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Abstract

Two types of conditions are discussed ensuring the equality between
long-run time fractions and long-run event fractions of stochastic processes
with embedded point processes. Modifications of this equality statement are
considered.

1. Introduction

In the current literature (see the references below) several lines of investigation can be
observed dealing with generalizations of the fact that Poisson Arrivals see time averages
(PASTA). Roughly speaking, the methods used for proving such results can be divided into
two classes: (i) Martingale techniques are exploited, where the embedded point process is
assumed to admit a stochastic intensity. (ii) Conditional intensities are considered, including
their local characterization in the sense of Korolyuk, where the existence of these conditional
intensities is either assumed a priori or ensured by the existence of a sufficiently rich family of
regular subsets of the state space. We discuss these two approaches within the stationary
framework. In particular, a general form of the conditional PASTA property is stated.

2. The general stationary model

Let X = (X(¢), t € R) be a stochastic process on some probability space [Q, %, P]. The
state space J is an arbitrary complete separable metric space. # is the o-algebra of its Borel
sets. We assume that the trajectories of X are left-continuous with right-hand limits.
Furthermore, let ® =(T,, n € ¥) be a point process in R with - - - (LL<O=T,<T,<---
which is also given on [Q, %, P]; R=(—», ©), Z={---,—-1,0,1,...}. By means of X and
@ we define the marked point process W, = ([T, (X(T,), X(T, + 0))], n € &) with the mark
space [J X J, # ® #]. The pair [X, W] we call a process with embedded marked point process
(briefly: PMP). We assume that the PMP [X, W] is stationary, i.e. the processes X and Wy
are stationary, and they are stationarily connected.

3. The martingale approach

For extending the PASTA property by means of martingale techniques, the basic
assumption is that ® admits a stochastic intensity (A(z), ¢ € R). Then, under some additional
assumptions, it holds (see Formula (4.3) in Brémaud [1] and Corollary 3 in Melamed and
Whitt [6]) that

) ATE(f(X(0))A(0)) = E°(f(X(0)))

for every continuous bounded function f:J— &, where E° denotes the expectation taken
with respect to the Palm distribution P° of P; A = EA(0). The formula (1) can be seen as an
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extended version of the PASTA property. Indeed, if ® is Poisson it holds that A(¢)=A4 and
from (1) the equality

) P(X(0)e A)=P°(X(0)e A) forevery Ae ¥

follows. Moreover, in the general case (not assuming that ® is Poisson) from (1) it follows
(see Theorem 5.1 in [1] and Theorem 2 in [6]) that the distributions of X (0) under P and P°
coincide iff

(€) E(A(0) | X (0)) = EA(0).

A discrete-time analogue of condition (3) has been derived in [S], where real-valued
discrete-time stochastic processes with an embedded discrete-time point process are con-
sidered. We have looked for an example of PMP such that the processes X and ® are not
independent, that ® is non-Poisson admitting a stochastic intensity, and that nzvertheless, (3)
holds. But it seems to be difficult to construct such an example because under some mild
additional assumptions it follows from (3) that ® must be Poisson (see Theorem 3 in [6]).
This type of result is usually called the anti-PASTA property.

On the other hand, the formula (1) can be used in establishing the following conditional
version of the PASTA property. To do this we first assume that the distribution of A(0) is
discrete. Then, from (1) we get

A"aP(X(0) € A, A(0) = a) = P°(X(0) € A, A(0) = a)

considering the vector process {(X(¢), A(t))} and bearing in mind that by taking limits the
validity of the formula (1) can be proved for arbitrary bounded measurable f. This gives

@) P(X(0) € A | A(0) = a) = P°(X(0) € A | A(0) = a).

In the case when ® is a Cox process, the validity of (4) was proved in Regterschot and van
Doorn [8], where (4) was called the conditional PASTA property. A related condition
ensuring the validity of (4) has been established in Konig et al. [4] (see also Konig and
Schmidt [3]).

With respect to a possible conditional anti-PASTA property we now have a different
situation than in the anti-PASTA case mentioned above, because for the validity of (4) we
need no special condition (such as (3) for (2)). Within the model considered, where the basic
assumption is that ® admits a stochastic intensity, (4) is always true.

If the distribution of A(0) is not discrete, the following relationship corresponding to (4) can
be proved:

liing’(X(O)eAl —£<l(0)—a<s)=lig)|g’°(X(O)eA| —e<AM0)—a<e).
€l0 3

4. Conditional intensities

Another way of establishing conditions for the validity of (2) is given by certain conditional
intensities. For this, instead of the assumption that the embedded point process ® admits a
stochastic intensity, in Kénig and Schmidt [3] the notion of a regular subset of the state space
is used assuming the existence of a sufficiently rich family %, = # of such regular sets. It is
shown (see Theorem 5 in [3]) that for every A € $, with P(X(0) € A) >0 the limit

6) a= EE‘%P(T‘ <h|X(0) € A)
exists and
©6) P(X(0) € A) — PX(X(0) € A) = P(X(0) eA)(l —%)
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Similar to (1), the formula (6) can be seen as an extended version of the PASTA property.
Namely, assuming that X is adapted in some sense, in the Poisson case we have A, =1 and,
consequently, (2) holds. When ® is general, the equality (2) holds iff a subfamily ¢, c %, of
regular sets exists being closed under finite intersections and generating # such that

@) A=A forevery Ae ¥ with P(X(0)eA)>0
(see Corollary 2 in [3]). Thus, in effect, (7) plays the role of condition (3) in the martingale
approach.

Informally we can consider the limit lim,,,, A, = A(,, provided that it exists in some sense.
Then the mapping A x ), : R— [0, ©) can be identified with the limit appearing in Formula
(16) of Melamed and Whitt [7]. However, apart from concrete examples, it seems to be
difficult to prove the existence of Ax(y,. Clearly, when A x(,, exists, the condition (7) is
equivalent to A x(, = A which is used in [7]. Under the assumption that the state space J is
discrete, in Stidham and El Taha [9] a sample-path analogue of this condition and of formula
(6) is obtained (see Theorem 3.5 and Corollary 3.6 in [9]).

Furthermore, in [3] a non-Poisson example is given such that (7) is satisfied although the
processes X and ® are not independent (see Example 2 in [3]). Namely, the stationary
single-server queue GI/M/1/x is considered with the special interarrival time distribution
investigated in Konig et al. [2]. The embedded points 7, are assumed to be the departure
epochs of customers. The process X is the stationary virtual waiting time process. Then it is
not difficult to show that (7) holds with $, = {(a, b):0<a=b <}.

On the other hand, it seems not to be clear how to use the martingale approach for this
example, i.e. how to prove the validity of condition (3). This contrasts with the fact that, with
respect to the internal history of the marked input, the point process ® of departure epochs
admits a relatively elementary stochastic intensity (A(¢), t € R) given by A(¢) = A~ (¢t — 0) with

A™(t) = plo, (X (1))
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