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The scaling law of the structure function of Richtmyer–Meshkov (RM) turbulence
is investigated both numerically and theoretically. High-fidelity simulations with a
minimum-dispersion, adaptive-dissipation scheme are first performed. Results show that
the mixing width experiences an exponential growth and the turbulent kinetic energy
has a visible −3/2 spectrum. The scalar field exhibits a greater degree of intermittency
than the velocity field, and also the small-scale statistics suffer a larger influence of
large scales. Visible differences in the scaling law of the structure function among the
RM turbulence and other types of turbulence are observed, which reveal the unique
characteristic of RM turbulence. A phenomenological theory, which gives the spatial and
temporal scaling laws of the structure functions of velocity and scalar of RM turbulence,
is developed for the first time by introducing an external agent. The spatial scaling
exponents of structure functions from simulation deviate from the Kolmogorov exponents,
but are quite close to the RM-modified anomalous exponents. This demonstrates the
validity of the present phenomenological theory. The temporal scaling exponents of
structure functions first meet the RM-modified anomalous exponents, and then approach
the Kolmogorov–Obukhov–Corrsin non-intermittent ones.

Key words: shock waves, turbulent mixing

1. Introduction

Compressible turbulent mixing between two fluids of different properties is a hot topic in
fundamental research and also plays an important role in natural and industrial fields such
as supernova explosions (Abarzhi et al. 2019) and inertial confinement fusion (Casner
2021). As a typical representative of compressible turbulence, turbulence developing
from Richtmyer–Meshkov (RM) instability (Richtmyer 1960; Meshkov 1969) that occurs
as a shock wave impacts a corrugated interface, has become increasingly attractive in
recent years. Great efforts and attempts have been made to investigate RM turbulence,

† Email address for correspondence: djc@ustc.edu.cn

© The Author(s), 2023. Published by Cambridge University Press 972 A18-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

70
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:djc@ustc.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.707&domain=pdf
https://doi.org/10.1017/jfm.2023.707


Z. Zhou, J. Ding, W. Cheng and X. Luo

and substantial progress has been achieved for low-order statistics (Mohaghar et al. 2019;
Groom & Thornber 2021; Yan et al. 2022). For a comprehensive overview, readers are
referred to the review of Zhou (2017).

In fully developed turbulence, the dynamics of intermediate scales is free of
energy-containing scales L and dissipation scales η, and thus exhibits a universal behaviour
(this range is called the inertial range). The universal behaviour of the inertial range has
been the focus of the turbulence community over the past decades (Benzi & Biferale 2015).
Particularly, the 4/5th law of the third-order structure function (defined as the moment
of the velocity increment) in the inertial range discovered by Kolmogorov (1941a) is
a milestone achievement in turbulence research. Today, finding the scaling law of the
structure function for various types of turbulence, e.g. RM turbulence, is still a central
goal for turbulence researchers.

Phenomenological theory is a useful tool to examine the structure function of RM
turbulence. Compared with statistically steady turbulence, statistically unsteady turbulence
(i.e. statistics of fluctuations are time dependent) is more complex, which impedes
the establishment of phenomenological theory. Unlike Rayleigh–Taylor (RT) turbulence,
in which large scales are forced by the continuous conversion of potential energy
into kinetic energy, unforced RM turbulence gains kinetic energy solely from the
shock–interface interaction, which is more difficult to investigate in experiment and
simulation. Fortunately, for unsteady turbulence like RM or RT turbulence (Taylor 1950),
there exists a scaling law for the growth of the mixing width (Dimonte et al. 2004;
Thornber et al. 2017), which makes it possible to establish a phenomenological theory.
For RT turbulence, Chertkov (2003) has derived a phenomenological theory based on the
quadratic growth of the mixing width. Specifically, assuming the small-scale fluctuations
adjust in a timely manner to the current kinetic energy flux, a quasi-stationary, adiabatic
generalization of the Kolmogorov–Obukhov picture like that of steady turbulence is
obtained (Kolmogorov 1941b). Then, the scaling law of the structure function of RT
turbulence was obtained (Boffetta et al. 2010; Zhao, Liu & Lu 2020). For RM turbulence,
several phenomenological theories for the power law of the energy spectrum have been
developed (Mikaelian 1989; Zhou 2001). By treating equally the time scales of external
agent and local nonlinear interaction and also assuming the independence of the energy
flux, ε, from wavenumber, k, Zhou (2001) extended the Kolmogorov scenario to RM/RT
turbulence via dimensional analysis

ε = C2
τ τtr(k)k4E2(k), (1.1)

where Cτ is a constant, τtr is the lifetime of the transfer function correlations and E
is the energy spectrum. If τtr is substituted by the eddy-turnover time scale τeddy =
[k3E(k)]−1/2, (1.1) reduces to the classical Kolmogorov spectrum E(k) = CKε2/3k−5/3.
If τtr is substituted by the RT external time scale τRT = (kgA)−1/2 or RM external
time scale τRM = (kA�u)−1, (1.1) reduces accordingly to the RT-modified spectrum
E(k) = CRT(gA)1/4ε1/2k−7/4 or RM-modified spectrum E(k) = CRM[A�uε]1/2k−3/2.
Here, g and A are the gravitational acceleration and the Atwood number, respectively,
and �u is the velocity jump induced by the shock wave. The power law of RM
turbulence is still an open question. Some experimental (Weber et al. 2012; Reese
et al. 2018) and numerical (Hill, Pantano & Pullin 2006; Lombardini, Pullin &
Meiron 2012) studies found the Kolmogorov −5/3 power law, while other simulations
obtained the −3/2 power law (Thornber et al. 2010; Tritschler et al. 2014a; Wong,
Livescu & Lele 2019) or a shallower one (Cohen et al. 2002; Grinstein, Gowardhan
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& Wachtor 2011). Compared with the energy spectrum, the structure function of
RM turbulence has received less attention, except for few experimental works.
Vorobieff, Rightley & Benjamin (1998) and Vorobieff et al. (2003) obtained a rough 2/3
scaling of the second-order structure function in experiments. Also, Mohaghar et al. (2017)
found this scaling for the structure function of RM turbulence after reshock. A scaling law
with a steeper exponent than 2/3 was found for the second-order structure functions of
intensity maps by Olmstead et al. (2017), which was interpreted as the result of non-fully
developed turbulence. Tomkins et al. (2013) obtained an even steeper scaling of the
second-order density structure function in a gas-curtain experiment, which is attributed to
the inertial range just beginning to form. Recently, Noble et al. (2020) found an anomalous
scaling-law behaviour of the scalar structure function in their reshock experiments with
small Schmidt number. So far, a phenomenological theory for the structure function of
RM turbulence, which reveals more fluctuation information than the energy spectrum, has
not yet been established.

Numerical simulation is also a useful tool to examine the structure function of RM
turbulence. Nevertheless, high-fidelity simulation of compressible turbulence involving
discontinuities (e.g. shock wave and material interface) and complex smooth regions
(e.g. turbulent fluctuations) remains a great challenge today. The major difficulty is
that simultaneous handling of discontinuities and turbulent fluctuations poses two
contradictory demands on the numerical scheme. On the one hand, a certain amount
of dissipation should be introduced into the numerical scheme to suppress spurious
oscillations at discontinuities. On the other hand, to accurately resolve turbulent structures
with a broad range of scales, the numerical scheme should possess minimal dispersion and
dissipation.

In this work, we shall first perform high-fidelity simulations of RM turbulence with a
new optimized weighted compact nonlinear scheme (WCNS) that has minimum dispersion
and adaptive dissipation. The reliable flow field obtained will allow us to analyse the
scaling law of the structure function of RM turbulence. Then, a phenomenological theory
for the structure function of RM turbulence is developed. The theory will be adopted to
examine the spatial and temporal scaling laws of the structure functions of the velocity
and scalar for RM turbulence found in simulation and also for illustrating the differences
between RM turbulence, RT turbulence and homogeneous isotropic turbulence (HIT).

2. Numerical methods

Three-dimensional multi-component Navier–Stokes (N–S) equations are adopted to
describe the RM flow. The governing equations in conservative form are expressed as

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

∂ρu
∂t

+ ∇ · (ρu ⊗ u + pδ) = ∇ · σ , (2.2)

∂ρE
∂t

+ ∇ · [(ρE + p)u] = ∇ · (σ · u − qc − qd), (2.3)

∂ρYl

∂t
+ ∇ · (ρYlu) = −∇ · J l (l = 1, . . . , N − 1), (2.4)

where ρ, u = [u, v, w]t, p and E refer to the density, velocity vector, pressure and
total energy per unit mass of the mixture, respectively, and δ is the Kronecker delta.
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The equation of state is

E = p
ρ(γ − 1)

+ 1
2

u · u, (2.5)

where γ is the specific heat ratio of the mixture and is calculated by

γ =
∑ Ylγl

Ml(γl − 1)∑ Yl

Ml(γl − 1)

, (2.6)

with Yl, γl and Ml being the mass fraction, specific heat ratio and molar mass of species l,
respectively. In this work, two species, air and SF6, are considered. In the simulations, γ1 =
1.4 and M1 = 28.964 g mol−1 are adopted for air, γ2 = 1.094 and M2 = 146.055 g mol−1

for SF6. The viscous stress tensor σ , the conductive heat flux qc and the interspecies
enthalpy flux qd are defined as

σ = μ[∇u + (∇u)t] − 2
3μ∇ · uδ, (2.7)

qc = −κ∇T, (2.8)

qd =
N∑

k=1

cp,kTJ k. (2.9)

Here, cp,k is the specific heat of species k at constant pressure, and the mass diffusion flux
J k is given by

J k = −ρDk∇Yk (k = 1, 2), (2.10)

for binary mixture with D1 = D2 = D12. The viscosity μ, the thermal conductivity κ and
the mass diffusion coefficient D12 are calculated according to Tritschler et al. (2014a).

High-fidelity simulation of compressible turbulence involving discontinuities (e.g.
shock wave and material interface) and turbulent fluctuations poses a great challenge to the
numerical scheme. The major difficulty lies in the simultaneous capture of discontinuities
and turbulent fluctuations. On the one hand, a certain amount of numerical dissipation
should be introduced into the numerical scheme to suppress spurious oscillations at
discontinuities. On the other hand, minimal dissipation and dispersion (i.e. good spectral
properties) are needed to accurately resolve turbulent structures covering a broad range
of scales. Previous studies have shown that the existing shock-capturing schemes such
as the weighted essentially non-oscillatory (WENO) scheme (Jiang & Shu 1996) and the
WCNS scheme (Deng & Zhang 2000) are too dissipative to resolve small-scale turbulence.
The excessive dissipation of shock-capturing schemes comes from two sources: (i) the
dissipation introduced by the nonlinear mechanism and (ii) the dissipation inherent in the
linear part of a nonlinear scheme. Accordingly, there are two strategies to improve the
dissipation property of shock-capturing schemes. One strategy is to optimize the nonlinear
weighting function, which has a significant influence on the dissipation property of the
nonlinear scheme. Recently, Wong & Lele (2017) presented a localized dissipation WCNS
with improved nonlinear weights, which has been successfully applied to RM turbulence
with reshock (Wong et al. 2019, 2022). Another strategy is to improve the spectral
property of the corresponding linear scheme. It was found by Tam & Webb (1993) that the
spectral property of a nonlinear scheme can be modulated by adjusting the free parameters
introduced to the scheme, based on which an optimization strategy with controllable
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Figure 1. Schematic of the computational domain.

parameters was proposed (Sun et al. 2011). Although the free parameters reduce the formal
order of accuracy of the scheme (i.e. the rate of convergence to the exact solution with grid
refinement), they can significantly improve the scheme resolution (i.e. the actual truncation
error on a given mesh).

Following this idea, we have recently proposed an adaptive, nonlinear optimization
strategy that considers the diversity of flow structures and the influence of nonlinearity,
based on which a new type of WCNS with state-of-the-art spectral properties was
developed. The optimization procedure includes: (i) two free parameters in WCNS are
optimized with the approximated dispersion relation technique (Pirozzoli 2006) that
can attain the spectral properties of nonlinear WCNS; (ii) considering the nonlinear
mechanism has a dramatic influence on the spectral properties, an advanced nonlinear
weighting function of Wong & Lele (2017) is adopted and the crucial parameter, C, is
optimized for better spectral properties; (iii) the optimized parameters are adjusted at
each grid point according to the flow conditions there to realize adaptive dissipation.
The optimized WCNS is extended to multi-species flows by combining the double-flux
algorithm of Abgrall & Karni (2001) and is thus suitable for the simulation of RM
turbulence. Note that the double-flux algorithm is not a conservative numerical method.
As analysed by Abgrall & Karni (2001), there are the two main sources of conservation
error for the double-flux algorithm, which have opposite effects on the solution and can
nearly cancel each other out. As a result, it introduces only a little loss of conservation and
thus produces a negligibly weak influence on the motions of shock and interface. In our
previous work (Ding et al. 2017, 2018; Feng et al. 2021; Li et al. 2022), the double-flux
algorithm combined with the fifth-order WENO scheme has shown the capacity of
reproducing the experimental results for various RM instability flows. For more details
about the present numerical scheme, readers are referred to Zhou et al. (2023).

As sketched in figure 1, the computational domain has a size of 2L0 × L0 × L0 (L0 =
10 mm) in the x, y and z directions, which is discretized by a Cartesian mesh with 1024 ×
512 × 512 grid points. Two long sponge layers with a stretched mesh are set at the left and
right ends of the domain along the x direction, which can largely eliminate the influence
of reflected waves. A periodic boundary condition is taken for the boundaries parallel to
the x direction. A multi-mode interface between air and SF6 at p = 101 325 Pa and T =
298.15 K is set at the beginning, whose average position is at x = 0.11L0. A planar shock
of Ma = 1.5 is initially set at x = −L0/4 in air. To ensure the shocked interface evolves at
the centre of the domain, the pre-shock gases are set to move at �U = −158.38 m s−1.
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The initial multi-mode interface is set according to Groom & Thornber (2020), which
has a power spectrum

P(k) =
{

Ckm, kmin < k < kmax,

0, otherwise,
(2.11)

where k =
√

k2
y + k2

z is the radial wavenumber. In this work, two cases with m = 0 are
simulated. One case has initial narrowband Fourier modes, namely, kn ∈ (24, 40) with
kn = (L0/2π)k (called case NB). The other case has initial broadband Fourier modes,
namely, kn ∈ (2, 64) (called case BB). To reach the turbulent state faster, the total standard
deviation of the perturbation is fixed at σ = 0.5λmin for both cases. In order to deposit
more kinetic energy on the post-shock interface to feed the subsequent turbulence, the
initial interface thickness is set to be a small value of λmin/4 (Lombardini et al. 2012).

The dissipation scale η, also known as the Kolmogorov scale, is usually considered
as the smallest characteristic scale in turbulence. Thus, a criterion for direct numerical
simulation (DNS) is that the grid is fine enough such that the dissipation scale is resolved.
It is found in practical simulations that this criterion can be relaxed somewhat, namely, the
grid size is of the order of η rather than equal to η (Moin & Mahesh 1998). According to the
finding of Moin & Mahesh (1998) that most of the dissipation in the channel flow occurs
at scales greater than 15η, Li et al. (2019) argued that a grid resolution of around 10η is
qualified for DNS. Liu & Xiao (2016) and Tritschler et al. (2014b) advocated the criterion
of Yeung & Pope (1989), i.e. the dissipation becomes extremely small beyond kη = 1.5,
and thus k�maxη � 1.5 (k�max = π/Δ with Δ the grid size) can be used as a criterion for
DNS. With these two criteria, the grid resolution of the present simulations is examined,
as shown in figure 2(a) where η is calculated by the method of Tritschler et al. (2014b).
The results indicate that both cases satisfy the criterion of Moin & Mahesh (1998), but
cannot meet the criterion of Yeung & Pope (1989). Actually, the more restrictive latter
criterion is more appropriate for DNS, particularly for the study of high-order statistics.
It should be noted that the idea of using the Kolmogorov scale to represent the smallest
scale of the flow is not justifiable, because the time-dependent RM flow is not always in a
state of fully developed turbulence (Groom & Thornber 2019; Zhou et al. 2021). Also, the
shock-capturing scheme that involves numerical dissipation can influence the accuracy in
estimating the viscous dissipation rate, and can further affect the calculated Kolmogorov
scale. The present analysis shows that the grid resolution of the current simulations is
close to, rather than at, the level of DNS. Note that the Schmidt number of the present
flow is Sc ≈ 1, under which the Bachelor scale is almost the same as the Kolmogorov
scale. Since the N–S equations are solved with a high-resolution numerical scheme in this
work, the present simulations (without an explicit subgrid-scale model) are referred to as
high-fidelity N–S simulations according to Zhou et al. (2021). A grid sensitivity study on
the turbulence statistics is given in the Appendix to show the uncertainty of the simulation
results.

To better characterize the flow, the evolutions of the turbulence Reynolds number (ReL)
and Taylor Reynolds number (ReλT ) are given in figure 2(b). The former is characterized by
large eddies and the latter is related to small and intermediate scales. These two Reynolds
numbers are calculated by (Pope 2000)

ReL = 〈K〉2
yz

〈ρ〉yz 〈ε〉yz 〈ν〉yz
, (2.12)
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Figure 2. (a) Temporal evolution of the normalized Kolmogorov scale and (b) variation of the turbulence
Reynolds number vs Taylor Reynolds number, averaged within the inner mixing zone, for case NB (squares)
and case BB (circles).

and

ReλT =
〈
u′′

r
〉
yz 〈λT〉yz

〈ν〉yz
, (2.13)

where 〈K〉yz = ∑
k ETKE(k, x, t), ε = ∑

k 2 〈ν〉yz k2ETKE(k, x, t) and ν = μ/ρ are the
kinetic energy, dissipation rate and kinematic viscosity, respectively; u′′

r = (v′′2 + w′′2)1/2

and 〈λT〉yz = (10 〈ν〉yz 〈K〉yz / 〈ε〉yz)
1/2 are the radial velocity fluctuation and Taylor scale,

respectively; ϕ′′ = ϕ − 〈ρϕ〉yz / 〈ρ〉yz is defined as the fluctuating part of the Favre
average, and 〈·〉yz refers to the spatial average in the yz plane. The radial power spectrum
for variable ϕ is given as

Eϕ(k) =
∑

k−1/2<|kyz|�k+1/2

ϕ̂�ϕ̂, (2.14)

where ϕ̂ is the Fourier transform of ϕ in the yz plane, and ϕ̂� denotes its complex conjugate.
In the present work, ϕ = √

ρu′′
i is used to calculate the spectrum of turbulent kinetic

energy (TKE). As shown in figure 2(b), both cases present a similar evolution for ReλT
in the interval (30, 120) and for ReL in the interval (200, 7000). The scaling for both cases
is quite close to the relationship, ReL ∝ Re2

λT
, in HIT.

3. Characteristics of RM turbulence

The growth of the mixing width, which plays an important role in the establishment of the
phenomenology for RM turbulence, is first investigated. The mixing width is calculated
by

Wf =
∫

4〈 f1〉yz 〈 f2〉yz dx, (3.1)

where f1 and f2 = 1 − f1 denote the volume fractions of species 1 and 2, respectively.
The mixing width is normalized as Wf /λ̄ according to Groom & Thornber (2021). Here,
λ̄ = 2π/k̄ = L0/k̄n is the average wavelength, in which k̄n denotes the weighted average
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wavenumber and is calculated by

k̄n =

√∫ ∞

0
k2p(k) dk

√∫ ∞

0
p(k) dk

=
√

1
3

(
1 + 1

R
+ 1

R2

)
kmax, (3.2)

where R = kmax/kmin. Time is normalized by λ̄/Ẇ0, where Ẇ0 is the initial growth rate
that is estimated by

Ẇ0 = 0.564k̄A+σ+
0 �U, (3.3)

σ+
0 =

(
1 − �U

Us

)
σ0, (3.4)

where A+ and σ+ are the post-shock Atwood number and post-shock standard deviation
of the perturbation, respectively, and Us is the velocity of the initial shock.

As shown in figure 3(a), good agreement between the numerical result and the
nonlinearly fitted curve is obtained, which indicates an evident (τ − τ0)

θ (τ0 is a virtual
time origin) growth behaviour in the self-similar stage for each case. The curve fit is
performed over the range τ � 5 for both cases, and the fitted value of θ is 0.211 (0.333) for
case NB (case BB). Recently, under the small Atwood number Boussinesq approximation,
Soulard et al. (2018) deduced a relationship between the self-similar growth rate of
the RM mixing layer and the infrared slope (s0) of the post-shock velocity spectrum,
θ = 2/(s0 + 4), where s0 = m′ + 1 with m′ being the infrared exponent of the interface
perturbation spectrum. According to Elbaz & Shvarts (2018) and Soulard et al. (2018),
the evolution of the mixing width is influenced by both the behaviour of the large scale
itself and the nonlinear backscatter of small scales to the large scale. For case NB with
a high-wavenumber narrowband perturbation spectrum, the latter factor dominates the
evolution of the mixing width. Based on this cognition, θ is predicted to be 1/3 by
Elbaz & Shvarts (2018) and 1/4 by Soulard et al. (2018). For case BB with initial
large-scale perturbations θ is expected to be 2/5 from the prediction of Soulard et al.
(2018). Figure 3(b) gives the variation of the instantaneous growth rate exponent from
simulation, which is calculated as θ = 1/(1 + β) with β = −WẄ/Ẇ2 (Oggian et al.
2015). According to Oggian et al. (2015) and Groom & Thornber (2021), the fluctuations
in θ are mainly ascribed to the numerical derivative (especially the second derivative) that
magnifies the noise of the data. We state that this type of fluctuation does not hinder the
judgment of the overall variation trend of θ . As we can see, the instantaneous value of θ is
generally consistent with the fitted one. Moreover, it gradually approaches the prediction
of Soulard et al. (2018) for each case. It is also seen that θ presents a trend of increasing to
a higher value at the end time of the simulation.

Also, there are other definitions of the mixing width, such as the mass-fraction-based
one, WY , which is calculated by replacing the volume fraction f with mass fraction Y in
(3.1). The relationship between the two kinds of mixing width is investigated. Suggested by
Boffetta et al. (2010), the integral length scale that represents the dynamical characteristic
scale of large eddies is also investigated. Here, the integral length scale is calculated by
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Figure 3. Temporal evolution of (a) the mixing width W and (b) the instantaneous growth rate exponent θ

for case NB (squares) and case BB (circles). Lines in (a) represent the fit of a(τ − τ0)
θ , where τ0 is a virtual

time origin.

(Pope 2000)

Λ = 3π

4

∫ ∞

0
E(k)/k dk∫ ∞

0
E(k) dk

, (3.5)

and then averaged in the inner mixing zone (IMZ) which is defined by 4Y(1 − Y) � 0.9
(Tritschler et al. 2014a). Figure 4 shows the variations of WY and Λ vs Wf . It is found
that these scales are linearly related in the self-similar state. Performing a linear fit, the
correlations of WY ∝ 1.01Wf (WY ∝ 1.17Wf ) and Λ ∝ 0.42Wf (Λ ∝ 0.36Wf ) for case NB
(case BB) are obtained. This indicates that these typical large characteristic scales have
similar scaling behaviour, which is favourable for the development of a phenomenological
theory (Chertkov 2003).

Before moving to the discussion of the structure function, we examine the evolution
of the IMZ-averaged TKE spectra calculated by (2.14) for cases NB and BB, as shown in
figure 5. Since the dynamics of RM turbulence originates from the energy deposited by the
initial shock wave, the initial perturbation spectrum at the interface determines the range
of the energy scale (mainly in the direction of shock wave propagation). The Kolmogorov
spectrum can only appear in the scale range below the initial maximum scale, and the
spectrum above the initial maximum scale is mainly ascribed to the inverse transfer of
energy from small to large scales.

For case NB with a high-wavenumber narrowband perturbation spectrum, there exists a
visible k−3/2 spectrum at the early stage. As time proceeds, the spectral peak shifts to lower
wavenumbers and the k−3/2 spectrum is gradually swallowed by a shallower spectrum,
similar to the results of Tritschler et al. (2014a,b) and Grinstein et al. (2011). At the late
stage, the range of the k−3/2 spectrum becomes very narrow. We further examine the TKX
(the x components of TKE) and TKYZ (the y and z components of TKE) spectra for
case NB. Results show that the early spectral distributions in the x, y and z directions
present significant differences. The x-component energy is higher than that of the y
and z components, revealing the anisotropic characteristics of RM turbulence. The k−3/2

spectrum of TKE at the early stage is mainly contributed by the x-component fluctuations.
The yz-component only presents a narrower k−3/2 spectrum at higher wavenumbers, which
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Figure 4. The variations of the mass-fraction-based mixing width WY and the integral length scale Λ vs the
volume-fraction-based mixing width Wf . The symbols are the same as those in figure 3.

may be due to the energy transfer from the x direction to the yz-directions. For case BB
with a broadband perturbation spectrum, at τ = 1.59, the TKE, TKX and TKYZ show the
k(m+2)/2 spectrum (m = 0 in this work) suggested by Youngs (2004), which is consistent
with the results of Groom & Thornber (2020). Later, a k−3/2 spectrum appears for TKX,
while TKYZ holds this spectrum in a narrower range at high wavenumbers. As time
proceeds, the x-component gradually approaches the yz-component and the spectrum in
the lower-wavenumber range becomes progressively shallower.

Figure 6 shows the spectra of YSF6 for both cases. As we can see, the mass fraction
spectrum has a wider k−3/2 spectral range than the TKE spectrum. This is more obvious
in case BB.

Then, we consider the structure function of the longitudinal velocity, defined as
SL

p(r, t) ≡ 〈|δru/u′′
rms|p

〉
, where δru = [u(x + r, t) − u(x, t)] · r̂ with r̂ = r/|r| and u′′

rms
being the root-mean-square of the velocity fluctuation. Also, the scalar structure function

in terms of the mass fraction of heavy fluid is examined, which is defined as S
YSF6
p (r, t) ≡〈|δrYSF6 |p

〉
where δrYSF6 = YSF6(x + r, t) − YSF6(x, t). In this work, both velocity and

scalar structure functions are calculated in a statistically homogeneous direction (e.g. the y
direction) and then spatially averaged in the IMZ. Thus, r and 〈·〉 in the above formulae can
be replaced by ry = (0, ry, 0) and 〈·〉IMZ , respectively. We note that, whether rz = (0, 0, rz)
or is averaged in the central plane of the mixing layer (Walchli & Thornber 2017), the main
results are almost the same. Due to the limited computational resource, the turbulence
simulated usually involves only a narrow inertial range, which increases the measurement
uncertainty of the scaling exponent. To overcome this difficulty, an extended self-similarity
(ESS) method (Benzi et al. 1995) that investigates the scaling of the nth-order structure
function against the mth-order, i.e. Sn(r) ∼ Sm(r)β(n,m) , is adopted to obtain an accurate
relative scaling exponent, β(n,m) = ζn/ζm. As suggested by Boffetta et al. (2010), here, the
reference exponents for the structure functions of velocity and mass fraction take the forms
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Figure 5. The TKE spectra (a,b), TKX spectra (c,d) and TKYZ spectra (e,f ) of case NB (a,c,e) and case BB
(b,d,f ) at several times.

ζ L
3 and ζ

YSF6
2 , respectively. Variations of the first- to sixth-order structure functions vs the

reference one at a fixed time using a log–log scale for cases BB and NB are plotted in
figure 7. As we can see, all orders of structure functions show a linear relationship with
the reference one, which indicates the existence of ESS scaling. The slope of each-order
structure function against the reference one corresponds to the relative scaling exponent.
The values of βL

( p,3) and β
YSF6
( p,2) can be obtained via least-square fits. As shown in figure 7,

the fitted lines agree well with the simulation results. It is also found that the scaling range
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Figure 6. The radial spectra of mass fraction YSF6 for case NB (a) and case BB (b) at several times. The line
styles represent the same times as in figure 5.

becomes narrower as p increases. Note that the fittings are carried out with an appropriate
range of data points, which ensures that the distributions of the compensated structure
functions against the reference one are as close as possible to the horizontal line (Pan &
Scannapieco 2011), as shown in the insets of figure 7.

The relative scaling exponents obtained via least-square fits are given in figure 8, where
the Kolmogorov–Obukhov–Corrsin (KOC) predictions are also given for comparison.
Figure 8(a) also gives the relative scaling exponents in HIT with scalar injection by
the Gaussian random source (Gotoh et al. 2011) and in RT turbulence at small Atwood
number (Boffetta et al. 2010) for comparison. It is found that the relative exponents for
RT turbulence and HIT are nearly identical to the present results of RM turbulence up
to fourth order. At higher orders, there exists a visible discrepancy among them. The
phenomenological theory fails to give an accurate prediction for p > 3, which indicates
the existence of intermittency in the velocity field. This is a consequence of the breakdown
of scale independence (an underlying assumption for phenomenological theory) caused by
the fluctuations of energy and scalar dissipation rate. The relative scaling exponents for
different types of turbulence are consistent with the prediction of the She–Leveque (SL)
model (She & Leveque 1994) that considers the influence of intermittency. The present
results give strong evidence that there exists intermittency for RM turbulence as with RT
turbulence and HIT. Figure 8(b) gives a comparison of the scalar scaling exponent among
the RM turbulence, RT turbulence, two types of HIT and the KOC prediction. Visible
differences between the results of the two cases is observed. As we know, the 4/5 law by
Kolmogorov (1941a) is related to the third-order structure function of the velocity, and the
corresponding law by Obukhov (1949) and Corrsin (1951) is related to the second-order
structure function passive scalar. This is the reason for the choices of βL

( p,3) for the velocity
and βC

( p,2) for the scalar (Boffetta et al. 2010) here. It is found that the scalar scaling
exponents for case NB nearly coincide with those of HIT with scalar injection through a
uniform gradient, whereas the exponents for case BB coincide with those of RT turbulence
and HIT with random Gaussian source. We note that the fluctuations in case NB are only
generated by small-scale perturbations, while those in case BB are also related to the
cascade of large-scale perturbations. The previous study of Gotoh et al. (2011) on HIT
showed that the passive scalar fluctuations are excited at all scales for the case with scalar
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Figure 7. The ESS spatial scaling of (a,c) the longitudinal velocity structure function SL
p and (b,d) the scalar

structure function S
YSF6
p with p = 1 (squares), 2 (circles), 3 (up triangles), 4 (down triangles), 5 (diamonds),

6 (stars). Data are from (a,b) case NB at τ = 43.94 and (c,d) case BB at τ = 59.24. The insets are the
corresponding compensated structure functions. Note that each plot of SL

p is offset by 0.65, 0.35, 0.15 and
0.05 for p = 3−6, respectively. The plot of the compensated structure function in the inset of (d) is offset by p
for p = 2–6, respectively.

injection by velocity excitation through a uniform gradient, but are mainly excited through
the scale cascade for the case with scalar injection by a Gaussian random source at large
scales. This can be used to speculate on the origin of the difference in passive scalar
statistics at small scales under different initial conditions.

All simulation results deviate from the model prediction for p > 2, which is ascribed
to the presence of intermittency. To support this statement, we undertake a hierarchical
symmetry analysis that was originally proposed by She & Leveque (1994) and then
rewritten by She et al. (2001):

Fp+1(r)
F2(r)

= Ap

A1

(
Fp(r)
F1(r)

)β̂

, (3.6)

where Fp(r) = Sp+1(r)/Sp(r) is the hierarchy, Ap is a parameter independent of r and
β̂ � 1 reflects the degree of intermittency (lower value of β̂ corresponds to stronger
intermittency). It is noted that β̂ = 1 corresponds to the Kolmogorov scenario without
intermittency, and β̂ = (2/3)1/3 ≈ 0.874 in the SL model for isotropic turbulence.

972 A18-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

70
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.707


Z. Zhou, J. Ding, W. Cheng and X. Luo

2.0 3

2

1

0

1.5

1.0

0.5

β
L (p

,3
)

β
C (p

,2
)

0 1 2 3 4

p
5 6 1 2 3 4

p
5 6

(b)(a)

Figure 8. Relative scaling exponents for (a) longitudinal velocity structure functions βL
( p,3) and (b) scalar

structure functions βC
( p,2). Data shown are from case NB (red filled circles), case BB (blue filled stars), DNS of

RT turbulence with end time Reλ = 196 in Boffetta et al. (2010) (black open circles), DNS of HIT with scalar
injection by isotropic Gaussian random source at Reλ = 688 (black up triangles) and by uniform gradient at
Reλ = 586 (black down triangles) in Gotoh, Watanabe & Suzuki (2011) and DNS of HIT with scalar injection
by an isotropic random Gaussian source at Reλ = 427 in Watanabe & Gotoh (2004) (black squares). Solid lines
in both panels represent the KOC phenomenological predictions. The dotted line indicates the prediction of the
She–Leveque model (She & Leveque 1994).

As shown in figure 9, the scaling of hierarchical symmetry with β̂ < 1 is obtained for
the velocity and scalar in cases NB and case BB, which is consistent with the departures
of the scaling exponents of the two cases from the KOC formulation. The value of
β̂ ≈ 0.76 for velocity is lower than the value used in the SL model, which explains the
departures of the high-order scaling exponents of both cases from the prediction of the
SL model. The lower value of β̂ for scalar (≈0.63) than that of velocity (≈0.76) also
corresponds to the stronger intermittency of the scalar than the velocity. The present
analysis indicates that intermittency is closely related to the symmetry breaking between
scales. As we know, the symmetry breaking is related to a variety of factors such as
the flow type, initial conditions, Mach number and so on. This may be the reason why
cases BB and NB with different initial perturbation spectra present different degrees of
intermittency.

From the present results, two claims can be made for RM turbulence. First, as we
know, the only difference between case NB and case BB is the initial perturbation
spectrum. Since these two cases present different behaviours of small-scale statistics, it
is reasonable to speculate that larges scales in case BB can influence the statistics of
small scales. Especially, it is found that the difference in anomalous scaling exponents
between case NB and case BB is larger for the scalar structure function than the velocity
structure function. This indicates that the statistics of small-scale scalar fluctuations
suffer a larger influence of large scales than the velocity fluctuation. Second, the
scalar field exhibits a greater degree of intermittency than the velocity field under
the current Mach number. Particularly, the deviation of the RM turbulence from
other types of turbulence for both βL

p and βC
p highlights the unique characteristic of

RM turbulence, and thus a specific phenomenological theory for RM turbulence is
desired.

972 A18-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

70
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.707


Scaling law of Richtmyer–Meshkov turbulence

2.2

2.0

1.8

1.6

1.4

1.2

1.0

2.2

2.0

1.8

1.6

1.4

1.2

1.01.2 1.4 1.6 1.8

FL
p/FL

1

FL p+
1
/F

L 2

2.0 2.2 2.4 2.6

Slop = 0.76

Slop = 0.63

1.2 1.4 1.6 1.8

FC
p/FC

1

F
C p+

1
/F

C 2

2.0 2.2 2.4 2.6

(b)(a)

Figure 9. Scaling of hierarchical symmetry of (a) velocity and (b) scalar for case NB (red) and case BB
(blue) with p = 2 (circles), 3 (up triangles) and 4 (down triangles).

4. Phenomenological model and validation

A key idea of the present phenomenological theory for RM turbulence is to introduce an
external agent inspired by Zhou (2001). With (1.1) and the definition ε = U2(k)/τs(k), we
have the spectral transfer time τs(k) = [τeddy(k)]2/[C2

τ τtr(k)]. Assuming the kinetic energy
flux ε(t) is scale independent in the inertial range, we get

δru(t) ∼ ε(t)1/2[τs(kr)]1/2 ∼ uL(t)[r/L(t)]1/2[τtr(kL)/τtr(kr)]1/4. (4.1)

Without an external agent, τtr(k) can be represented by the eddy-turnover time scale
τeddy(kr) = r/ur ∼ r/δru, producing a scaling law δru(t) ∼ uL(t)[r/L(t)]1/3. This is
exactly equal to that of Chertkov (2003). If an external agent exists, the time scale
is treated in a way similar to Zhou (2001). Specifically, for RT turbulence, τtr(k) in
(4.1) is substituted by τRT , producing a scaling law δru(t) ∼ uL(t)[r/L(t)]3/8. For RM
turbulence, τtr(k) = τRM , producing a scaling law δru(t) ∼ uL(t)[r/L(t)]1/4. As has been
pointed out by Pope (2000), if the inertial range presents a k−n energy spectrum, its
second-order structure function should follow a rζ2 scaling law with ζ2 = min(n − 1, 2).
Based on this rule, the scaling laws of the structure functions derived here correspond
to the k−5/3 Kolmogorov spectrum, the k−7/4 RT spectrum and the k−3/2 RM spectrum,
which are the same as those of Zhou (2001). This demonstrates the validity of the present
phenomenological theory.

Compared with the velocity field, the scalar field possesses a more complex spectrum
that is dependent on the Schmidt number Sc (Sreenivasan 2019). In this work, to facilitate
the derivation of a phenomenological model for the scalar, we consider a fundamental yet
important case with two constraints: the mechanisms of velocity fluctuation and scalar
fluctuation are the same; Sc = O(1). With these constraints, the inertial range of the
velocity field nearly matches that of the scalar field, and also their time scales are equal
(Gotoh & Yeung 2012). Assuming the scalar variance flux εC(t) is scale independent in
the inertial–convective range, following a procedure similar to that of the velocity field,
we get

δrC(t) ∼ εC(t)1/2[τs(kr)]1/2 ∼ �C[r/L(t)]1/2[τtr(kL)/τtr(kr)]1/4. (4.2)
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Similarly, in (4.2), τtr = τeddy leads to δrC(t) ∼ �C[r/L(t)]1/3 for the Obukhov–Corrsin
scenario, τtr = τRT to δrC(t) ∼ �C[r/L(t)]3/8 for RT turbulence and τtr = τRM to
δrC(t) ∼ �C[r/L(t)]1/4 for RM turbulence.

The spatial scaling laws described by (4.1) and (4.2) are independent of L(t). By
introducing a self-similar growth L(t) ∼ tθ , temporal scaling laws for the structure
functions of velocity and scalar are obtained:

〈
(δru)p〉 ∼ uL(t)p

[
r

L(t)

]ζp

∼ rζp t(θ−1)p−θζp, (4.3)

〈
(δrC)p〉 ∼ (�C)p

[
r

L(t)

]ζC
p

∼ rζC
p t−θζC

p , (4.4)

where ζp and ζC
p are the spatial scaling exponents of the pth-order structure functions

of velocity and scalar increments, respectively. As found above, ζp = ζC
p = p/3 for the

classical KOC scenario, ζp = ζC
p = 3p/8 for RT turbulence and ζp = ζC

p = p/4 for RM
turbulence. Equations (4.3) and (4.4) indicate that the temporal scaling exponents are
closely related to the spatial scaling exponents as well as the scaling law of mixing width.
To the authors’ knowledge, this is the first time the spatial and temporal scaling laws of
the structure functions for RM turbulence have been given.

With the relative scaling exponents in figure 8, we can calculate the absolute scaling
exponents. The distributions of SL

p vs the spatial scale ry at τ = 59.24 for case BB are
given in figure 10(a), where the prediction of the Kolmogorov scenario (ζ L

p = p/3) and
the RM-modified anomalous exponents calculated from βL

( p,3) with a reference value of
ζ L

3 = 3/4 are also given for comparison. It is seen that the simulation results deviate
from the Kolmogorov exponents, but are quite close to the RM-modified anomalous
exponents in the short scaling range. This demonstrates the validity of the present
phenomenological theory. Figure 10(b) gives the distributions of ζ

YSF6
p vs the spatial

scale, where the dimensional prediction of the Obukhov–Corrsin scenario (ζ
YSF6
p = p/3)

and two anomalous exponents calculated from β
YSF6
( p,2) are given for comparison. Since

ζC
2 = 2/3 is not an exact value for the Obukhov–Corrsin scenario, here ζC

2 = 0.659 from
the DNS of HIT (Watanabe & Gotoh 2004) is taken as the reference exponent to obtain
the Obukhov–Corrsin anomalous exponent. The reference value ζ

YSF6
2 = 0.659 × 3/4

is used to calculate the RM-modified anomalous exponent. As shown in figure 10(b),
the simulation results deviate from the Obukhov–Corrsin scaling exponents, particularly
for high-order structure functions. The values of ζ

YSF6
p from simulation agree with

the Obukhov–Corrsin anomalous scaling exponents at small scales, but approach the
RM-modified anomalous ones at large scales. The present results reveal the influence of
the external agent on the scaling laws of the structure functions for RM turbulence. The

agreements between the simulation results and the model predictions for ζ
YSF6
p also give

a direct demonstration of the validity of the present phenomenological theory. Case NB
presents similar results with a relative narrower scaling range, which are not shown here.

Finally, we investigate the temporal scaling behaviour of the structure functions of the
longitudinal velocity and scalar. Figure 11 shows the ESS scaling of the structure functions
against the reference one at a fixed spatial scale r0 = 15Δyz for case BB. The fixed scale
chosen here is located inside the scaling range in figure 10. Two prediction lines of the
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Figure 10. Spatial scaling of (a) longitudinal velocity structure function SL
p and (b) scalar structure function

S
YSF6
p at τ = 59.24 for case BB. Note that the plot of SL

p is offset by 0.75, 0.4, 0.15, 0.05 and 0.01 for p = 2–6,

respectively; the plot of S
YSF6
p is offset by 0.8, 0.5 and 0.2 for p = 4–6, respectively. Here, symbols represent

the same value of p as in figure 7. Sold lines in both panels represent the scaling exponents of the KOC
phenomenological prediction. Dot lines and dash lines represent the KOC and RM-modified anomalous scaling
exponents, respectively.

present phenomenological model for the KOC and RM-modified scenarios are given for
comparison. The former uses the non-intermittent spatial scaling exponents while the latter
adopts the anomalous ones used in figure 10. The fitted value of θ = 0.333, which can
represent the overall growth behaviour of the mixing width of case BB, is used for both
lines. As shown in figure 11(a), the predicted exponents of SL

p(r0, t) are not sensitive to
ζp and both prediction lines are in good agreement with the simulation results at most
times. As shown in figure 11(b), unlike the results of SL

p(r0, t), the two prediction lines of

S
YSF6
p (r0, t) exhibit a distinct difference. The simulation results first meet the RM-modified

anomalous scaling, and then approach the KOC non-intermittent scaling. It is found that
the power-law range gradually shifts to large scales due to both the growth of the mixing
zone and the decrease of the Reynolds number in RM turbulence, which is a possible
reason for the switch in the ESS temporal scaling of the scalar.

5. Conclusions

In this work, high-fidelity simulations of RM turbulence with two different initial
perturbation spectra (i.e. case BB and case NB) are performed with an improved WCNS
scheme that has minimum dispersion and adaptive dissipation. The features of RM
turbulence are first investigated. The mixing width experiences an exponential growth
behaviour in the self-similar stage. The measured values of the exponent for both cases
approach the predictions of Soulard et al. (2018). A visible −3/2 spectrum of the TKE is
observed in RM turbulence, which confirms the prediction of Zhou (2001).

A phenomenological theory for the structure functions of the velocity and scalar of
RM turbulence is developed by introducing an external agent originally proposed by Zhou
(2001). Both simulation and theory show an evident influence of the external agent on the
scaling laws of the inertial range for RM turbulence. The simulation results give strong
evidence of intermittency for RM turbulence as with RT turbulence and HIT, and the
relative scaling exponents for these types of turbulence obtained with the ESS method
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Figure 11. The ESS temporal scaling of (a) longitudinal velocity SL
p(r0, t) and (b) scalar structure function

S
YSF6
p (r0, t) at fixed spatial scale for case BB. Dash lines and solid lines in both panels represent the predictions

from phenomenological theory with the KOC non-intermittent and RM-modified anomalous spatial scaling
exponents, respectively. Here, symbols represent the same value of p as in figure 7.

are generally consistent. For RM turbulence, the scalar field exhibits a greater degree of
intermittency than the velocity field under the current Mach number. Also, the statistics
of small-scale scalar fluctuations suffer a larger influence of large scales than the velocity
fluctuation. A hierarchical symmetry analysis is undertaken, and the result indicates that
intermittency is closely related to the symmetry breaking between scales. The spatial
scaling exponents of the structure functions from simulation deviate from the Kolmogorov
exponents, but are quite close to the RM-modified anomalous exponents in the short
scaling range. The agreements between the simulation and prediction for the spatial scaling
exponents of both the velocity and scalar structure functions give a direct demonstration of
the validity of the present phenomenological theory. The temporal scaling exponents of the
structure functions first meet the RM-modified anomalous scaling, and then approach the
KOC non-intermittent scaling. In the future, RM turbulence at sufficiently high Reynolds
numbers should be studied to address several key issues: explore the universal scenario;
clarify whether the KOC theory is the only scenario in the limits of large Reynolds number,
long times and small scales; construct a relationship between the change of scaling law and
the mixing transition.
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Appendix

Figures 12(a,b) and 12(c,d) show the comparisons of TKE spectra and mass fraction
spectra between the fine (1024 × 512 × 512) and coarse (512 × 256 × 256) meshes for
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Figure 12. Spectra of TKE (a,b), mass fraction (c,d), enstrophy (e,f ) and scalar dissipation rate (g,h) at two
different times for case NB (a,c,e,g) and case BB (b,d,f,h) with grid numbers of 512 × 256 × 256 (lines with
symbol) and 1024 × 512 × 512 (lines).
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p and (b) scalar structure

function S
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p for case BB with grid numbers of 512 × 256 × 256 (solid symbols) and 1024 × 512 × 512 (open

symbols). The symbols represent the same value of p as in figure 7.

cases NB and BB. As we can see, the spectra in the scaling range under the two meshes
are quite close, while the spectrum at high wavenumbers is lower for the coarse mesh than
the fine mesh due to the grid-dependent numerical dissipation. The spectra of enstrophy
and scalar dissipation rate, which are more grid sensitive (Tritschler et al. 2014b; Groom
& Thornber 2019), are given in figures 12(e,f ) and 12(g,h), respectively. Reasonable
agreement is obtained at low wavenumbers for the spectrum of the scalar dissipation
rate for the fine and coarse meshes. The spectrum of enstrophy is found to be lower at
all wavenumbers for the coarse mesh than for the fine mesh. The difference is explained
below. In the present simulations, in order to deposit more kinetic energy on the interface
to feed the subsequent turbulence, the initial interface thickness is set to be a small value
of λmin/4 (Lombardini et al. 2012). As a result, the initial interface is sharp for the coarser
mesh, but presents a diffusive layer for the fine mesh. This accounts for the relatively large
difference in the spectra of enstrophy.

To further examine the mesh sensitivity of the main results reported in this work,
comparisons of the structure functions under the two meshes are given in figure 13. It
is seen that the ESS scalings are in reasonable agreement for the two grid resolutions
except for the minor difference at high orders. This manifests the reliability of the scaling
exponents obtained from the present high-fidelity N–S simulations.
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