrees and other such events. He was a past master at adapting
his matter to suit his audience, and the manuscripts of his lectures, both
mathematical and otherwise, are a mine of interesting material.

Cherry retired at the end of 1963. He became Professor Emeritus, and
remained on in his former department as Senior Research Fellow during
1964. Late that year, as President of the Australian Academy of Science, he
led a delegation of scientists to Peking at the invitation of the Academia
Sinica. He was working with increasing intensity as chairman of the Aca-
demic Planning Board of La Trobe University, on whose Interim Council he
had already served for some years. Nearly every evening he was busy at
research until the small hours. The full life he had always lived continued
unabated, and his worth was increasingly recognized. On the first day of
1965 he was made a Knight Bachelor.

Cherry still seemed much too active and robust to have retired; but not
many weeks later he suffered a severe heart attack. With characteristic
vigour he recovered rapidly and continued most of his activities. He spent
the academic year 1965—66 at the University of Washington, Seattle, as
a full-time staff member, lecturing to students as he had always done. He
was working at problems in Hamiltonian systems, and discussing them
with American leaders in differential equation theory. This led to a comple-
ted paper [16], and to a sequel which he was writing later in 1966 after his
return to Melbourne. He took up again his work for La Trobe University,
which was to open in 1967. Unhappily he did not live to see the opening or
to complete his last manuscript.

A great gathering of people from many walks of life assembled at the
last, each with his own special memories of T.M.C.. Among staff members it
was agreed that he didn't 'throw his weight around'; he didn't have to.
And many must have shared the thought expressed by a non-university
man whom he had helped many years earlier, who said simply 'He was my
best friend'.

I have attempted to describe Cherry's published work under eight
headings, including a miscellaneous section. The grouping is of course a
little arbitrary, and some cross-threads connect several groups in the classi-
fication adopted. It would have been not unreasonable to group papers
17—20, 41 and 47 under a heading such as 'analysis, untrammelled by ap-
plications', and papers 35, 44 and 45 under 'natural philosophy'; but most
of the papers contain both these extremes and much that lies between.
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I have already acknowledged, on the first page of this article, the help
of several colleagues in the Australian Mathematical Society in the descrip-
tions of Cherry's research which follow. In particular, I am indebted to
W. A. Coppel and A. R. Jones for some of the comment on differential
equation theory, to D. Elliott for some on numerical analysis, to J. W.
Craggs for some on the hodograph method in compressible gas flow, and
to W. W. Wood for some on infinite linear systems of equations.

Ordinary Differential Equations

Cherry's earliest papers were about global behaviour of solutions of
systems of non-linear differential equations, expressible vectorially in the
form

where x is unknown and / is a given analytic function from ^-vectors to
w-vectors. As a preliminary he discusses in [1] the analogous system of dif-
ference equations, establishing the general solution as an analytic function of
certain arguments by use of a dominant series method. In [2] he presents
'a new method of attack on a fundamental problem', avoiding the use of
series which had bedevilled previous attempts. The background, here and
elsewhere, is Poincare"s great treatise [A]. He sets out to show that, if the
nth order autonomous system (1) has a positive integral invariant and an
M-dimensional compact invariant set Q, then the solutions in Q are quasi-
periodic. Moreover the number of basic frequencies is less than n and, if the
system is Hamiltonian, at most \n. Cherry admits that his investigation is
open to criticism; but there is no doubt about the importance of the problem
and the novelty of the method. Quite recently, further progress in this
problem has been made by Moser [B, §7] and Cartwright [C].

In [3] Cherry constructs n—1 independent 'integrals' of (1) near an
ordinary point; an integral being a function of x which is constant along
any solution curve. He shows further that in general there are no integrals
developable in multiple power series about a singular point. Later, in [7],
he began to exploit the exceptions to this, namely Hamiltonian systems.
In [4] he gives his version of a proof of Poincar6's theorem on non-existence
of 'uniform' integrals (other than the energy integral) of Hamiltonian sys-
tems, but uses [3] to show, contrary to general opinion at that time, that
there are integrals which fulfil all Poincare"'s conditions except expansibility
in powers of a certain parameter ft. In [5] he presents the view that the use
of angular coordinates in the problem of three bodies leads to 'small divisors'
in the formal trigonometric series solutions, thereby introducing an artifi-
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cial complication. However it seems that small divisors occur no matter
what coordinates are used; and Arnol'd [Q] successfully uses angular coor-
dinates.

It is clear that Cherry had a deep knowledge of this difficult subject,
and that his powerful methods enabled him to open new lines of progress
and even constructively to criticize Poincar6's work. It seems that he hoped
that further study of integrals would lead to progress in the three body
problem, and in [6] he made an extensive survey of global properties of
solutions, as revealed by integrals, in eight particular systems of order 3 or
4. The last of these was reproduced by Whittaker [D, p. 412] and by Wintner
[U, § 136 bis]; it exhibits an unstable system which, when treated to the
first order only, 'becomes' stable. However, when Cherry returned to dy-
namical theory in later life, it was to problems akin to the quasi-periodicity
of solutions, as in [2], rather than to integrals.

Hamiltonian Systems of Differential Equations

The problem in this group of papers is again to find the global beha-
viour of solutions, but equations (1) are now restricted to the Hamiltonian
form, of order 2M,

ixr SH dyr 8H(2) 1 < 1 a >
and considered at first near a singular point. Following the lead given by
Whittaker's 'adelphic integral' [E] and his own papers [3] and [4], Cherry
constructs in [7] n analytic integrals of (2), and shows that there are no
more than n independent such integrals. He fills an important gap left by
Whittaker [E] concerning the vanishing of coefficients of critical terms,
which Whittaker (D, p. 434] acknowledges. Birkhoff later gave an investi-
gation [F] equivalent to [7], but not to [8].

An essential requirement in [7] is the absence of commensurability
relations connecting the exponents A1( A2,..., Xn at the singular point; that
is, the absence of linear dependences

(3) A1ll+AtXt+ . . .+AnXn = 0

in which the Ar are integers not all zero. In [8] Cherry extends his theory,
showing that if there are exactly p linearly independent relations of com-
mensurability (3) then there are exactly n—p analytic integrals.

Among the great complications in [7] and [8], a major difficulty is that
the formal series solutions which arise in constructing the integrals are prob-
ably divergent, although convergent if rearranged as multiple power series
in xx, . . ., xn, yx, . . ., yn. This unsatisfactory feature leads on to [10] and
[11], to which [9] is a preliminary.
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In [9] Cherry justifies the assumption he makes in [7], [8] and [10]
that the terms of lowest degree in the Hamiltonian H may be taken as

This is essentially the congruence reduction of a real symmetric matrix by
a linear contact transformation. He also prepares the ground for [11] by a
similar reduction for the case in which H involves t and is periodic in it.

In [10] formal solutions of (2) near an equilibrium point are constructed,
in the form of multiple power series, when there is no commensurability
relation (3). As in [7] the difficulty of small divisors again comes in; and
Siegel [G] showed, much later, that convergence is in a sense exceptional.
Cherry, intuitively aware of this, nevertheless gave a proof of convergence
in the case n = 2 and Ax/A2 unreal. Many years later Moser [H] found, and
filled, a serious gap in Cherry's proof.

Periodic solutions of (2) are studied in [11]; they have the advantage
that the formal series specifying them can in certain cases be proved con-
vergent. As in [7] and [8] Cherry is seeking to avoid certain obscurities in
Poincar6's work. Here he aims to find all periodic solutions of one Hamil-
tonian system, whereas Poincare" worked with a Hamiltonian involving a
small parameter (i and his theory furnished, for a given non-zero fi, only
those periodic solutions whose period is not too large. The gigantic scale of
the work, and the formidable nature of the problem, are indicated by the
fact that, despite its eighty-odd pages the memoir limits some substantial
parts of the discussion to an outline.

Cherry's investigation of periodic solutions goes further than that of
Birkhoff in [F], in that commensurable exponents are considered in [11].
Again, Birkhoff starts by fixing the energy constant at a value chosen to
reduce the order of the system; so he obtains only a cross-section of the
families of periodic solutions considered in [11], and does not obtain the
details of their branching. In this connection Whittaker [D, p. 396] mentions
with surprise Cherry's paradoxical conclusion [11, p. 216] that 'for an arbi-
trary Hamiltonian system the periodic solutions are in general 'singular''.
Indeed, Whittaker was evidently so impressed by Cherry's work that he
ended his book with a footnote [D, p. 449] which seems almost to say that
the continuation of the subject would be found in Cherry's papers.

Topological Dynamics

Ten years later Cherry wrote again [12] on systems of ordinary non-
linear differential equations, in something like the same vein as in [2].
Topological ideas occur frequently in his earlier differential equation work,
but here there is a more formalized topological approach, evidently due to
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the appearance of Birkhoff's book [F] meanwhile. The leading idea in
[12] is to classify trajectories by relating them to their a- and co-limit
sets; and whereas Hadamard [J] and Birkhoff had recognized the impor-
tance of trajectories which are contained in both these limit sets, Cherry
explores all the possible relations between a trajectory and its limit sets.
Besides several additions to Birkhoff's theory, he shows that Birkhoff's
classification of trajectories is not exhaustive, and gives examples to show
that all the logical possibilities can actually occur.

A further example is given in [13], where Cherry constructs an analytic
third order autonomous system with recurrent solutions of discontinuous
type. The interesting point is that the trajectories have this pathological
character whereas the differential equations are analytic; in fact the right
sides of (1) are polynomials. Another discussion of such a phenomenon has
since been given by Levinson [K].

The importance of this pioneering work by Birkhoff and Cherry
can be seen in the subsequent growth of the subject, as witnessed, for
instance, by the books of Gottschalk and Hedlund [L] and Nemytskii and
Stepanov [M].

Later Dynamical Studies

Cherry's presidential address to the newly-formed Australian Mathe-
matical Society in 1956 was published [14] as the opening paper in our
Society's Journal. In it he recalls ideas and examples from [12] and [13],
and the 'small divisor problem' mentioned in [7], as a springboard for new
thoughts on pathological global behaviour of the kind discussed in [13].
He uses the example of a rigid pendulum with pivot forced to vibrate ver-
tically (step-wise, not harmonically) to demonstrate the possibility of
existence of an integral F which 'has continuations along its level surface
F = 0 which are essentially singular at all points of this surface'. He also
discusses trajectories which are everywhere dense on an energy-hypersurface,
called 'transitive' or 'quasi-ergodic' trajectories, with special reference to
Artin's example [N]; there the well known modular figure was used to
exhibit transitive geodesies, and in particular to show that 'the hyperbolic
billiard table permits transitive shots'.

The paper goes on to recent progress on small divisor problems. One
item is Siegel's tour de force [O] on the convergence 'in general' of formal
series solutions of (1). Another is Moser's proof [H] of their convergence in
the Hamiltonian case, when there are \n relations of commensurability and
the remaining exponents have unreal ratios. Finally Cherry gives support
for his conjecture that when these remaining exponents are commensurable
there may be some simpler way of expressing the solutions, perhaps by
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asymptotic expansions. The work of Arnol'd [Q], which had not then been
translated, is not mentioned.

In [15] Cherry presses the view that the small divisor problem may be
illuminated by studies of the analogous problem of iteration of analytic func-
tions, that is, of sequences {zn} satisfying

(*) *n+i = /(*„) (» == 1, 2, 3, . . .)

where / is regular at 0 and /(0) = 0. The 'singular' case occurs when the
attempt to reduce (4) to the linear form wn+1 = kwn by formal substitution
of

(5) z = w-\-c2w
2+czw

3-{- . . .

leads to values of cn for which (5) is divergent for all w # 0; and the object
is to find under what conditions this case can arise. When X = e2nia and a
is real and irrational (5) is a small divisor series, but the singular case cannot
occur unless a is 'highly' transcendental. In the converse direction, assuming
that / is a rational function Cherry reaches conditions which secure that the
iteration is singular, albeit through a labyrinth of detail much of which is
only sketched.1 This is an advance on the analogous dynamical problem, but
he maintains that it is the global knowledge of / as a rational function that
makes this advance possible.

In [16], his last completed paper, Cherry adds to the meagre stock of
real analytic Hamiltonian systems which are known to be non-integrabie,
that is, whose only globally single-valued integral is the energy integral.
Poincare" [A] had, by an incomplete argument, made it probable that
Hamiltonian systems are in general non-integrable, although Moser [P]
and Arnol'd [Q] have reduced this probability somewhat. Artin [N] ex-
hibited actual non-integrable analytic systems, by showing that the geo-
desies on certain closed surfaces of negative curvature have a topological
pattern which precludes integrability. The non-integrable system Cherry
discusses has an additional feature, one of physical interest, namely a peri-
odic solution with first order stability. The non-integrability is demonstrated
by discussing two 'asymptotic surfaces', generated by trajectories which
approach a certain unstable periodic solution as t -> ±00; it is shown that
the analytic continuations of these surfaces intersect but are not coincident,
and that the consequent pattern of trajectories is topologically inconsistent
with the existence of an adelphic integral. Cherry points out that Birkhoff
[R, p. 460] abandoned his attempt to construct an analytic non-integrable
system by modifying a C°° non-integrable system. He also mentions allied
work by Morse [S] and by Smale [T].

1 Fuller details of this may possibly be written in his notebooks; it is likely that he
studied this subject deeply over many years.
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In his last months Cherry was writing a sequel to [16] entitled 'Forced
oscillations of a rigid pendulum'. He started from the same Hamiltonian
system as in [16], which is effectively equivalent to any one of

(6) x = g(t) sin x, %x = F(t) sin \x, F = {g—F2) cos %x,

F being defined from the given function g. In [16] the solutions asymptotic
to the unstable periodic solution x = 0 (the upward vertical position) were
studied over the half-revolution to x = n, but now he proposed to consider
the solutions in general. The key to [16] was a function f{t) defined by
(compare the last of (6))

and expressible in terms of Jacobian elliptic functions. Instead of (7), the
distinctive first step in the new investigation appears to be a 'transformation
to osculating variables', namely

(8) sin \x = dn(Kv, k), cos %x = — k sn(Kv, k), F = k\/g cd(Kv, k),

where K is the real quarter period of the elliptic functions. Much work fol-
lows, but apparently without reaching the conclusions he sought.

Fourier-type Expansion Theorems

During the second war Cherry gave much attention to specific techno-
logical problems in electromagnetic and elastic contexts, and this greatly
changed the character of much of his subsequent work. He was now solving
partial differential equations by series or integral transformations, and the
complications of existing expansion theorems spurred him to seek improve-
ments. From here on his work was mostly classical analysis, especially com-
plex function theory, carried on with remarkable ingenuity and complete
rigour in an applied context.

The theorems in [17] centre around the Hankel transform, arrived at
by a method analogous to Cauchy's treatment of Fourier series. This method
uses the solution y = F(x, w), satisfying certain boundary conditions, of

dhi dv
(9) ** d i + x £+(w*x2-v*) y = «"•/(*)•
where / is the function to be transformed. This solution F(x, w) is expressed,
by the method of variation of parameters, as an integral transform of / in-
volving Bessel functions. The inverse transform is

(10) /(*) = F(x,w)dw,
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as might be expected by deforming the path of integration to a large semi-
circular contour and guessing from (9) that F(x, w) ~ f{x)/w when w is
large. Various boundary conditions with (9) give rise to various integral
expansion theorems, including new ones as well as those of Hankel, Weber,
Dini and Watson.

Cherry was especially pleased with the directness and power of this
method. It is not surprising that it was also being exploited, on a more gen-
eral level, by Titchmarsh at the same time. His book [a] appeared during
the five years that Cherry's manuscript languished in the hands of printers
struggling with wartime difficulties.

A similar method is used in [18] to obtain an expansion in terms of the
parabolic cylinder function Dv{z), where z = xe**"/*, v = —\-\-ifJ. and x and
fx are real. It yields a companion to a well known expansion in Hermite poly-
nomials, useful in studying wave propagation in the presence of parabolic
boundaries. The formula obtained had also been found by Magnus [b] under
more restrictive conditions; and a related special result had been given by
Erd&yi [c].

Asymptotic Expansions

These papers were auxiliary to the calculation of trans-sonic gas flows
achieved in the later 1940s. They provide usable approximations to func-
tions whose character changes radically in the region of interest, which in
the gas flow situation extends from subsonic to supersonic speeds. A simpler
instance is the Bessel function Jv(vz), which can be said to have a 'transition
point' at z = 1: it changes from monotonic to oscillating when z is real and
increases through z = 1, and this change is compressed into any small
neighbourhood of z = 1 when v is made sufficiently large. Cherry discusses
what he calls 'uniform asymptotic formulae' for Jv{vz) in [19]. This paper,
substantial as it is, turns out to be little more than an illustrative sketch to
the next.

In [20] a full systematic theory of 'uniform asymptotic formulae' is
given for functions Fv(z) satisfying a linear differential equation

where / and g are known analytic functions. The problem of approximating
Fv(z) by elementary functions, when v is large, uniformly on a compact set Z
independent of v, had been solved in particular cases by Debye and other
earlier workers. Their treatments all supposed that Z contained no zero of
f(z); this corresponds in the gas flow context to wholly subsonic, or wholly
supersonic, flow. In the case where Z contains a simple zero of f(z), corre-
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sponding to gas flow which is subsonic in some regions and supersonic in
others, it seems to be necessary to abandon elementary functions as the
approximanis, and to use some standard function satisfying another equa-
tion of the form of (11); the Airy function in particular. Watson [d] and
L anger [e, f] succeeded in obtaining first approximations of this kind.
Cherry obtains such approximations to arbitrarily high order, and his results
can be expressed as an asymptotic expansion.

In [21] Cherry brings this work into the gas flow context, which in-
volves hypergeometric functions with parameters all dependent on one large
parameter v. These functions xAr)> V»(T) a r e expressed by asymptotic formu-
lae, both of the Debye and of the uniform kind, the latter involving Bessel
functions of argument vt where t is a none-too-simple function of T. All
these formulae are developed to the terms in v~~*, giving high accuracy over
the physically significant range; and the coefficients involved are tabulated
for an adequate set of values of T. However these tables need to be supple-
mented by a table of Bessel functions, and [22] removes this need by tabu-
lating xAr)> a n d several associated functions, as functions of both v and T.

Paper [23] was also intended for numerical use in the gas flow context,
but other developments apparently made it unnecessary. Although written
soon after [20] it is quite different. Aiming to sum a slowly convergent power
series 2 Crt

r, Cherry replaces Cr by crf(r) where f(z) is analytic in the
half-plane |arg z\ < \n and has an asymptotic expansion for large z therein.
The remainder after n terms is then estimated by use of Taylor's theorem
with remainder, actually in two different ways. Such techniques go back to
Euler, as is well known; Cherry illustrates the effectiveness of this relatively
elaborate one by the far-from-trivial instance of the Kapteyn series

This and other papers by Cherry are model contributions to numerical
analysis; the problem is reduced as far as possible by analytical methods
before numerical work is begun. He habitually did a great deal of his own
arithmetic, even after helpers and desk machines became available; and
usually he used only Crelle's or Peters's 'Multiplication Tables', great tomes
which extended the 12x12 tables learnt at primary school to 999x999.

Flow of Gases

The earliest of these papers appeared in 1947, before any of Cherry's
work on asymptotic expansions had been developed. Thus some raw material
for the latter papers appears in the former, for instance an asymptotic for-
mula found by the method of steepest descents. The contrast highlights the
originality and sophistication of the long processing which led to the papers
on uniform asymptotic formulae. What is more, Cherry's work on flow of
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gases led to knowledge which was significant even beyond the frontiers of
mathematics and science; the development of the hodograph method to
elucidate plane flow of a compressible fluid ranks as one of his most im-
portant achievements.

It had been discovered in 1904 by Chaplygin [g] that, although the
equations of compressible flows are non-linear, the hodograph equation,
giving the Legendre potential in terms of the magnitude and direction of the
velocity, is linear; and not only linear but separable. Moreover the directional
factor in a separable solution is merely trigonometric, and the speed factor
no worse than hypergeometric.

For many years these facts remained unused; but with the advent of
jet-propelled aircraft interest was quickened. Most approximate methods
of calculating compressible flows seemed to break down when the velocity
approached that of sound. Could it be that Chaplygin's hodograph trans-
formation held the key to calculating trans-sonic flows? Ringleb and Toll-
mein in Germany, Bers and Bergman in America, Goldstein, Lighthill and
Craggs in England, and Cherry in Australia, all became interested, at about
the same time, in the search for shock-free compressible flows by this means.

It was soon apparent that there were two main difficulties. One was
the behaviour of the hypergeometric functions. The other, pinpointed by
Tollmein, was as follows. Since the velocity may have equal values at dif-
ferent points, and certainly does in symmetrical flows, the position coordi-
nates x, y are many-valued functions of the velocity qeie; and for flow past
an aerofoil they have a branch point at q^, the velocity at infinity. So a
disentangling of the branches was needed before a hodograph solution could
be much use.

Lighthill [h] and Cherry [24 and 25] almost simultaneously made the
analytical continuations needed for the aerofoil case. Some hint of the diffi-
culty can be seen in the fact that the hodograph solutions for x and y as
functions of q and 6 are given by series of the form of (12) below (T being a
certain function of q). Lighthill proposed a simplified method of construct-
ing wind-tunnel flows [i], and this was adopted and improved by Cherry
[28]. Both men attacked the problems of analysis still involved, although
from this point on the main work was Cherry's [30—33]. His immense ex-
perience in classical analysis led him to devise intricate transformations
which elucidated the branching of the functions and made the calculation
of exact trans-sonic flows a practical possibility.

In [24] a family of exact plane compressible flows past a roughly cir-
cular cylinder is found, flows in which the circulation is zero and the speed
at infinity subsonic. The shape of the cylinder depends on infinitely many
disposable parameters in the family; discussion of it is deferred until [26].
The main task achieved in [24] is the continuation of the hodograph solutions
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round the branch point at the velocity at infinity. There is some discussion
of an alternative method depending on a transformation of the hodograph
equation which removes certain singularities.

The almost simultaneous work of Tsien and Kuo [j] is discussed in an
appendix. Cherry remarks that their analytical continuation rests on an
unproved assumption, and that in their chief example this assumption is
in fact false. Lighthill [h] makes similar comments.

In [25] Cherry extends the work of [24] to the case of flow with circu-
lation, with two stagnation points on the cylinder. Solutions are obtained
by generalizing those for incompressible flow. This involves an infinite set
of linear equations of the second kind with kernel in I2 (to use wording
analogous to that of integral equation theory). The Fredholm theorems for
compact operators are applicable, and Cherry solves the equations explicitly
by comparing them with a partial fraction expansion for a certain hyper-
geometric function.

In [26] three of the solutions obtained in [24] are exhibited diagram-
matically. They are obtained by heavy numerical work which is presented
in [27]. The shapes of the corresponding cylinders are obtained, and also
some neighbouring stream lines. The Mach number is subsonic at infinity,
but is well into the supersonic range near the cylinder. Debye's asymptotic
formulae are used for the hypergeometric functions, and the slowly conver-
gent series are summed by sound but crude methods. The subtleties of
[19—23] had not yet been born.

Paper [28], among many others, exhibits Cherry's astonishing intuition,
as well as his quite extraordinary virtuosity in analysis. The aim is to find
symmetrical plane nozzle flows; for these the Legendre potential Q(x, 6)
is three-valued in certain regions and one-valued in others, as Lighthill [i]
had shown. The hodograph equation gives

(12) G(T,0) = 2A,x,(T)e»«,

where %v{r) is a hypergeometric function and^4v are disposable constants.
From these requirements an appropriate Q is guessed, knowing that the
sum of the Kapteyn series

(13) K{t, 6) = 1+2 2 Jn(nt) cos nB

has branch points of the kind required for Q, and that there is an asymptotic
resemblance between %v{x) and (edlv)" /"(r+l) Jy(vt) if t is a suitable func-
tion of T. What is more, Cherry makes the analogy between (12) and (13)
lead to the exact details of the analytical continuation of Q.

Paper [29] identifies analytically a form of hodograph solution obtained
by Bergman with Chaplygin's original form (12).

Perhaps [30] is the culmination of these triumphs, even if it appears
to make Cherry's uniform asymptotic formulae less necessary. The idea
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here is that of 'uniformizing' a relation between variables by expressing
them as one-valued functions of an auxiliary variable or parameter <f>. For
hodograph solutions whose branch points are sufficiently restricted, a
transformation from (q, d) to (q, <f>) is produced which makes the solutions
one-valued, and expressible by a single series, over the whole region of in-
terest. Moreover this series is rapidly convergent. By this method Cherry
shows how to construct nozzle flows with prescribed axial velocity, and
also flows round a cylinder of aerofoil shape, with blunt leading edge and
cusped trailing edge. An important ingredient, which he calls the 'principal
solution', stands in the same relation to the Chaplygin solutions xAr) e<v°
as does the generating function of Legendre polynomials to the harmonic
functions rn Pn(cos 0).

In [31] a survey is made of hodograph solutions which might usefully
be superposed on the principal solution to obtain nozzle flows, with a view
to supersonic wind tunnel design. Several such flows are calculated and
exhibited graphically. In continuation of this, [32] contains further discus-
sion of nozzles for which the supersonic flow is ultimately uniform. Finally
[33] is a semi-expository article in which these same topics are considered.
In these papers the weight is towards practical considerations, from engi-
neering and computational viewpoints. By this time Cherry's centre of at-
tention was in fact becoming computation.

Miscellaneous Topics

A typescript report [36], on the magnetron, presents a theory of inter-
penetrating streams of electrons in an evacuated cavity, subject to less
drastic approximations than had been customary; for instance the relativity
effect on the mass of an electron is allowed for, and there is no restriction to
steady state. However it is assumed that electrons leave the cathode with
zero velocity, and it is proved that their motion is then derivable from a
potential; a proof of this under more stringent conditions was given inde-
pendently by Ferraro [k]. An integral resembling the pressure equation in
irrotational hydrodynamics is obtained, and the flow is also shown to admit
formulation as a variational problem. Singular surfaces or fronts are admit-
ted, and boundary conditions across a front are formulated. Much of the
report is concerned with solving the equations near a front, whether sta-
tionary or moving.

In [37] the detection of aircraft by a radar station is discussed, assessing
the probability of non-detection on account of the rotating beam used and
the blind areas due to interference between direct beams and indirect beams
reflected by land or sea. In [38] the opposite problem of detection of a radar
station by aircraft is discussed. The mathematics involved in these papers
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is elementary, but the practical complications and details are numerous and
call repeatedly for sound judgment.

By contrast [39] handles a formidable physical probem which involves
deep and elaborate mathematics, as well as judgment, to find correctly even
the order of magnitude of the quantities involved. This herculean paper is
one of the few in which the mathematics is not fully rigorous; indeed, some
drastic approximations are made, under the dominant consideration of
reaching physical conclusions. The problem is concerned with the flow
and temperature of a viscous liquid, nitroglycerine in particular, which is
squeezed out from between a fixed flat anvil and a parallel flat-faced hammer.

The simplest theory would treat the liquid motion as slow and the
viscosity as constant, and would neglect conduction of heat and deformation
of the surfaces. That theory gives fantastically high pressures and tempera-
tures, which experiments reject, and the three main parts of the paper are
concerned with what modifications in those assumptions are needed. Part I
uses some exact solutions of the Navier-Stokes equations, and perturbations
therefrom, to arrive at an approximate motion which is stable, for which
the inertia terms are negligible, and to variations in which the maximum
pressure and temperature are insensitive. Part II examines the consequent
deformation of the anvil if it is assumed elastic, and uses heavy successive
approximations and much arithmetic to assess the modifications necessary
in the preceding motion. In a typical instance this introduction of elasticity
reduces the pressure- and temperature-rises to one hundredth. Part III
introduces conduction and convection but omits elasticity, and shows that
their effect is to reduce the pressure- and temperature-rises to roughly one-
half. This part is made to depend on a study of the eigenitmctions of

(14) * " - ( * - % = 0,

including some approximate formulae for the higher eigenfunctions. This
attention to what is essentially Airy's equation foreshadows Cherry's im-
portant later work on asymptotic expansions [19 and 20].

If [39] displays Cherry as an applied mathematician of great power
and resourcefulness, [41] shows him delighting in delicacies seemingly quite
detached from the physical world. Paper [41] is just pure mathematics; but
it is related to the nozzle flow theory in [28] and the Kapteyn series (13),
and it is full of the function Jv(vx) which haunts Cherry's papers from [19]
to [28]. Its starting point is the formulae, dating from Lagrange and Bessel,

(15) 1+2 f Jn(nx) cos nd =

(16) 0+2 5 A M — = I*;

https://doi.org/10.1017/S1446788700005632 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005632


20 E. R. Love [20]

where 0 is real, 0 < x < 1, and f = f*(0, x) is the (then unique) real root
of Kepler's equation

(17) I—a; sin | = 0.

Cherry obtains formulae analogous to (15) and (16) for the unreal roots
f of (17), and for the power series in e~te corresponding to the left sides.
Typical features of the work are the occurrence of Fourier-type integrals
such as in

and the use of analytic continuation and of deformation of contours of
integration. There are 'second proofs' also, and it seems as though Cherry is
presenting an account of some by-products of his gas-flow theory.

In [42], with a former research student, Cherry considers the formu-
lation of compressible flow problems as calculus of variations problems,
with the aim of harnessing the Rayleigh-Ritz method to compressible flow.
They begin with plane subsonic flow in a bounded region, using two integrals
of Bateman [1]; one of these is to be maximized, the other minimized, and
the extreme values are to be equal, for the actual flow. The authors extend
their methods to an infinite stream past a cylindrical obstacle, without
circulation, buttressing some work by Wang [m]; and they go on to mention
an extension to trans-sonic flow through a hyperbolic nozzle. They do not
attack questions of existence and uniqueness of solutions to the variational
problem; consequently the work lacks the great pure mathematical struc-
ture that characterizes Cherry's earlier papers on compressible flow.

Paper [43] was presented to a conference on numerical analysis, and
exhibits the pre-computational analysis of the conduction-convection prob-
lem discussed in the third part of [39]. Emphasis is placed on judgment,
particularly in regard to finding a partial differential equation which is both
a reasonable physical approximation and one that might admit substantial
mathematical reduction before numerical treatment becomes necessary.

Paper [45], presented to a summer research institute, is a speculative
discussion directed towards an understanding of turbulent flow; Cherry
thought it would need much work before it could approach this aim. The
leading idea comes from Poincar6's 'principle of exchange of stabilities at
a point of bifurcation', which might nowadays be called a conjecture. It
receives some support from Taylor's work on the stability of flow between
rotating cylinders. Cherry thought that this work might be extended to
reveal, at larger Reynolds numbers, many more families of steady motions
branching from the original one, and from one another; and that the con-
tinual breakdown through instability of many of these would present a
situation resembling turbulence. He seeks to illustrate this by viscous liquid
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flow between parallel walls and between inclined walls, but points out cer-
tain inadequacies in each case.

Contrasting sharply with this, paper [47] is wholly pure mathematics.
It is a by-product of years of study of elastic plate problems, in which the
aim was to solve the plane biharmonic equation using eigenfunction expan-
sions, and on which Cherry himself published nothing. One such treatment
of a clamped rectangular plate he held to be in error. Continual probings
served to deepen his knowledge of existence and uniqueness theory of infi-
nite linear systems of equations, and he read much pure mathematics, rang-
ing from F. Riesz and Hellinger-and-Toeplitz to Muskhelishvili, in his
quest. Late in his career such a system was handled by Wood [n] by relating
it to a Wiener-Hopf integral equation, and Cherry, working with a more
powerful but allied technique, soon after produced this brilliant and com-
prehensive treatment of such systems.

The given system of equations

(19) xm

where {xn) is unknown, is first converted into an equivalent integral
equation by a series transform, supposing that the kernel k is expressible
as an inverse Mellin transform

j -c+ioo

(20) k(z) = — K(s)r-ds (0 < c < 1)

for suitable K. The integral equation so obtained is akin to a singular one,
but has an extra complication which makes it necessary to develop solution
theory independently of standard work. Cherry reduces it to a Fredholm
equation of second kind, although with infinite range, and establishes the
applicability of iteration when N is sufficiently large. Some asymptotic
estimates for xn when n is large are also given, and some extensions.

One cannot leave the subject of Cherry's research without mentioning
various topics to which he gave much attention at various times with little
or no publication. Among these are the elastic plate problems just mention-
ed; relativity, viscous flow, schlicht functions, Godel's theorem, and com-
putation. He was tremendously industrious and worked far into the night,
and his manuscripts show how he returned persistently to some problems
which it seems he did not solve to his satisfaction. He was often consulted
by research institutes, and by their staff members, many of whom were his
former students. His great knowledge and incisive mind gave inspiration
and leadership in subjects as far apart as foundations of geometry and inter-
planetary flight, and he might have become an authority on any of them if
circumstances had permitted him.
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