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An isomorphism (as groups) is established between an arbitrary connected module over a structural matrix
near-ring and a direct sum of appropriate modules over the base near-ring. This isomorphism leads to a
characterization of the 2-primitive ideals of a structural matrix near-ring.
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1. Introduction

Until 1986 it had been unanimously decided in near-ring quarters that in most cases
the notion of a matrix near-ring over an arbitrary near-ring does not make sense, since
matrix multiplication is not associative as long as matrices are considered as arrays of
entries for which addition and multiplication are defined in the familiar way (see
Heatherly [1]). But then Meldrum and Van der Walt [3] used a functional approach in
their definition of a matrix near-ring over an arbitrary near-ring R, by considering
matrices as certain functions from R" into R", where R" denotes the direct sum of n
copies of (R, +).

Although there are many similarities to the ring case, there are also some striking
differences, e.g., the correspondence between the two-sided ideals of the base near-ring R
and the matrix near-ring Mn(/?) is much more complex than in the ring case (see Van
der Walt [9]). Since then matrix near-rings have been the object of study in various
papers, e.g., [4,6,8-11].

Van der Walt [10] generalized the concept of a monogenic module to that of a
connected module, and showed how G" can be viewed as a (connected) Mn(K)-module
in case G is a connected /^-module. Using the interplay between properties of G and G",
he proved that R is 2-primitive if and only if Mn(K) is 2-primitive, which led to the
following result:

^2(Mn(R)) = (^2(K))*, (1)

where (5r
2(/?))*: = {l/eMn(/?):l/ue(.r2(K))n for every ueR"}. (Obviously,

(•^(R))* = Mn(0~2(R)) in case R is a ring.) A crucial step in the building up to that proof
was to establish an isomorphism (at least as groups) between an arbitrary connected
Mn(i?)-module and a direct sum of appropriate i?-modules. The generalization of this
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230 L. VAN WYK

isomorphism to connected modules over structural matrix near-rings is the decisive
starting point in the present paper.

A structural matrix ring M(B, R), R a ring and B = [by] a reflexive and transitive nxn
Boolean matrix, is a subring of the (complete) matrix ring Mn(R), which is a ring only
by virtue of the shape of its matrices, in the sense that substructures of R play no role:

M(B, /?):={ U = [uy] e Mn(R): btj = 0~Uij = 0}.

In fact, M(B, R) is a generalized matrix ring, i.e. an S-graded ring ©seSRs> where
S: = { £ 0 : l g i j ^ n and /> y = l}u{#} , Rs: = REi} if s = Etj, and R#: = 0. The £,/s denote
the matrix units and

#,
if j = k
otherwise.

The author [12] showed that for a special radical & determined by a special class Jt
of rings, such that TeJt if and only if Mn(T)eJ? whenever T has an identity,
&$(M(B,R)) is the sum of two two-sided ideals, namely, in the first place, the set of
matrices with entries from 3$(R) in positions where B has ones, and zeroes elsewhere,
and, secondly, the set of matrices with entries from R in the "antisymmetric part" of B,
i.e. the positions (i,j) such that b^ = 1 and b^ = 0, and zeroes elsewhere. This result is, on
the one hand, a generalization of the well known fact that 3$(Mn(R)) — Mn(@(R)) and of
the fact that, for a field F, the Jacobson radical of the lower triangular matrix ring

F
F
F

0
F
F

0
0
F

is
0
F
F

0
0
F

0
0
0

and, on the other hand, a nice illustration of the Jacobson radical of a generalized
matrix ring being a homogeneous ideal, as shown in [13]. (The description of the
Jacobson radical of a generalized matrix ring is still lacking.)

Van der Walt and the author [11] showed that the two obvious definitions of a
structural matrix near-ring M(B, R), R a (right) near-ring, somewhat unexpectedly yield
the same near-ring. The main purpose of [11] was to describe ^(M(B,/?)). To this end,
the characterization of the ^-radical of a near-ring as the intersection of its 2-primitive
ideals, and the characterization of the ^-radical as the intersection of its strictly
maximal left ideals, were considered. (Recall that a strictly maximal left ideal of R is a
maximal left ideal which is also maximal as a left R-submodule of RR.) Although Van
der Walt [10] succeeded in characterizing the 2-primitive ideals of Mn(R) in terms of
those of R, and then used them to arrive at (1), the authors of [11] did not manage to
generalize the former's methods to structural matrix near-rings, the crucial problem
being that they could not find an isomorphism (as groups) between an arbitrary
connected M(B, J?)-module and a direct sum of "appropriate" R-modules (see the
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2-PRIMITIVE IDEALS OF STRUCTURAL MATRIX NEAR-RINGS 231

remark just after (1)). Consequently they opted in [11] for a characterization of the
strictly maximal left ideals of M(B, R) in terms of those of R. However, quite a number
of very technical results were needed to obtain that characterization, and the building
up was rather slow.

In the present paper the sought after isomorphism (as groups) between an arbitrary
connected M(B, K)-module and a direct sum of appropriate /^-modules (which need not
be connected) is established. This leads, apart from additional results presented in
Section 3 to provide a clear holistic picture of connected M(B, R)-modules, relatively
quickly to a number of elegant results (compared with those in [11]), terminating in
Section 4 in a characterization of the 2-primitive ideals of M(B, R). As a result of this
the same description of the ^-radical of a structural matrix near-ring as in [11] is
obtained.

It is not known (see [11]) whether 5~2(M(B, R)) can be expressed as the sum of two
(two-sided) ideals, one of which is nilpotent, as in the ring case (see [12]]). In the last
part of Section 4 some progress is made in this direction, where it is shown that
&~2(M(B, R)) contains the sum of two such ideals, which are precisely the two ideals in
[12] in case R is a ring.

2. Preliminaries and notation

R will be a generic symbol for a zero-symmetric right near-ring with identity 1. The
direct sum of n copies of a group (G, +) is denoted by G", and the elements of G" are
thought of as column vectors, but written in transposed form with pointed brackets, e.g.,
(gi<g2>- ••>#!.>• The symbols i, and 7r, denote the ith coordinate injection and projection
functions respectively, 1 ^ i ^ n.

For the ease of the reader we provide the pertinent definitions regarding matrix near-
rings. Meldrum and Van der Walt [3] call the functions fr

ij:R
n^R", l^ij^n, defined

by

the elementary nxn matrices over R, where reR and J.(r):R-+R is the left multiplication
s>->rs, for all seR. They call the subnear-ring of M(R"), i.e. the near-ring of all
mappings on R", generated by the elementary n x n matrices over R, the near-ring of
nxn matrices over R, and denote it by Mn(R). The elements of Mn(J?) are called
matrices. Representations of matrices will be needed. Meldrum and Van der Walt
defined the set Sn(R) of matrix expressions, i.e. the subset of the free semigroup over the
alphabet of symbols

{f'tJ: r e R,l£i,j£

recursively by the following rules:
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232 L. VAN WYK

(1) frij e <?„(#) for 1 ̂  i,j = n and all reR.

(2) If El,E2eS2(R), then

(3) If EuE2e#n(R), then

The weight w(U) of a matrix 1/ is the length of an expression of minimal length
representing U, where the length of an expression E is the number of f'/s in E.

B = [bij~] will be a generic symbol for a reflexive and transitive nxn Boolean matrix.
B determines and is determined by the binary relation ^ B on {1,2,...,n} defined by

The quasi-order relation ^B gives rise in the usual way to an equivalence relation
on {1,2,...,n} defined by

B

The number of equivalence classes induced by ~ B is denoted by b, and zl,z2,...,zb will
be representatives of the equivalence classes, which we denote by [z0], a =1,2,...,ft. We
denote the elements of [ z j , l^a^b, by jha,j2a,... j n o f l , i.e. | [ z j | = na.

For the ease of the reader we state [11, Theorem 2.8], which will be invoked on
several occasions in the sequel:

Theorem 2.1. ([11, Theorem 2.8]) M(B, R) is the subnear-ring ofMn{R) generated by
the set {frij:reR and bu = 1}.

Throughout the paper ideal will mean two-sided ideal. Notation and standard results
not given here may be looked up in Meldrum [2] or Pilz [7].

3. Connected modules over structural matrix near-rings

Van der Walt [10] calls an /^-module G connected if, for any gug2eG, there are geG
and r,seR such that gi = rg and g2 — sg. This generalization of a monogenic module
was needed in [10] to impose an Mn(i?)-module structure on G". It was shown in [10,
Theorem 3.5] that if T is a connected Mn(i?)-module, then (r, +)s(G", +) as groups,
where G is an appropriate i?-module.

Theorem 3.1. Let F be a connected M(B, R)-module. Then

as additive groups, for appropriate R-modules G,,G2,. . . ,Gb.

Proof. Let l ^ a = 6, and let Ga = fla2T. Then by [10, Lemma 3.2(2)] Ga is an
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2-PRIMITIVE IDEALS OF STRUCTURAL MATRIX NEAR-RINGS 233

K-module by setting r(/*oZj) = fZaZj for every reR,yeF, since by [3, Lemma
3-1(7)]/^^ e(M(B, R)),,, the" distributive part of M(B,R). Furthermore, as fl

Zajkay =
/ U ( / L v j ) e Gfl) it follows that

defined by

b fta

a = \ k - l

is a group homomorphism. Next, if yJka, for a = 1,2,...,b and /c = l ,2, . . . ,na , are
arbitrary elements of F, then

\ a = l * = l

£ z
o = l * = l \ c = l m = l

Z Z
o = l k=l

and so 0 is onto. Finally, if 0(y) = O, i.e. / ^ ,,7=0 for all Ac and a, then

=( I Z/JL

/ b na \
= ( E Z f)*.aZ*f z«jk,a )

\a=l *=1 /

a

~ 2-1 2-1 J jk.aZ<\j ZaJk^y
a=l k=l

= 0,

which establishes the result.
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Henceforth Ga, a-l,2,...,b, will denote the R-modules defined in the proof of
Theorem 3.1. In the complete matrix near-ring case, i.e. where B is the universal nxn
Boolean matrix (and ~ B induces a single equivalence class), Gt need not be connected,
even if R is a ring (see [5, page 70]). However, Van der Walt showed in [10, Theorem
3.10] that Gt is of type 2 (and hence connected) in case F is of type 2. We shall show in
Theorem 3.6 that every Ga, 1 ̂  a g b, is of type 2 (and hence connected) in case F is of
type 2, but we first prove that without such a restriction on F, the shape of B in the
structural matrix near-ring case may force some of the Go's to be connected.

Proposition 3.2. Let T be a connected M(B, R)-module. / / | [z f l ] |= 1 and za is a maximal
element of {zl,z2,...,zb} with respect to gB, then Ga is a connected R-module; moreover,
if F is monogenic (by a), then Ga is monogenic (by flaZjx).

Proof. Let fl
ZaZay, flaZaSeGa. Since F is connected, there are U, VeM(B,R) and a e F

such that Ua=y and Ka = <5. Hence, f\ zy = (f\z U)<x and f\ z 5 = (f\ z F)a. We use
induction on the weight w(U) of U to show that fl

ZaZJJ = f'ZaZa for some reR. If
w(U) = l, then by Theorem 2.1 we have l/ = / y for some reR, where t»IJ-= 1. Hence, by
[3, Lemma 3.1(3)] we have

n rr-Sf'^' if i = z"
3
!aj = f°aZa, otherwise.

If i = za, then the conditions on za ensure that j = za, and so the assertion is true if
w(U) = l. The rest of the induction process is straightforward if one keeps in mind that
fUe(M(B,R)), and that /',Bl. = / ' . . . J U - We conclude that f\aZj = fZaZa = r(/i.r.a).
Similarly, /\aZJ> = s(f\aZaa) for some seR. Therefore Ga is a connected K-module. The
monogenic case is treated in the same way.

Example 3.3. If

B =
1

1

0

1

1

0

1

1

1

and F is a connected M(B, /?)-module, then r^<G1,G1,G2> as groups, where G1: =
/ J i F and G2: = / i 3 r are /^-modules, the latter being connected.

Following [5], and supported by Theorem 2.1, we call a matrix of the form
YjUi&Bj)frij' w ' t n t n e r i s elements of R and l^j^n, ajth column matrix in M(B,R). The
set of all yth column matrices in M(B,R) will be denoted by #, . The proofs of [5,
Proposition 1.24] and [5, Lemma 2.4] serve to a great extent as the proofs of the
following two results:
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Lemma 3.4. <€j is an M(B,R)-submodule of M(B,R) for j = 1,2,...,n.

Proof. It follows immediately that (#,, +) is a subgroup of (M(B, R), +) if one keeps
in mind that /;)+/£)=/£)•+/;} in case i#fc. We now use induction on the weight w(U)
of U to show that U(fjiiisBJ)f'))e<<gj for every UeM(B,R). If w(U) = l, then by
Theorem 2.1 we have U = fr

k, for some reR, where bu = \. Then /ki(Zi(>SBj)/o) = / S ^
1 £Bj, and ru(Lui.jifu) = fkj if l ^BJ- But ffleVj, since g B is transitive. The rest of
the induction process is straightforward.

Lemma 3.5. Let UeM(B,R) and let l^a^b. Then l/(I,(,*.,.,/!!.) = £,(•*,x.)/S.
(in M(B,R)) {fond on/y i/ l/(L«s.«.)I«('Ii)) = Iws»x.)«i(Si) ('" *"). w ^ r e t/ic r,'s and s.'s
are arbitrary elements of R.

Proof. Consideration of the action of t^Lius,,*„)/£«)=£«!*;„*«>/&. on i2a(l) gives
the desired result.

Theorem 3.6. Let F be an M(B, R)-module of type 2. Then Ga is an R-module of type
2 for a=\,2,...,b.

Proof. Ga is faithful, since re AnnRGa if and only if fT
ZaZae AnnM{BR)r. Next, let f\aZay

be any nonzero element of Ga. If flaZa5eGa, then U{f\aZj) = flaZJ> for some
UeM(B,R), since F is of type 2. It follows from Lemma 3.5 that there are elements rt of
R such that U{flJ=Y.m±B:JrL, and so

f1 S=fl (f1 5)=fi ( Y f' \y
J zaza

u J zaza\J ZaZa ' — J ZaZa \ £-, J lza I I

\i(iZBza) /

= f" y = r (f1 v)

Hence Ga is of type 2.

4. The 2-primitive ideals and the 5"2-radical of M(B,R)

Let L be a left ideal of R, and let \^a^b. The following M(B,K)-ideal of the
structural M(B, R)-module R"(a,R) was introduced in [11]:

(for some/eL), if za ~
), if zflgBi and za^Bi

Proposition 4.1. / / F is a (nonzero) M(B, R)-module of type 2, then AnnM{BJi)r =
(R"(a,I):R"(a,R)) for some ideal 1 of R and some a, l^a^b.
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Proof. By Theorem 3.1 there is a minimal element za (say) of {z1,z2,...,zb} (with
respect to ^B) such that G a #0 . Set I: = AnnRGa. In order to arrive at the desired result,
firstly, let VeAnnmBiR)r. Take any t^iT^i lha(rk,a)eRn(a,R), and let
^ ( B = i Z i ! = i'A.«(r*.<.))=i^=iZi!=i'A.«(s*,a)- Then sm,c=0 for m=l,2,...,nfl, in case
za^Bzc and za'fBzc, because R"(a,R) is an M(B, /?)-module. Furthermore, it follows
from Lemma 3.5 and the minimality of za that

£ /2::..)= I fl;l~ and so ( £ /&:,.)/Uy = 0

for all yeT, since (£*"=i/£•;;*,,)/!„*„?eT. Hence, for every p, l gpgn a , we have
O = /U. . ( I»"- i /£rf . ) / i .« .y = /I:i:y. w h i c h i m P l i e s t h a t SP^I, since / = {reK:/;a , .r =
0}. Therefore, I2=i I*=i ij,, „(«»,„) ^"(a , / ) , from which we conclude that
Ue(Rn(a,I):R"(a,R)). Secondly, let U e (fl"(a, /): R\a, R))y and let yeT. There is a <5eT
such that flaZJ>¥=0, otherwise Ga = 0. Since T is of type 2 over M(B,R), there is a
VeM(B,R) such that F/J z 8 = y, and so by Lemma 3.5 and the minimality of za we
have l/y = t / (&=i /£ . , . ) « = (5>-i /£. , . )a for some tteU, ii te/, fc = l,2,...,na. Also,

fl,**f=(fl,«zJZza)Z = fl.»M?*:£) = fk«*Si> since "*e/> and so Jt follows from C3'
Lemma 3.1(6)] that Uy = 0, since /? is zero-symmetric. Therefore UeAnnmBR)r, which
completes the proof.

Eventually we want to show that the ideals (R"(a,I):R"(a,R)), for a = 1,2,...,b and / a
2-primitive ideal of R, compose the set of all the 2-primitive ideals of M(B,R). The
following near-ring isomorphism is essential in this regard:

Proposition 4.2. M(B,R)/(R"(a,I):Rn(a,R))sMna(R/I) for a= 1,2,...,b and every ideal
IofR.

Proof. Let l^a_i>, and consider the near-ring epimorphisms <D:M(B,R)-»Mna(/?) in
[11, Theorem 3.10] and </>:Mn (K)-»Mn (R/I) in [10, Lemma 4.2], defined respectively
by

<t>(U) = fi(02(Ev)), where

and

Ev)), where

Here 0i(Ev) is the expression derived from Ev by changing every fr
i} into / ' / ' , and

92(EU) is the expression derived from Ev by replacing every fs
jkJm in Ev by /Jm, 1 ^ k,

m^na, and everything else by f°ZaZa, whereas fi(E) denotes the matrix represented by an
expression E. (Recall from [3] that every matrix expression represents a matrix, but
the same matrix may be represented by many different expressions, since every
matrix is merely a function from R" into Rn.) It is easily seen that the composite
function <f>oQ>:M(B,R)->Mna(R/I) maps UeM(B,R) onto n{6l(62(Ev))). We show
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2-PRIMITIVE IDEALS OF STRUCTURAL MATRIX NEAR-RINGS 237

that Ker(<£o(D) = (Rn(a,I):R"(a,R)). Let Ue(R"(a,I):Ra(a,R)), and let rur2,...,rnaeR.
Then u: = ^°= i ijh(rk)eRn{a,R), and so TtJk{Uu)eI for l t = l , 2 na, ' i.e.
<b(U)<jur2,...,rna)eI"', since by [11, Lemma 3.9] we have

| jM)) for m=l ,2 , . . . , n a .

It follows from [10, Lemma 4.2] that ^(^(C/JXr! +I,r2 + / , . . . , r n o + / > = 0 in (/?//)"-,
since by [4, Proposition 6] (R/I)na^Rn"/In" as Mna(K)-modules. Therefore
f/eKer(<j&o<D). Conversely, let UeKer(<p°0>), and let u: = <u1,M2,...,un>e/r(a,J?). Then
by the definition of R"(a,R) we have w=£ j= i ljk(ujk) + Y,Uza $Bi)l'iui)- We must show that
nJm(Uu)eI for m=l ,2 , . . . ,n a . Again by [11, Lemma 3.9] we have nJm(Uu) =
nm(<&(U)(uJi,uh,...,Ujny), and so it follows from [10, Lemma 4.2] that njm(Uu) =
nm(<l>(®(U)Kujl+I,i*j2 + I,---,Uj^ + iy) = O in R/I, from which we conclude that
njm(Uu)eI. Therefore UueR"(a°I), and so Ue(Rn(a,/):R"(a,R)). Since <£ofl> is onto, the
desired near-ring isomorphism follows.

Proposition 4.1, Proposition 4.2 and [10, Theorem 3.10] together lead to

Theorem 4.3. The set of (R"(a, I): R"(a, R))'s, for a = 1,2,..., b and I a 2-primitive ideal
of R, is the set of all the 2-primitive ideals ofM(B,R).

The characterization of the ^"2-radical of a near-ring as the intersection of its
2-primitive ideals is now used to describe ^ ( M ( B , R)) in terms of 9~2{R):

Theorem 4.4. ([11, Theorem 3.17])

f2{M(B,R))= D (Rn(a,r2(R)):Rn(a,R)).
a=l

Proof. It follows directly from Theorem 4.3 and [7, Proposition 1.44].

Whether &~2(M(B, R)) can be written as the sum of two ideals, one of which is
nilpotent (as in the ring case), was raised as an open problem in [11]. We conclude by
making some progress in this direction.

Theorem 4.5. {f2{R))* + f | J - I (*"(«> 0): R"(a, R))<=F2(M(B, R)).

Proof. Let Ue(3T2(R))* and let Vef]b
a=i(^"(a,0): R"(a,R)). It follows from the

definition of R"(a,&~2{R)), l^a^b, and from Rn(a,R) being an M(B,R)-module that
t/(/?n(fl,/?))£/?n(a,^2(R)) if we can show that 7rJjki.(I/(Ull(a,iJ)))s^(Jl) for k = l,2,...,na.
But this is certainly the case, since U{R") £ {&~2{R))n. Furthermore, V(R"{a, R)) £
R"(a,^(/?)), because R"(a, 0) £ R"(a, &~2{R)). The desired result follows now immediately
from Theorem 4.4.
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Note that (3T2{R))* = M(B,3r2(R)), and that f]b
a=1 (Rn(a, 0): Rn(a, R)) is the anti-

symmetric radical of M{B,R), in case R is a ring. (See [12], where it is shown that
$~2(M(B, R)), R a ring, is the sum of M(B,^(K)) and the antisymmetric radical of
M(B,R).)

The next result shows that the elementary matrices in &~2(M(B,R)) are contained in
the sum of the two ideals in Theorem 4.5.

Proposition 4.6.

+ ft (R-(a,0):Rn(a,R)).

Proof. Let /^e^~2(M(B,R)). It follows from Theorem 2.1 that i^Bj. Let i~Bza.
(say), and let j~Bza~ (say), l^a',a"^b. We consider the following two possibilities,
viz. za:^Bza- or za.. ikBza'. In the first case a' = a". For every <u1,u2,.. .,un}eR"
we have /y<M1,«2»---.«»> = 'i('>«y) = /y(';(«j))- sjnce ij(Uj)eR"(a',R) and
/Jje(/?"(«',^"2(/?)):i?"(a',-R)), it follows that i^eK"(a\^"2(/?)), and so ruje^2(R).
Therefore /ye(.^(R))*. In the second case, let l^a^b and let u: =
<M1,u2,...,wn>e/?"(a,/?). If za^Bza,, then it follows from the transitivity of ^ B that
za^za.. and za.. -$.Bza (otherwise za- ^Bza), and so the definition of R"(a,R) ensures that
Uj = 0, because 7 ~Bza... Hence fr

iju = 0eRr'{a,0). If za ikBza; then ^^"(a,0)) =R, because
i~Bza.. Hence we have f'i} u e R"(a, 0) in this case, too. Consequently, fr

{je
C]a = i(^n(a,0y.R''(a,R)). This completes the proof.

Set Sf: = {f'if. f\jey2(M{B,R))}. It follows directly from Proposition 4.6 that every
sum of /J/s in 5^ is an element of (^2(R))* + f)b

a=l(R
n(a,O):Rn(a,R)). Our final result

shows that £f resembles the union of the sets {rEii:re3~2{R), and i,j ~Bza- for some a',
1 ^a'^fe} and {rE^reRJ ~ Bzo. and j ~f lza- for some a'jta", 1 ^a ' , a"^b} in the ring
case.

Proposition 4.7. S? = {/';/.re$~2(R), and i,j~Bza. for some a', 1 ^a'Sb} u
reR,i ~Bza- and j ~Bza.. for some a'^a", 1 ^a ' ,a"^b).

Proof. Let f'^sy, and suppose that i,j~Bza, for some a', l^a'^b. Then by the
first part of the proof of Proposition 4.6 we have /Jj(J7(l))e(^(i?))n, which implies that
rs2?~2(R). Next, suppose that r&ST2{R) and i,j ~Bza. for some a', 1 ^ a ' ^ b . Since "̂2(J?) is
a right ideal of R, it follows that ii(ruJ)eR\a,$'2(R)) for every <u1,w2,..., wn> 6i?"(a,R)
and every a, l ^ a ^ b , and so f^eZf. Lastly, suppose that reR, i ~Bza> and ; ~Bza- for
some a'^a", l^a', a"^b. Then an argument almost precisely the one pursued in the
last part of the proof of Proposition 4.6 shows that f'j e £f, and so the desired equality
has been established.
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