THE 2-PRIMITIVE IDEALS OF STRUCTURAL MATRIX NEAR-RINGS

by L. VAN WYK

(Received 9th May 1989)

Abstract

An isomorphism (as groups) is established between an arbitrary connected module over a structural matrix near-ring and a direct sum of appropriate modules over the base near-ring. This isomorphism leads to a characterization of the 2 -primitive ideals of a structural matrix near-ring.

1980 Mathematics subject classification (1985 Revision): 16A76

1. Introduction

Until 1986 it had been unanimously decided in near-ring quarters that in most cases the notion of a matrix near-ring over an arbitrary near-ring does not make sense, since matrix multiplication is not associative as long as matrices are considered as arrays of entries for which addition and multiplication are defined in the familiar way (see Heatherly [1]). But then Meldrum and Van der Walt [3] used a functional approach in their definition of a matrix near-ring over an arbitrary near-ring R, by considering matrices as certain functions from R^{n} into R^{n}, where R^{n} denotes the direct sum of n copies of $(R,+)$.

Although there are many similarities to the ring case, there are also some striking differences, e.g., the correspondence between the two-sided ideals of the base near-ring R and the matrix near-ring $\mathbf{M}_{n}(R)$ is much more complex than in the ring case (see Van der Walt [9]). Since then matrix near-rings have been the object of study in various papers, e.g., [4,6,8-11].

Van der Walt [10] generalized the concept of a monogenic module to that of a connected module, and showed how G^{n} can be viewed as a (connected) $\mathbf{M}_{n}(R)$-module in case G is a connected R-module. Using the interplay between properties of G and G^{n}, he proved that R is 2-primitive if and only if $\mathbf{M}_{n}(R)$ is 2-primitive, which led to the following result:

$$
\begin{equation*}
\mathscr{T}_{2}\left(\mathbf{M}_{n}(R)\right)=\left(\mathscr{T}_{2}(R)\right)^{*}, \tag{1}
\end{equation*}
$$

where $\quad\left(\mathscr{T}_{2}(R)\right)^{*}:=\left\{U \in \mathbf{M}_{n}(R): U u \in\left(\mathscr{T}_{2}(R)\right)^{n} \quad\right.$ for \quad every $\left.\quad u \in R^{n}\right\}$. (Obviously, $\left(\mathscr{T}_{2}(R)\right)^{*}=\mathbf{M}_{n}\left(\mathscr{T}_{2}(R)\right)$ in case R is a ring.) A crucial step in the building up to that proof was to establish an isomorphism (at least as groups) between an arbitrary connected $\mathbf{M}_{n}(R)$-module and a direct sum of appropriate R-modules. The generalization of this
isomorphism to connected modules over structural matrix near-rings is the decisive starting point in the present paper.

A structural matrix ring $\mathbf{M}(B, R), R$ a ring and $B=\left[b_{i j}\right]$ a reflexive and transitive $n \times n$ Boolean matrix, is a subring of the (complete) matrix ring $\mathbf{M}_{n}(R)$, which is a ring only by virtue of the shape of its matrices, in the sense that substructures of R play no role:

$$
\mathbf{M}(B, R):=\left\{U=\left[u_{i j}\right] \in \mathbf{M}_{n}(R): b_{i j}=0 \Rightarrow u_{i j}=0\right\}
$$

In fact, $\mathbf{M}(B, R)$ is a generalized matrix ring, i.e. an S-graded ring $\oplus_{s \in S} R_{s}$, where $S:=\left\{E_{i j}: 1 \leqq i, j \leqq n\right.$ and $\left.b_{i j}=1\right\} \cup\{\#\}, R_{s}:=R E_{i j}$ if $s=E_{i j}$, and $R_{\#}:=0$. The $E_{i j}$'s denote the matrix units and

$$
E_{i j} E_{k l}= \begin{cases}E_{i l}, & \text { if } j=k \\ \#, & \text { otherwise }\end{cases}
$$

The author [12] showed that for a special radical \mathscr{R} determined by a special class \mathscr{M} of rings, such that $T \in \mathscr{M}$ if and only if $\mathbf{M}_{n}(T) \in \mathscr{M}$ whenever T has an identity, $\mathscr{R}(\mathbf{M}(B, R))$ is the sum of two two-sided ideals, namely, in the first place, the set of matrices with entries from $\mathscr{R}(R)$ in positions where B has ones, and zeroes elsewhere, and, secondly, the set of matrices with entries from R in the "antisymmetric part" of B, i.e. the positions (i, j) such that $b_{i j}=1$ and $b_{j i}=0$, and zeroes elsewhere. This result is, on the one hand, a generalization of the well known fact that $\mathscr{R}\left(\mathbf{M}_{n}(R)\right)=\mathbf{M}_{n}(\mathscr{R}(R))$ and of the fact that, for a field F, the Jacobson radical of the lower triangular matrix ring

$$
\left[\begin{array}{ccc}
F & 0 & 0 \\
F & F & 0 \\
F & F & F
\end{array}\right] \text { is }\left[\begin{array}{ccc}
0 & 0 & 0 \\
F & 0 & 0 \\
F & F & 0
\end{array}\right],
$$

and, on the other hand, a nice illustration of the Jacobson radical of a generalized matrix ring being a homogeneous ideal, as shown in [13]. (The description of the Jacobson radical of a generalized matrix ring is still lacking.)

Van der Walt and the author [11] showed that the two obvious definitions of a structural matrix near-ring $\mathbf{M}(B, R), R$ a (right) near-ring, somewhat unexpectedly yield the same near-ring. The main purpose of [11] was to describe $\mathscr{T}_{2}(\mathbf{M}(B, R))$. To this end, the characterization of the \mathscr{T}_{2}-radical of a near-ring as the intersection of its 2-primitive ideals, and the characterization of the \mathscr{T}_{2}-radical as the intersection of its strictly maximal left ideals, were considered. (Recall that a strictly maximal left ideal of R is a maximal left ideal which is also maximal as a left R-submodule of ${ }_{R} R$.) Although Van der Walt [10] succeeded in characterizing the 2-primitive ideals of $\mathbf{M}_{n}(R)$ in terms of those of R, and then used them to arrive at (1), the authors of [11] did not manage to generalize the former's methods to structural matrix near-rings, the crucial problem being that they could not find an isomorphism (as groups) between an arbitrary connected $\mathbf{M}(B, R)$-module and a direct sum of "appropriate" R-modules (see the
remark just after (1)). Consequently they opted in [11] for a characterization of the strictly maximal left ideals of $\mathbf{M}(B, R)$ in terms of those of R. However, quite a number of very technical results were needed to obtain that characterization, and the building up was rather slow.

In the present paper the sought after isomorphism (as groups) between an arbitrary connected $\mathbf{M}(B, R)$-module and a direct sum of appropriate R-modules (which need not be connected) is established. This leads, apart from additional results presented in Section 3 to provide a clear holistic picture of connected $\mathbf{M}(B, R)$-modules, relatively quickly to a number of elegant results (compared with those in [11]), terminating in Section 4 in a characterization of the 2-primitive ideals of $\mathbf{M}(B, R)$. As a result of this the same description of the \mathscr{T}_{2}-radical of a structural matrix near-ring as in [11] is obtained.

It is not known (see [11]) whether $\mathscr{T}_{2}(\mathbf{M}(B, R))$ can be expressed as the sum of two (two-sided) ideals, one of which is nilpotent, as in the ring case (see [12]]). In the last part of Section 4 some progress is made in this direction, where it is shown that $\mathscr{T}_{2}(\mathbf{M}(B, R))$ contains the sum of two such ideals, which are precisely the two ideals in [12] in case R is a ring.

2. Preliminaries and notation

R will be a generic symbol for a zero-symmetric right near-ring with identity 1 . The direct sum of n copies of a group ($G,+$) is denoted by G^{n}, and the elements of G^{n} are thought of as column vectors, but written in transposed form with pointed brackets, e.g., $\left\langle g_{1}, g_{2}, \ldots, g_{n}\right\rangle$. The symbols i_{i} and π_{i} denote the i th coordinate injection and projection functions respectively, $1 \leqq i \leqq n$.

For the ease of the reader we provide the pertinent definitions regarding matrix nearrings. Meldrum and Van der Walt [3] call the functions $f_{i j}^{r}: R^{n} \rightarrow R^{n}, 1 \leqq i, j \leqq n$, defined by

$$
f_{i j}^{r}:=t_{i} \lambda(r) \pi_{j},
$$

the elementary $n \times n$ matrices over R, where $r \in R$ and $\lambda(r): R \rightarrow R$ is the left multiplication $s \mapsto r s$, for all $s \in R$. They call the subnear-ring of $M\left(R^{n}\right)$, i.e. the near-ring of all mappings on R^{n}, generated by the elementary $n \times n$ matrices over R, the near-ring of $n \times n$ matrices over R, and denote it by $\mathbf{M}_{n}(R)$. The elements of $\mathbf{M}_{n}(R)$ are called matrices. Representations of matrices will be needed. Meldrum and Van der Walt defined the set $\mathscr{E}_{n}(R)$ of matrix expressions, i.e. the subset of the free semigroup over the alphabet of symbols

$$
\left\{f_{i j}^{r}: r \in R, 1 \leqq i, j \leqq n\right\} \cup\{(,),+\}
$$

recursively by the following rules:
(1) $\int_{i j}^{r} \in \mathscr{E}_{n}(R)$ for $1 \leqq i, j \leqq n$ and all $r \in R$.
(2) If $E_{1}, E_{2} \in \mathscr{E}_{2}(R)$, then $E_{1}+E_{2} \in \mathscr{E}_{n}(R)$.
(3) If $E_{1}, E_{2} \in \mathscr{E}_{n}(R)$, then $\left(E_{1}\right)\left(E_{2}\right) \in \mathscr{E}_{2}(R)$.

The weight $w(U)$ of a matrix U is the length of an expression of minimal length representing U, where the length of an expression E is the number of $f_{i j}^{r}$'s in E.
$B=\left[b_{i j}\right]$ will be a generic symbol for a reflexive and transitive $n \times n$ Boolean matrix. B determines and is determined by the binary relation \leqq_{B} on $\{1,2, \ldots, n\}$ defined by

$$
i \leqq{ }_{B} j: \Leftrightarrow b_{i j}=1 .
$$

The quasi-order relation \leqq_{B} gives rise in the usual way to an equivalence relation \sim_{B} on $\{1,2, \ldots, n\}$ defined by

$$
i \sim_{B} j: \Leftrightarrow i \leqq_{B} j \quad \text { and } \quad j \leqq_{B} i .
$$

The number of equivalence classes induced by \sim_{B} is denoted by b, and $z_{1}, z_{2}, \ldots, z_{b}$ will be representatives of the equivalence classes, which we denote by $\left[z_{a}\right], a=1,2, \ldots, b$. We denote the elements of $\left[z_{a}\right], 1 \leqq a \leqq b$, by $j_{1, a}, j_{2, a}, \ldots, j_{n_{a}, a}$, i.e. $\left|\left[z_{a}\right]\right|=n_{a}$.

For the ease of the reader we state [11, Theorem 2.8], which will be invoked on several occasions in the sequel:

Theorem 2.1. ([11, Theorem 2.8]) $\mathbf{M}(B, R)$ is the subnear-ring of $\mathbf{M}_{n}(R)$ generated by the set $\left\{f_{i j}^{r}: r \in R\right.$ and $\left.b_{i j}=1\right\}$.

Throughout the paper ideal will mean two-sided ideal. Notation and standard results not given here may be looked up in Meldrum [2] or Pilz [7].

3. Connected modules over structural matrix near-rings

Van der Walt [10] calls an R-module G connected if, for any $g_{1}, g_{2} \in G$, there are $g \in G$ and $r, s \in R$ such that $g_{1}=r g$ and $g_{2}=s g$. This generalization of a monogenic module was needed in [10] to impose an $\mathbf{M}_{n}(R)$-module structure on G^{n}. It was shown in [10, Theorem 3.5] that if Γ is a connected $\mathbf{M}_{n}(R)$-module, then $(\Gamma,+) \cong\left(G^{n},+\right)$ as groups, where G is an appropriate R-module.

Theorem 3.1. Let Γ be a connected $\mathbf{M}(B, R)$-module. Then

$$
\Gamma \cong \sum_{a=1}^{b} \sum_{k=1}^{n_{a}} t_{j_{k, a}}\left(G_{a}\right)
$$

as additive groups, for appropriate R-modules $G_{1}, G_{2}, \ldots, G_{b}$.
Proof. Let $1 \leqq a \leqq b$, and let $G_{a}=f_{z_{a} z_{a}}^{1} \Gamma$. Then by [10, Lemma 3.2(2)] G_{a} is an
R-module by setting $r\left(f_{z_{a} z_{a}}^{1} \gamma\right)=f_{z_{a z a}}^{r} \gamma$ for every $r \in R, \gamma \in \Gamma$, since by [3, Lemma $3.1(7)] f_{z_{a} z_{a}}^{1} \in(\mathbf{M}(B, R))_{d}$, the distributive part of $\mathbf{M}(B, R)$. Furthermore, as $f_{z_{a j k}, ~}^{1} \gamma=$ $f_{z_{a} z_{a}}^{1}\left(f_{z_{a j}, a}^{1} j_{a} \gamma\right) \in G_{a}$, it follows that

$$
\theta: \Gamma \rightarrow \sum_{a=1}^{b} \sum_{k=1}^{n_{a}} t_{j_{k, a}}\left(G_{a}\right),
$$

defined by

$$
\theta(\gamma)=\sum_{a=1}^{b} \sum_{k=1}^{n_{a}} l_{j_{k, a}}\left(f_{z_{a} j_{k}, a}^{1} \gamma\right),
$$

is a group homomorphism. Next, if $\gamma_{j k, a}$, for $a=1,2, \ldots, b$ and $k=1,2, \ldots, n_{a}$, are arbitrary elements of Γ, then

$$
\begin{aligned}
\theta\left(\sum_{a=1}^{b} \sum_{k=1}^{n_{a}} f_{j_{k, a}, a}^{1} \gamma_{j_{k, a}}\right) & =\sum_{a=1}^{b} \sum_{k=1}^{n_{a}} \theta\left(f_{j_{k, a}, z_{a}}^{1} \gamma_{j_{k, a}}\right) \\
& =\sum_{a=1}^{b} \sum_{k=1}^{n_{a}}\left(\sum_{c=1}^{b} \sum_{m=1}^{n_{a}} t_{j_{m, c}}\left(f_{z c j_{m, c}}^{1}\left(f_{j_{k, a} z_{a}}^{1} \gamma_{j_{k, a}}\right)\right)\right) \\
& =\sum_{a=1}^{b} \sum_{k=1}^{n_{a}} t_{j_{k, a}}\left(f_{z_{a} z_{a}}^{1} \gamma_{j_{k, a}}\right)
\end{aligned}
$$

and so θ is onto. Finally, if $\theta(\gamma)=0$, i.e. $f_{z_{j i k}, a}^{1} \gamma=0$ for all k and a, then

$$
\begin{aligned}
\gamma & =\left(f_{11}^{1}+f_{22}^{1}+\cdots+f_{n n}^{1}\right) \gamma \\
& =\left(\sum_{a=1}^{b} \sum_{k=1}^{n_{a}} f_{j_{k, a}, a j_{k} a}^{1}\right) \gamma \\
& =\left(\sum_{a=1}^{b} \sum_{k=1}^{n_{a}} f_{j_{k, a}, z_{a}}^{1} f_{z_{a j k, a}}^{1}\right) \gamma \\
& =\sum_{a=1}^{b} \sum_{k=1}^{n_{a}} f_{j_{k, a}, z_{a}}^{1}\left(f_{z_{a j k}, a}^{1} \gamma\right) \\
& =0,
\end{aligned}
$$

which establishes the result.

L. VAN WYK

Henceforth $G_{a}, a=1,2, \ldots, b$, will denote the R-modules defined in the proof of Theorem 3.1. In the complete matrix near-ring case, i.e. where B is the universal $n \times n$ Boolean matrix (and \sim_{B} induces a single equivalence class), G_{1} need not be connected, even if R is a ring (see [5, page 70]). However, Van der Walt showed in [10, Theorem 3.10] that G_{1} is of type 2 (and hence connected) in case Γ is of type 2 . We shall show in Theorem 3.6 that every $G_{a}, 1 \leqq a \leqq b$, is of type 2 (and hence connected) in case Γ is of type 2, but we first prove that without such a restriction on Γ, the shape of B in the structural matrix near-ring case may force some of the G_{a} 's to be connected.

Proposition 3.2. Let Γ be a connected $\mathbf{M}(B, R)$-module. If $\left|\left[z_{a}\right]\right|=1$ and z_{a} is a maximal element of $\left\{z_{1}, z_{2}, \ldots, z_{b}\right\}$ with respect to \leqq_{B}, then G_{a} is a connected R-module; moreover, if Γ is monogenic $(b y \alpha)$, then G_{a} is monogenic (by $f_{z_{a} z_{a}}^{1} \alpha$).

Proof. Let $f_{z_{a} z_{a}}^{1} \gamma, f_{z_{a} z_{a}}^{1} \delta \in G_{a}$. Since Γ is connected, there are $U, V \in \mathbf{M}(B, R)$ and $\alpha \in \Gamma$ such that $U \alpha=\gamma$ and $V \alpha=\delta$. Hence, $f_{z_{a} z_{a}}^{1} \gamma=\left(f_{z_{a} z_{a}}^{1} U\right) \alpha$ and $f_{z_{a} z_{a}}^{1} \delta=\left(f_{z_{a} z_{a}}^{1} V\right) \alpha$. We use induction on the weight $w(U)$ of U to show that $f_{z_{a} z_{a}}^{1} U=f_{z_{a} z_{a}}^{r}$ for some $r \in R$. If $w(U)=1$, then by Theorem 2.1 we have $U=f_{i j}^{r}$ for some $r \in R$, where $b_{i j}=1$. Hence, by [3, Lemma 3.1(3)] we have

$$
f_{z_{a} z_{a}}^{1} U= \begin{cases}f_{z_{a j}}^{r}, & \text { if } i=z_{a} \\ f_{z_{a} j}^{0}=f_{z_{a} z_{a}}^{0}, & \text { otherwise }\end{cases}
$$

If $i=z_{a}$, then the conditions on z_{a} ensure that $j=z_{a}$, and so the assertion is true if $w(U)=1$. The rest of the induction process is straightforward if one keeps in mind that $f_{z_{a} z_{a}}^{1} \in(\mathbf{M}(B, R))_{d}$ and that $f_{z_{a} z_{a}}^{r}=f_{z_{a} z_{a}}^{r} f_{z_{a} z_{a}}^{1}$. We conclude that $f_{z_{a} z_{a}}^{1} \gamma=f_{z_{a} z_{a}}^{r} \alpha=r\left(f_{z_{a} z_{a}}^{1} \alpha\right)$. Similarly, $f_{z_{a} z_{a}}^{1} \delta=s\left(f_{z_{a} z_{a}}^{1} \alpha\right)$ for some $s \in R$. Therefore G_{a} is a connected R-module. The monogenic case is treated in the same way.

Example 3.3. If

$$
B=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

and Γ is a connected $\mathbf{M}(B, R)$-module, then $\Gamma \cong\left\langle G_{1}, G_{1}, G_{2}\right\rangle$ as groups, where $G_{1}:=$ $f_{11}^{1} \Gamma$ and $G_{2}:=f_{33}^{1} \Gamma$ are R-modules, the latter being connected.

Following [5], and supported by Theorem 2.1, we call a matrix of the form $\sum_{i\left(i \leqq \sum_{j j}\right.} f_{i j}^{r_{i}}$, with the r_{i} 's elements of R and $1 \leqq j \leqq n$, a j th column matrix in $\mathbf{M}(B, R)$. The set of all j th column matrices in $\mathbf{M}(B, R)$ will be denoted by \mathscr{C}_{j}. The proofs of [5, Proposition 1.24] and [5, Lemma 2.4] serve to a great extent as the proofs of the following two results:

Lemma 3.4. $\quad \mathscr{C}_{j}$ is an $\mathbf{M}(B, R)$-submodule of $\mathbf{M}(B, R)$ for $j=1,2, \ldots, n$.
Proof. It follows immediately that $\left(\mathscr{C}_{j},+\right.$) is a subgroup of $(\mathbf{M}(B, R),+)$ if one keeps in mind that $f_{i j}^{r_{i j}}+f_{k j}^{r_{k}^{\prime}}=f_{k j}^{r_{k}}+f_{i j}^{r_{i}}$ in case $i \neq k$. We now use induction on the weight $w(U)$ of U to show that $U\left(\sum_{i\left(i \leqq B_{j}\right)} f_{i j}^{r_{i}}\right) \in \mathscr{C}_{j}$ for every $U \in \mathbf{M}(B, R)$. If $w(U)=1$, then by Theorem 2.1 we have $U=f_{k l}^{r}$ for some $r \in R$, where $b_{k l}=1$. Then $f_{k l}^{r}\left(\sum_{i(i \leq B j} f_{i j}^{r_{i}}\right)=f_{j j}^{0}$ if $l \not ¥_{B} j$, and $f_{k l}^{r}\left(\sum_{i(i \leqq B j)} f_{i j}^{r i}\right)=f_{k j}^{r r}$ if $l \leqq_{B} j$. But $f_{k j}^{r r j} \in \mathscr{C}_{j}$, since \leqq_{B} is transitive. The rest of the induction process is straightforward.

Lemma 3.5. Let $U \in \mathbf{M}(B, R)$ and let $1 \leqq a \leqq b$. Then $U\left(\sum_{i\left(i \leqq B z_{a}\right)} f_{i z_{a}}^{f_{i}}\right)=\sum_{i\left(i \leqq B z_{a}\right)} f_{i z_{a}}^{s_{i}}$ (in $\mathbf{M}(B, R)$) if and only if $U\left(\sum_{i\left(i \leqq B z_{a}\right)} l_{i}\left(r_{i}\right)\right)=\sum_{i\left(i \leqq B z_{a}\right.} l_{i}\left(s_{i}\right)$ (in $\left.R^{n}\right)$, where the r_{i} 's and $s_{i}{ }^{\prime} s$ are arbitrary elements of R.

Proof. Consideration of the action of $U\left(\sum_{i\left(i \leqq B_{z_{a}}\right)} f_{i z_{a}}^{r_{i}}\right)=\sum_{i\left(i \leqq B z_{a}\right)} f_{i z_{a}}^{s_{i}}$ on $l_{z_{a}}(1)$ gives the desired result.

Theorem 3.6. Let Γ be an $\mathbf{M}(B, R)$-module of type 2. Then G_{a} is an R-module of type 2 for $a=1,2, \ldots, b$.

Proof. $\quad G_{a}$ is faithful, since $r \in A n n_{R} G_{a}$ if and only if $f_{z_{a} z_{a}}^{r} \in A n n_{M(B, R)} \Gamma$. Next, let $f_{z_{a} z_{a}}^{1} \gamma$ be any nonzero element of G_{a}. If $f_{z_{a} z_{a}}^{1} \delta \in G_{a}$, then $U\left(f_{z_{a} z_{a} \gamma}^{1} \gamma\right)=f_{z_{a} z_{a}}^{1} \delta$ for some $U \in \mathbf{M}(B, R)$, since Γ is of type 2 . It follows from Lemma 3.5 that there are elements r_{i} of R such that $U\left(f_{z_{a} z_{a}}^{1}\right)=\sum_{i\left(i \leqq s z_{a}\right)} f_{i z_{a}}^{r i}$, and so

$$
\begin{aligned}
f_{z_{a} z_{a}}^{1} \delta=f_{z_{a} z_{a}}^{1}\left(f_{z_{a} z_{a}}^{1} \delta\right) & =f_{z_{a} z_{a}}^{1}\left(\sum_{i\left(i \leqq B z_{a}\right)} f_{i z_{a}}^{r_{i}}\right) \gamma \\
& =f_{z_{a} z_{a}}^{r_{z_{a}}} \gamma=r_{z_{a}}\left(f_{z_{a} z_{a}}^{1} \gamma\right) .
\end{aligned}
$$

Hence G_{a} is of type 2.

4. The 2-primitive ideals and the \mathscr{T}_{2}-radical of $\mathbf{M}(B, R)$

Let L be a left ideal of R, and let $1 \leqq a \leqq b$. The following $\mathbf{M}(B, R)$-ideal of the structural $\mathbf{M}(B, R)$-module $R^{n}(a, R)$ was introduced in [11]:

$$
R^{n}(a, L):=\left\{u \in R^{n}: \pi_{i} u=\left\{\begin{array}{lll}
l & (\text { for some } l \in L), & \text { if } z_{a} \sim_{B} i \\
0, & \text { if } z_{a} \leqq \leqq_{B} i & \text { and } \\
z_{a} & \not_{B} i
\end{array}\right\} .\right.
$$

Proposition 4.1. If Γ is a (nonzero) $\mathbf{M}(B, R)$-module of type 2, then $A n n_{M(B, R)} \Gamma=$ ($R^{n}(a, I): R^{n}(a, R)$ for some ideal I of R and some $a, 1 \leqq a \leqq b$.

Proof. By Theorem 3.1 there is a minimal element z_{a} (say) of $\left\{z_{1}, z_{2}, \ldots, z_{b}\right\}$ (with respect to \leqq_{B}) such that $G_{a} \neq 0$. Set $I:=A n n_{R} G_{a}$. In order to arrive at the desired result, firstly, let $U \in A n n_{M(B, R)} \Gamma$. Take any $\sum_{a=1}^{b} \sum_{k=1}^{n_{a}} l_{j k, a}\left(r_{k, a}\right) \in R^{n}(a, R)$, and let $U\left(\sum_{a=1}^{b} \sum_{k=1}^{n_{a}} l_{j_{k, a}}\left(r_{k, a}\right)\right)=\sum_{a=1}^{b} \sum_{k=1}^{n_{a}} l_{j_{k, a}}\left(s_{k, a}\right)$. Then $s_{m, c}=0$ for $m=1,2, \ldots, n_{a}$, in case $z_{a} \leqq_{B} z_{c}$ and $z_{a} \chi_{B} z_{c}$, because $R^{n}(a, R)$ is an $\mathbf{M}(B, R)$-module. Furthermore, it follows from Lemma 3.5 and the minimality of z_{a} that

$$
U\left(\sum_{k=1}^{n_{a}} f_{j k, a z_{a}}^{r_{k}, a}\right)=\sum_{k=1}^{n_{a}} f_{j k, a z_{a}}^{s_{k}, a} \text {, and so }\left(\sum_{k=1}^{n_{a}} f_{j k, a z_{a}}^{s_{k}, a}\right) f_{z_{a} z_{a}}^{1} \gamma=0
$$

for all $\gamma \in \Gamma$, since $\left(\sum_{k=1}^{n_{a}} \int_{j j_{k, a z_{a}}}^{r_{k}, a}\right) f_{z_{a} z_{a}}^{1} \gamma \in \Gamma$. Hence, for every $p, 1 \leqq p \leqq n_{a}$, we have $0=f_{z_{a} j_{p, a}}^{1}\left(\sum_{k=1}^{n_{a}} f_{j, j_{k}}^{s_{k, a}, a}\right) f_{z_{a} z_{a}}^{1} \gamma=f_{z_{a} z_{a}}^{s_{p}, a} \gamma$, which implies that $s_{p, a} \in I$, since $I=\left\{r \in R: f_{z_{a} z_{a}}^{r} \Gamma=\right.$ $0\}$. Therefore, $\sum_{a=1}^{b} \sum_{k=1}^{n_{a}} l_{j k, a}\left(s_{k, a}\right) \in R^{n}(a, I)$, from which we conclude that $U \in\left(R^{n}(a, I): R^{n}(a, R)\right)$. Secondly, let $U \in\left(R^{n}(a, I): R^{n}(a, R)\right)$, and let $\gamma \in \Gamma$. There is a $\delta \in \Gamma$ such that $f_{z_{a} z_{a}}^{1} \delta \neq 0$, otherwise $G_{a}=0$. Since Γ is of type 2 over $\mathbf{M}(B, R)$, there is a $V \in M(B, R)$ such that $V f_{z_{a} z_{a}}^{1} \delta=\gamma$, and so by Lemma 3.5 and the minimality of z_{a} we have $U \gamma=U\left(\sum_{k=1}^{n_{a}} f_{j_{k, a} z_{a}}^{t_{k}}\right) \delta=\left(\sum_{k=1}^{n_{a}} f_{j_{k, a}, z_{a}}^{u_{k}}\right) \delta$ for some $t_{k} \in R, u_{k} \in I, k=1,2, \ldots, n_{a}$. Also, $f_{j k, a z_{a}}^{u_{k}} \delta=\left(f_{j_{k}, a z_{a}}^{1} f_{z_{a} z_{a}}^{u_{k}}\right) \delta=f_{j_{k}, a z_{a}}^{1}\left(f_{z_{a} z_{a}}^{u_{k}} \delta\right)=f_{j_{k}, a z_{a}}^{1} 0$, since $u_{k} \in I$, and so it follows from [3, Lemma 3.1(6)] that $U \gamma=0$, since R is zero-symmetric. Therefore $U \in A n n_{M(B, R)} \Gamma$, which completes the proof.

Eventually we want to show that the ideals ($R^{n}(a, I): R^{n}(a, R)$), for $a=1,2, \ldots, b$ and I a 2-primitive ideal of R, compose the set of all the 2-primitive ideals of $\mathbf{M}(B, R)$. The following near-ring isomorphism is essential in this regard:

Proposition 4.2. $\quad \mathbf{M}(B, R) /\left(R^{n}(a, I): R^{n}(a, R)\right) \cong \mathbf{M}_{n_{a}}(R / I)$ for $a=1,2, \ldots, b$ and every ideal I of R.

Proof. Let $1 \leqq a \leqq b$, and consider the near-ring epimorphisms $\Phi: \mathbf{M}(B, R) \rightarrow \mathbf{M}_{n_{a}}(R)$ in [11, Theorem 3.10] and $\phi: \mathbf{M}_{n_{a}}(R) \rightarrow \mathbf{M}_{n_{a}}(R / I)$ in [10, Lemma 4.2], defined respectively by

$$
\Phi(U)=\mu\left(\theta_{2}\left(E_{U}\right)\right), \quad \text { where } E_{U} \in \mu^{-1}(U)
$$

and

$$
\phi(V)=\mu\left(\theta_{1}\left(E_{V}\right)\right), \text { where } \quad E_{V} \in \mu^{-1}(V) .
$$

Here $\theta_{1}\left(E_{V}\right)$ is the expression derived from E_{V} by changing every $f_{i j}^{r}$ into $f_{i j}^{r+I}$, and $\theta_{2}\left(E_{U}\right)$ is the expression derived from E_{U} by replacing every $f_{j k j m}^{s}$ in E_{U} by $f_{k m}^{s}, 1 \leqq k$, $m \leqq n_{a}$, and everything else by $f_{z_{a} z_{a}}^{0}$, whereas $\mu(E)$ denotes the matrix represented by an expression E. (Recall from [3] that every matrix expression represents a matrix, but the same matrix may be represented by many different expressions, since every matrix is merely a function from R^{n} into R^{n}.) It is easily seen that the composite function $\phi \circ \Phi: \mathbf{M}(B, R) \rightarrow \mathbf{M}_{n_{a}}(R / I)$ maps $U \in \mathbf{M}(B, R)$ onto $\mu\left(\theta_{1}\left(\theta_{2}\left(E_{U}\right)\right)\right.$). We show
that $\operatorname{Ker}(\phi \circ \Phi)=\left(R^{n}(a, I): R^{n}(a, R)\right)$. Let $U \in\left(R^{n}(a, I): R^{n}(a, R)\right)$, and let $r_{1}, r_{2}, \ldots, r_{n_{a}} \in R$. Then $u:=\sum_{k=1}^{n_{a}} l_{j_{k}}\left(r_{k}\right) \in R^{n}(a, R)$, and so $\pi_{j_{k}}(U u) \in I$ for $k=1,2, \ldots, n_{a}$, i.e. $\Phi(U)\left\langle r_{1}, r_{2}, \ldots, r_{n_{a}}\right\rangle \in I^{n_{a}}$, since by [11, Lemma 3.9] we have

$$
\pi_{m}\left(\Phi(U)\left\langle r_{1}, r_{2}, \ldots, r_{n_{a}}\right\rangle\right)=\pi_{j_{m}}\left(U\left(\sum_{k=1}^{n_{a}} i_{j_{k}}\left(r_{k}\right)\right)\right) \text { for } \quad m=1,2, \ldots, n_{a}
$$

It follows from [10, Lemma 4.2] that $\phi(\Phi(U))\left\langle r_{1}+I, r_{2}+I, \ldots, r_{n_{a}}+I\right\rangle=0$ in $(R / I)^{n_{a}}$, since by [4, Proposition 6] $(R / I)^{n_{a}} \cong R^{n_{a} / I^{n_{a}}}$ as $\mathbf{M}_{n_{a}}(R)$-modules. Therefore $U \in \operatorname{Ker}(\phi \circ \Phi)$. Conversely, let $U \in \operatorname{Ker}(\phi \circ \Phi)$, and let $u:=\left\langle u_{1}, u_{2}, \ldots, u_{n}\right\rangle \in R^{n}(a, R)$. Then by the definition of $R^{n}(a, R)$ we have $u=\sum_{k=1}^{n_{a}} l_{j_{k}}\left(u_{j_{k}}\right)+\sum_{i\left(z_{a} \sum_{B i}\right)_{i}\left(u_{i}\right) \text {. We must show that }}$ $\pi_{j_{m}}(U u) \in I$ for $m=1,2, \ldots, n_{a}$. Again by [11, Lemma 3.9] we have $\pi_{j_{m}}(U u)=$ $\pi_{m}\left(\Phi(U)\left\langle u_{j_{1}}, u_{j_{2}}, \ldots, u_{j_{n_{a}}}\right\rangle\right.$, and so it follows from [10, Lemma 4.2] that $\pi_{j_{m}}(U u)=$ $\pi_{m}\left(\phi(\Phi(U))\left\langle u_{j_{1}}+I, u_{j_{2}}+I, \ldots, u_{j_{n_{a}}}+I\right\rangle\right)=0$ in R / I, from which we conclude that $\pi_{j_{m}}(U u) \in I$. Therefore $U u \in R^{n}(a, I)$, and so $U \in\left(R^{n}(a, I): R^{n}(a, R)\right)$. Since $\phi \circ \Phi$ is onto, the desired near-ring isomorphism follows.

Proposition 4.1, Proposition 4.2 and [10, Theorem 3.10] together lead to
Theorem 4.3. The set of $\left(R^{n}(a, I): R^{n}(a, R)\right)$'s, for $a=1,2, \ldots, b$ and I a 2-primitive ideal of R, is the set of all the 2-primitive ideals of $\mathbf{M}(B, R)$.

The characterization of the \mathscr{T}_{2}-radical of a near-ring as the intersection of its 2-primitive ideals is now used to describe $\mathscr{T}_{2}(\mathbf{M}(B, R))$ in terms of $\mathscr{T}_{2}(R)$:

Theorem 4.4. ([11, Theorem 3.17])

$$
\mathscr{T}_{2}(\mathbf{M}(B, R))=\bigcap_{a=1}^{b}\left(R^{n}\left(a, \mathscr{T}_{2}(R)\right): R^{n}(a, R)\right)
$$

Proof. It follows directly from Theorem 4.3 and [7, Proposition 1.44].
Whether $\mathscr{T}_{2}(\mathbf{M}(B, R))$ can be written as the sum of two ideals, one of which is nilpotent (as in the ring case), was raised as an open problem in [11]. We conclude by making some progress in this direction.

Theorem 4.5. $\quad\left(\mathscr{T}_{2}(R)\right)^{*}+\bigcap_{a=1}^{b}\left(R^{n}(a, 0): R^{n}(a, R)\right) \subseteq \mathscr{T}_{2}(\mathbf{M}(B, R))$.
Proof. Let $U \in\left(\mathscr{T}_{2}(R)\right)^{*}$ and let $V \in \bigcap_{a=1}^{b}\left(R^{n}(a, 0): R^{n}(a, R)\right)$. It follows from the definition of $R^{n}\left(a, \mathscr{T}_{2}(R)\right), 1 \leqq a \leqq b$, and from $R^{n}(a, R)$ being an $\mathbf{M}(B, R)$-module that $U\left(R^{n}(a, R)\right) \subseteq R^{n}\left(a, \mathscr{T}_{2}(R)\right)$ if we can show that $\pi_{j_{k, a}}\left(U\left(R^{n}(a, R)\right)\right) \subseteq \mathscr{T}_{2}(R)$ for $k=1,2, \ldots, n_{a}$. But this is certainly the case, since $U\left(R^{n}\right) \subseteq\left(\mathscr{T}_{2}(R)\right)^{n}$. Furthermore, $V\left(R^{n}(a, R)\right) \subseteq$ $R^{n}\left(a, \mathscr{T}_{2}(R)\right)$, because $R^{n}(a, 0) \subseteq R^{n}\left(a, \mathscr{T}_{2}(R)\right)$. The desired result follows now immediately from Theorem 4.4.

Note that $\left(\mathscr{F}_{2}(R)\right)^{*}=\mathbf{M}\left(B, \mathscr{T}_{2}(R)\right)$, and that $\bigcap_{a=1}^{b}\left(R^{n}(a, 0): R^{n}(a, R)\right)$ is the antisymmetric radical of $\mathbf{M}(B, R)$, in case R is a ring. (See [12], where it is shown that $\mathscr{T}_{2}(\mathbf{M}(B, R)), R$ a ring, is the sum of $\mathbf{M}\left(B, \mathscr{T}_{2}(R)\right)$ and the antisymmetric radical of $\mathbf{M}(B, R)$.

The next result shows that the elementary matrices in $\mathscr{T}_{2}(\mathbf{M}(B, R))$ are contained in the sum of the two ideals in Theorem 4.5.

Proposition 4.6.

$$
\left\{f_{i j}^{r}: f_{i j}^{r} \in \mathscr{T}_{2}(\mathbf{M}(B, R))\right\} \subseteq\left(\mathscr{T}_{2}(R)\right)^{*}+\bigcap_{a=1}^{b}\left(R^{n}(a, 0): R^{n}(a, R)\right)
$$

Proof. Let $f_{i j}^{r} \in \mathscr{T}_{2}(\mathbf{M}(B, R))$. It follows from Theorem 2.1 that $i \leqq{ }_{B} j$. Let $i \sim_{B} z_{a}$. (say), and let $j \sim_{B} z_{a^{\prime \prime}}$ (say), $1 \leqq a^{\prime}, a^{\prime \prime} \leqq b$. We consider the following two possibilities, viz. $z_{a^{\prime \prime}} \leqq{ }_{B} z_{a^{\prime}}$ or $z_{a^{\prime \prime}} \mathbb{E}_{B^{\prime}} z_{a^{\prime}}$. In the first case $a^{\prime}=a^{\prime \prime}$. For every $\left\langle u_{1}, u_{2}, \ldots, u_{n}\right\rangle \in R^{n}$ we have $f_{i j}^{r}\left\langle u_{1}, u_{2}, \ldots, u_{n}\right\rangle=l_{i}\left(r u_{j}\right)=f_{i j}^{r}\left(t_{j}\left(u_{j}\right)\right)$. Since $l_{j}\left(u_{j}\right) \in R^{n}\left(a^{\prime}, R\right) \quad$ and $f_{i j}^{r} \in\left(R^{n}\left(a^{\prime}, \mathscr{T}_{2}(R)\right): R^{n}\left(a^{\prime}, R\right)\right)$, it follows that $l_{i}\left(r u_{j}\right) \in R^{n}\left(a^{\prime}, \mathscr{T}_{2}(R)\right)$, and so $r u_{j} \in \mathscr{T}_{2}(R)$. Therefore $f_{i j}^{r} \in\left(\mathscr{T}_{2}(R)\right)^{*}$. In the second case, let $1 \leqq a \leqq b$ and let $u:=$ $\left\langle u_{1}, u_{2}, \ldots, u_{n}\right\rangle \in R^{n}(a, R)$. If $z_{a} \leqq{ }_{B} z_{a^{\prime}}$, then it follows from the transitivity of \leqq_{B} that $z_{a} \leqq z_{a^{\prime \prime}}$ and $z_{a^{\prime \prime}} \mathbb{E}_{B} z_{a}$ (otherwise $z_{a^{\prime \prime}} \leqq{ }_{B} z_{a^{\prime}}$), and so the definition of $R^{n}(a, R)$ ensures that $u_{j}=0$, because $j \sim_{B} z_{a^{\prime \prime}}$. Hence $f_{i j}^{r} u=0 \in R^{n}(a, 0)$. If $z_{a} \mathbb{E}_{B} z_{a^{\prime}}$, then $\pi_{i}\left(R^{n}(a, 0)\right)=R$, because $i \sim_{B} z_{a^{\prime}}$. Hence we have $f_{i j}^{r} u \in R^{n}(a, 0)$ in this case, too. Consequently, $f_{i j}^{r} \in$ $\bigcap_{a=1}^{b}\left(R^{n}(a, 0): R^{n}(a, R)\right)$. This completes the proof.

Set $\mathscr{P}:=\left\{f_{i j}^{r}: f_{i j}^{r} \in \mathscr{T}_{2}(\mathbf{M}(B, R))\right\}$. It follows directly from Proposition 4.6 that every sum of $f_{i j}^{r}$'s in \mathscr{S} is an element of $\left(\mathscr{T}_{2}(R)\right)^{*}+\bigcap_{a=1}^{b}\left(R^{n}(a, 0): R^{n}(a, R)\right.$). Our final result shows that \mathscr{S} resembles the union of the sets $\left\{r E_{i j}: r \in \mathscr{T}_{2}(R)\right.$, and $i, j \sim_{B} z_{a}$, for some a^{\prime}, $\left.1 \leqq a^{\prime} \leqq b\right\}$ and $\left\{r E_{i j}: r \in R, i \sim_{B} z_{a^{\prime}}\right.$ and $j \sim_{B} z_{a^{\prime \prime}}$ for some $\left.a^{\prime} \neq a^{\prime \prime}, 1 \leqq a^{\prime}, a^{\prime \prime} \leqq b\right\}$ in the ring case.

Proposition 4.7. $\mathscr{S}=\left\{f_{i j}^{r}: r \in \mathscr{T}_{2}(R)\right.$, and $i, j \sim_{B_{B}} z_{a^{\prime}}$ for some $\left.a^{\prime}, 1 \leqq a^{\prime} \leqq b\right\} \cup\left\{f_{i j}^{r}\right.$: $r \in R, i \sim_{B} z_{a^{\prime}}$ and $j \sim_{B} z_{a^{\prime \prime}}$ for some $\left.a^{\prime} \neq a^{\prime \prime}, 1 \leqq a^{\prime}, a^{\prime \prime} \leqq b\right\}$.

Proof. Let $f_{i j}^{r} \in \mathscr{S}$, and suppose that $i, j \sim_{B} z_{a^{\prime}}$ for some $a^{\prime}, 1 \leqq a^{\prime} \leqq b$. Then by the first part of the proof of Proposition 4.6 we have $f_{i j}^{r}\left(l_{j}(1)\right) \in\left(\mathscr{T}_{2}(R)\right)^{n}$, which implies that $r \in \mathscr{T}_{2}(R)$. Next, suppose that $r \in \mathscr{T}_{2}(R)$ and $i, j \sim_{B^{\prime}} z_{a^{\prime}}$ for some $a^{\prime}, 1 \leqq a^{\prime} \leqq b$. Since $\mathscr{T}_{2}(R)$ is a right ideal of R, it follows that $l_{i}\left(r u_{j}\right) \in R^{n}\left(a, \mathscr{T}_{2}(R)\right.$) for every $\left\langle u_{1}, u_{2}, \ldots, u_{n}\right\rangle \in R^{n}(a, R)$ and every $a, 1 \leqq a \leqq b$, and so $f_{i j}^{r} \in \mathscr{S}$. Lastly, suppose that $r \in R, i \sim_{B} z_{a^{\prime}}$ and $j \sim_{B} z_{a^{\prime \prime}}$ for some $a^{\prime} \neq a^{\prime \prime}, 1 \leqq a^{\prime}, a^{\prime \prime} \leqq b$. Then an argument almost precisely the one pursued in the last part of the proof of Proposition 4.6 shows that $f_{i j}^{r} \in \mathscr{S}$, and so the desired equality has been established.

REFERENCES

1. H. E. Heatherly, Matrix near-rings, J. London Math. Soc. (2) 7 (1973), 355-356.
2. J. D. P. Meldrum, Near-Rings and their Links with Groups (Research Notes in Mathematics 134, Pitman, London, 1985).
3. J. D. P. Meldrum and A. P. J. Van der Walt, Matrix near-rings, Arch. Math. 47 (1986), 312-319.
4. J. H. Meyer, Left ideals in matrix near-rings, Comm. Algebra 17 (1989), 1315-1335.
5. J. H. Meyer, Matrix near-rings (Doctoral Dissertation, University of Stellenbosch, South Africa, 1986).
6. J. H. Meyer and A. P. J. Van der Walt, Solution of an open problem concerning 2-primitive near-rings, in Near-Rings and Near-Fields (G. Betsch, editor, Elsevier Science Publishers B.V., North-Holland, Amsterdam, 1987).
7. G. Pilz, Near-Rings (Revised edition, North-Holland, Amsterdam, 1983).
8. A. P. J. Van der $\mathrm{W}_{\mathrm{Alt}}$, Matrix representation of 2-primitive near-rings with minimal subgroups, preprint.
9. A. P. J. Van der Walt, On two-sided ideals in matrix near-rings, in Near-Rings and Near-Fields (G. Betsch, editor, Elsevier Science Publishers B.V., North-Holland, Amsterdam, 1987.)
10. A. P. J. Van der Walt, Primitivity in matrix near-rings, Quaestiones Math. 9 (1986), 459-469.
11. A. P. J. Van der $W_{\text {alt }}$ and L. Van $W_{Y k}$, The J_{2}-radical in structural matrix near-rings, J. Algebra 123 (1989), 248-261.
12. L. VAN $W_{Y K}$, Special radicals in structural matrix rings, Comm. Algebra 16 (1988), 421-435.
13. P. Wauters and E. Jespers, Rings graded by an inverse semigroup with finitely many idempotents, preprint.

Department of Mathematics
University of Stellenbosch
Stellenbosch 7600
South Africa

