Contents

	Acronyms		<i>page</i> ix
	Prefa	ce	xiii
1	Introduction		1
	1.1	Historical background	1
	1.2	Gaseous detectors: a personal recollection	4
	1.3	Basic processes in gaseous counters	20
	1.4	Outline of the book	23
2	Electromagnetic interactions of charged particles with matter		24
	2.1	Generalities on the energy loss process	24
	2.2	The Bethe–Bloch energy loss expression	28
	2.3	Energy loss statistics	29
	2.4	Delta electron range	40
3	Interaction of photons and neutrons with matter		43
	3.1	Photon absorption and emission in gases	43
	3.2	Photon absorption: definitions and units	44
	3.3	Photon absorption processes: generalities	46
	3.4	Photon absorption in gases: from the visible to the near	
		ultra-violet domain	49
	3.5	Photo-ionization: near and vacuum ultra-violet	53
	3.6	Photo-ionization in the X-ray region	56
	3.7	Compton scattering and pair production	62
	3.8	Use of converters for hard photons detection	63
	3.9	Transparency of windows	67
	3.10	Detection of neutrons	68
4	Drift and diffusion of charges in gases		76
	4.1	Generalities	76

v

	4.2	Experimental methods	76
	4.3	Thermal diffusion of ions	80
	4.4	Ion mobility and diffusion in an electric field	82
	4.5	Classic theory of electron drift and diffusion	87
	4.6	Electron drift in magnetic fields	90
	4.7	Electron drift velocity and diffusion: experimental	91
	4.8	Electron capture	106
	4.9	Electron drift in liquid noble gases	112
	4.10	Transport theory	114
5	Collis	sional excitations and charge multiplication in uniform fields	129
	5.1	Inelastic electron-molecule collisions	129
	5.2	Excitations and photon emission	130
	5.3	Ionization and charge multiplication	143
	5.4	Avalanche statistics	149
	5.5	Streamer formation and breakdown	153
6	Paral	el plate counters	160
	6.1	Charge induction on conductors	160
	6.2	Signals induced by the motion of charges in uniform fields	161
	6.3	Analytical calculation of charge induction	165
	6.4	Signals induced by the avalanche process	172
	6.5	Grid transparency	175
	6.6	Applications of parallel plate avalanche counters (PPACs)	177
7	Propo	ortional counters	182
	7.1	Basic principles	182
	7.2	Absolute gain measurement	188
	7.3	Time development of the signal	188
	7.4	Choice of the gas filling	191
	7.5	Energy resolution	194
	7.6	Scintillation proportional counters	198
	7.7	Space-charge gain shifts	201
	7.8	Geiger and self-quenching streamer operation	206
	7.9	Radiation damage and detector ageing	207
8	Multi	-wire proportional chambers	211
	8.1	Principles of operation	211
	8.2	Choice of geometrical parameters	215
	8.3	Influence on gain of mechanical tolerances	216
	8.4	Electrostatic forces and wire stability	218

		Contents	vii
	8.5	General operational characteristics: proportional and	
		semi-proportional	221
	8.6	Saturated amplification region: Charpak's 'magic gas'	226
	8.7	Limited streamer and full Geiger operation	230
	8.8	Discharges and breakdown: the Raether limit	231
	8.9	Cathode induced signals	234
	8.10	The multi-step chamber (MSC)	245
	8.11	Space charge and rate effects	249
	8.12	Mechanical construction of MWPCs	252
9	Drift o	chambers	264
	9.1	Single wire drift chambers	264
	9.2	Multi-cell planar drift chambers	265
	9.3	Volume multi-wire drift chambers	275
	9.4	Jet chambers	280
	9.5	Time expansion chamber	282
	9.6	Determination of the longitudinal coordinate from	
		current division	284
	9.7	Electrodeless drift chambers	287
	9.8	General operating considerations	290
	9.9	Drift chamber construction	290
10	Time	projection chambers	292
	10.1	Introduction: the precursors	292
	10.2	Principles of operation	293
	10.3	TPC-based experiments	297
	10.4	Signal induction: the pad response function	301
	10.5	Choice of the gas filling	312
	10.6	Coordinate in the drift direction and multi-track resolution	315
	10.7	Positive ion backflow and gating	318
	10.8	TPC calibration	323
	10.9	Liquid noble gas TPC	324
	10.10	Negative ion TPC	325
11	Multi	tube arrays	327
	11.1	Limited streamer tubes	327
	11.2	Drift tubes	329
	11.3	Straw tubes	335
	11.4	Mechanical construction and electrostatic stability	340
12	Resist	ive plate chambers	344
	12.1	Spark counters	344

viii		Contents	
	12.2	Resistive plate counters (RPCs)	346
	12.3	Glass RPCs	353
	12.4	Multi-gap RPCs	355
	12.5	Simulations of RPC operation	360
13	Micro-pattern gaseous detectors		365
	13.1	The micro-strip gas counter	365
	13.2	Novel micro-pattern devices	373
	13.3	Micro-mesh gaseous structure (Micromegas)	378
	13.4	Gas electron multiplier (GEM)	383
	13.5	MPGD readout of time projection chambers	392
	13.6	Active pixel readout	395
	13.7	MPGD applications	398
14	Cherenkov ring imaging		399
	14.1	Introduction	399
	14.2	Recalls of Cherenkov ring imaging theory	403
	14.3	First generation RICH detectors	407
	14.4	TMAE and the second generation of RICH detectors	410
	14.5	Third generation RICH: solid caesium iodide (CsI)	
		photocathodes	417
	14.6	CsI-based RICH particle identifiers	423
	14.7	Micro-pattern based RICH detectors	424
15	Misce	ellaneous detectors and applications	430
	15.1	Optical imaging chambers	430
	15.2	Cryogenic and dual-phase detectors	434
16	Time degeneracy and ageing		441
	16.1	Early observations	441
	16.2	Phenomenology of the radiation damages	443
	16.3	Quantitative assessment of the ageing rates	449
	16.4	Methods of preventing or slowing down the ageing process	451
	16.5	Ageing of resistive plate chambers	455
	16.6	Micro-pattern detectors	457
	Furth	er reading on radiation detectors	460
	Refer	ences	461
	Index		494