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Abstract
A target benefit plan (TBP) is a collective defined contribution (DC) plan that is growing in popularity in Canada.
Similar to DC plans, TBPs have fixed contribution rates, but they also implement pooling of longevity and invest-
ment risk. In this paper, we formulate a multi-period model that incorporates two sources of risk – asset risk and
labor income risk for active members. We present an optimal investment and retirement benefits schedule for TBP
members with a fixed contribution rate. Using Australian data from 1965 to 2018, we evaluate the performance
of the optimal TBP scheme and compare it to the optimal DC scheme. By adopting the benefit–investment strat-
egy derived in this paper, we demonstrate the stability of benefit distribution over time for a TBP scheme in this
stochastic formulation. To outperform the DC scheme’s benefit payment, careful consideration shall be given to the
benefit target in the TBP scheme. A high target may not be achievable, while a low target can impede the accumu-
lation momentum of the fund’s wealth in its early stages. Moreover, a TBP fund’s investment strategy is primarily
influenced by the wealth target, with more aggressive investments in risky assets as the wealth target increases.
This analysis may shed light on the possible improvements to retirement planning in Australia. Although the results
are sensitive to the choice of model parameters, overall, the proposed TBP promotes system stability in various
scenarios.

1. Introduction
In recent years, the issue of the aging population has gained significant attention from the public and the
research community due to its socioeconomic impact. Traditional defined benefit (DB) plans, which
place all the risks on the provider, have been questioned in terms of their adequacy and long-term
sustainability. As a result, there is a global trend toward defined contribution (DC) plans, where employ-
ees accumulate retirement savings through mandatory or voluntary contributions to their retirement
accounts. In countries like Australia and the United States (US), DC plans have emerged as the primary
form of retirement plan, supplanting the earlier reliance on DB plans.

Although DC plans can alleviate pressure on pension providers, they may not be the best solution for
individuals. According to Wise (2004), due to a lack of investment expertise, most US employees tend
to accept default arrangements for crucial features such as contribution rates and investment choices.
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While these choices may be optimized based on a global criterion with an average view of the invest-
ment horizon and investor circumstances, they may not be appropriate for an individual’s risk appetite
and life stage. Moreover, during the Global Financial Crisis in 2008, people in the US with DC pension
arrangements suffered losses in their retirement accounts just as the value of their homes decreased dra-
matically by 20–30% (see Stiglitz, 2009). Similarly, Kovács et al. (2011) show that none of the European
countries were immune to the effects of the 2007–2009 credit crisis, as sub-prime-led financial crisis
caused massive losses in net asset value across different private pension schemes. In such situations,
individuals tend to save more, further destimulating the overall economy.

In response to these challenges, Canadian pension sponsors are taking proactive measures to address
current and future shocks by modifying the current pension system through the implementation of Target
Benefit Plans (TPBs). Unlike traditional DB plans, TPBs distribute targeted benefits, which can be
adjusted (both up and down) to balance the plan’s funding, rather than being guaranteed. This approach
aims to provide greater flexibility in pension planning, allowing sponsors to make adjustments as nec-
essary to ensure that the plan remains financially sustainable in the long term. In contrast to DC plans,
TBPs pool both longevity and investment risk, providing greater security and stability for plan members.
An in-depth analysis of the state of TBPs across Canada can be found in Steele (2016).

The risk pooling features of TBPs have led to their designation as collective DC (CDC) plans,1 which
have gained popularity in the Netherlands and the United Kingdom. Numerous studies, including one by
Mitchell and Shea (2016), have demonstrated that grouping active members in the accumulation stage
with those retiring and withdrawing from the fund leads to higher average pension incomes with greater
predictability than conventional DC schemes. While the downside of risk sharing is the potential need to
reduce benefits in extreme circumstances, reductions in the Netherlands have been minimal and signifi-
cantly lower than those in the UK’s DC scheme. As a result of the success of CDCs in the Netherlands,
other countries have begun to investigate their feasibility as an alternative to traditional pension sys-
tems. For example, an Aon report (see Wesbrooom et al., 2013) finds that a CDC in the UK produces
substantially better outcomes than a DC plan. Chen and Rach (2021) provide a detailed discussion of
the Zielrente, a hybrid German occupational plan consisting of both a collective and an individual fund,
implemented in 2018. Their analysis suggests that target pension plans offer comparative advantages
over traditional DB and some DC plans from a policyholder’s perspective.

TBP plans have gained industry-wide interest due to their risk pooling features. However, the math-
ematical structure of TBPs and their sensitivity to stochastic risk factors, such as investment return and
salary fluctuation, is not well understood. Industry standard reports use constant investment parame-
ters over a lengthy period, see for example, constant investment proportions such as 30% in risk-free
assets and 70% in risky assets (the Aon report uses 40%/60%; see Wesbrooom et al. (2013) over 20–30
years, which is inappropriate for a long-term perspective, especially during economic booms or finan-
cial crises. This paper addresses the gap by incorporating stochastic risk factors over a long-term period
and studying a multi-period optimal investment–benefit problem for a TBP pension fund. Unlike the
traditional continuous setting, see for example, Wang et al. (2018), the analysis adopts a discrete-time
framework that is consistent with periodic decision-making and data collection processes for a board of
trustees.

TBP schemes are distinguished by their focus on providing targeted benefits to members rather than
guaranteed benefits. Such schemes typically use a pension formula that considers various risk factors,
such as projected salary inflation, to determine the target benefits. There are various ways to structure
the payment system for a TBP, but this paper follows the approach proposed by Wang et al. (2018),
which uses a mean-target objective. This objective seeks to minimize the difference between the actual
benefit payments and the target benefit, with the goal of achieving the closest possible match between
the two. In addition, incorporating the target values directly into the objective function provides fund
trustees with the flexibility to adjust their control strategies in response to regulatory or administrative

1See, for example, Canadian Institute of Actuaries, Report of the Task Force on Target Benefit Plans (Ottawa, June 2015),
on p. 7.
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requirements. By explicitly considering the target benefit levels, trustees can more easily make informed
decisions about how to allocate the fund’s resources and manage risk. This approach also helps to ensure
that the fund remains aligned with its overall goals and objectives, even as market conditions or other
external factors change over time.

Using the mean-target objective, this paper incorporates the stochastic nature of investment risk and
salary inflation risk into a multi-period optimization problem that reflects the risks faced by plan mem-
bers. The fund trustee must determine both investment strategies and benefit distribution (relates to the
replacement rate that is usually known in practice2), taking into account current market conditions, in
order to maintain balance between active and retired members while ensuring the long-term stability of
the fund. To obtain an analytical solution, the paper draws on the discrete-time dynamic programming
approach proposed by Yao et al. (2014). By using this approach, the paper is able to effectively model
the complex interplay between investment and benefit decisions over time, while also accounting for the
inherent uncertainty and volatility of the market.

To determine when a TBP plan may be more beneficial than a DC scheme, it is important to consider
the perspective of plan members. To establish a benchmark, we also explore an optimal investment
problem for traditional DC schemes using the method proposed by Blake et al. (2013). This method
creates a target-based objective function for terminal wealth, which aligns with the mean-target objective
used in TBP plans.

Our technical contribution addresses the challenging research problem of formulating and solving a
multi-period dynamic programming problem. Traditionally, numerical procedures have been required,
but these may not always lead to the global optimum, as demonstrated in previous work by Hibiki (2006).
While some progress has been made in obtaining closed-form solutions for optimal portfolio selection
under the mean-variance framework by Li and Ng (2000) and under the utility maximization frame-
work by Mei and Nogales (2018), this paper extends the scope by incorporating an additional control
variable, the replacement rate, and multiple risky assets. We achieve this by formulating a dynamic pro-
gramming procedure with a matrix-variate structure. The existence of closed-form solutions depends on
the invertibility, positivity, and comparability of the evolving matrices, which can be determined using
the mathematical property of the Moore–Penrose pseudo-inverse of a symmetrical square matrix and
the technique of reduction to absurdity.

In addition, this paper presents an empirical study based on real financial and salary data from
Australia. The predominant pension scheme in Australia is the DC system, commonly known as superan-
nuation in that context. The Australian government implemented a compulsory superannuation scheme
in 1992, which requires employers to contribute a mandatory percentage of their employees’ salaries to
a fund known as the superannuation guarantee (SG). The Superannuation Guarantee (Administration)
Act 1992 established this system. The contribution rate has increased from 3% in 1992 to 9.5% in 2017
and is projected to rise further to 12% by 2025, according to ASFA’s superannuation statistics from
December 2019.

Our empirical study, focusing on the Australian market, examines the optimal benefit–investment
strategy for a TBP scheme. We demonstrate that an optimized TBP offers greater stability in distributing
funds across generations and enables precise control over benefit distribution by adjusting the objective
function’s parameters. These features suggest that the TBP structure may help alleviate the impact of
financial crises on retirees. By adjusting the fund’s target benefit over time, the TBP structure can effec-
tively cushion the financial stress experienced by a particular generation during a crisis. Additionally, the
incorporation of a wealth target in the objective function is crucial in providing benefits for generations
retiring beyond the planning horizon. Our study demonstrates that the TBP serves as a relevant model
of intergenerational risk sharing (IRS), a concept that has been extensively explored in the literature.
For instance, Chen et al. (2023) examine the effectiveness of funding-ratio-linked declaration rates as
a means of IRS in a CDC pension scheme. We refer the reader to the cited literature review for more
information on IRS. It is worth noting that IRS is also applicable to a group of DC members. Chen et al.

2The proportion of pension payment accounting for one’s final salary.
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(2021) investigate the impact of guarantees, sharing rules, and management fees on a group of investors
with varying risk preferences who are linked in their investment decisions.

Our study highlights the following key findings:

• The benefit distribution in a TBP scheme is significantly influenced by the benefit target, while
the wealth target has a limited impact. A high benefit target may not be achievable, whereas a
low target can impede the fund’s wealth accumulation momentum in its early stages.

• The investment strategy in a TBP scheme is primarily driven by the wealth target. A higher
wealth target leads to a more aggressive investment into risky assets.

• TBP trustees can achieve a more stable benefit distribution over time compared to a DC account
by implementing optimal investment and benefit payment strategies, provided that the model
parameters, such as the benefit target, wealth target, and weighting parameters, are carefully
adjusted.

These findings offer valuable insights into the daily operations of a TBP fund, especially in deter-
mining optimal benefit distribution, investment strategies, and long-term wealth considerations. Our
empirical studies demonstrate that the model parameters, such as weights, target benefit, and target
wealth, significantly impact the performance of a TBP fund. Therefore, we suggest that before the
trustee makes any decisions regarding daily operations, the government should provide guidance or
even regulations for these settings to protect the interests of active and retired members.

The remainder of this paper is organised as follows. In Section 2, we provide an overview of the market
setting and formulate the multi-period optimal control problem for a TBP pension. Section 3 presents
the closed-form expressions for an efficient strategy. For comparative purposes, Section 4 presents the
optimal investment strategy for the DC structure with a similar formulation. In Section 5, we present the
empirical results and discuss the qualitative features of the TBP structure. Finally, Section 6 concludes
the paper. To maintain conciseness, we defer all proofs to the appendices.

2. The optimal problem in a TBP
This section commences by formulating the aggregate wealth of the fund and explicitly detailing its
accumulation dynamics. Based on this structure, we construct the optimal control problem in terms of
the overall stability of the fund from the member’s point of view, equally weighted across generations
of the members.

2.1. Notation and model specification
This paper focuses on a defined benefit pension (TBP) plan with a discrete-time stochastic nature and
decision-making process. The benefit payments to each retiring cohort are determined by an exogenous
salary process whose source is random and which may be correlated with the financial market. The
pension fund invests in a combination of a risk-free asset and multiple risky assets. The plan trustees
aim to adjust the benefit payments to stay close to the target while avoiding excessive borrowing or
leaving an excessive surplus for future cohorts. The study considers a discrete-time horizon from time
0 to T , divided into intervals of length one unit, [k, k + 1), where k ranges from 0 to T − 1.

Remark 1. Although the literature frequently incorporates the interests of all generations (past and
future) by considering an infinite planning horizon, in practice, target benefits are determined based on
a long-term but finite view3 and scenario testing of the horizon. Furthermore, as Wang et al. (2018)
points out, the terminal valuation time T in a target benefit pension plan may be set at any time. A
finite planning horizon is also evident in various regulations of TBPs. For example, the New Brunswick

3AON Hewitt. Target benefit plans: the future of sustainable retirement programs, 2012.
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Shared Risk Plans Regulation4 stipulates that the primary objective of risk management is to ensure that
testing demonstrates a minimum 97.5% probability that the base benefits received at the end of each
year will not be reduced throughout a 20-year period. In Section 5 of this paper, we select a value of T =
54, which represents the typical lifespan of a member who begins working at 25 years of age, retires at
65 years and then lives for an additional 14 years.

The notations used in this paper are listed below, for time k,

• (�, F , P) is a complete probability space, where F � {Fk for k = 0, 1, ..., T} is the natural
filtration generated by the processes for the securities in the economy;

• Ek[·] = E[· |Fk ] and Vark[·] = Var[· |Fk ] represent, respectively, the expectation and variance
operators under the condition of information set Fk.

• xk denotes the fund wealth;
• Ak denotes the total number of active members in the pool, while Rk is the total number of

retiring members at k;
• Bk denotes the total benefits distributed to retired members and B∗

k denotes its corresponding
target;

• ck denotes the fixed proportion of one’s wage that is contributed to the fund;
• yk denotes the average wage of the active members, and pk denotes the stochastic ratio of the

average wage over the period [k, k + 1), that is yk+1 = pkyk;
• Ck denotes the total contributions from the active members, then Ck = ckykAk;
• rk denotes the deterministic gross rate of return of the risk-free asset, ek = (e1

k , ..., en
k)′5 denotes

the vector of the stochastic gross rate of return from n risky assets, and we define

θk = ek − rk1, ηk =
(

ek

pk

)
;

• S+ and S++ denote the set of positive semidefinite and positive definite matrices, respectively;
• For any symmetric matrices X and Y with the same order, we denote X ≥ Y if only if X − Y ∈
S+; and X>Y if only if X − Y ∈ S++. In particular, X ≥ 0 if only if X ∈ S+; and X> 0 if only
if X ∈ S++;

• uk = (u1
k , ...un

k

)′ denotes the vector for the amount of the fund’s wealth invested in the n risky
assets. We point out that there is no exogenous injection or withdrawal of money throughout
the running of our TBP fund: inflows result solely from members’ contributions, and outflows
result from retirement withdrawals.

Remark 2. Setting the target benefits B∗
k is a crucial measurement that reflects the interests of each

generation and promotes IRS. As noted by Steele (2016), the target benefit is typically determined using
a pension formula that takes into account various risk factors, including projected salary inflation. To
facilitate a meaningful comparison with DC plans, directly comparing the targets of a TBP and a DC
plan is not convenient due to their distinct collective and individual nature, respectively. In Section 5,
we adopt a proportion of the final salary, commonly known as the replacement rate, to define B∗

k . Once
the target replacement rate is established, the target benefit B∗

k can be computed by multiplying the final
salary (obtained from data) by the target replacement rate. This approach will also be used to define the
target benefit in a DC plan in Section 4.

We make the following assumption in accordance with the positive nature of the average wage.

Assumption 1. We assume pk > 0 almost surely for k = 0, 1, ...T − 1.

4Shared Risk Plans Regulation, N.B. Reg. 2012-75.
5In this paper, the superscript ′ denotes the transpose of a matrix or a vector.
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It is worth noting that we do not impose any particular parametric assumptions on pk. This reflects the
stochastic nature of salary inflation, which has a direct impact on the fund’s wealth. The fund’s wealth
process, denoted by xk, accumulates over discrete time intervals, pays benefits to retired members, and
collects contributions from active members at the end of each period. Therefore, the dynamics can be
modeled by:

xk+1 = (xk − u′
k1)rk + u′

kek − Bk+1 + Ck+1

= xkrk + θ ′
kuk − Bk+1 + ck+1Ak+1ykpk. (2.1)

Following Equation (2.1), the fund trustee’s strategy for period [k, k + 1) is composed of two parts:
the investment strategy uk implemented at time k, and the total benefit payment Bk+1 made to retired
members at the end of the period, at time k + 1.

Definition 1. Given the information available up to time k, Fk, we say that a strategy π =
[(u′

1, B2)′, ..., (u′
T−1, BT)′] is admissible if both uk and Bk+1 are finite and progressively measurable with

respect to Fk. We use �k(x, y) to denote the set of all such admissible strategies that start at time k and
end at time T with the state (x,y); later on, we omit the explicit reference to (x,y) for the sake of brevity.

This model incorporates two sources of randomness along with time: the average wage growth rate
(reflected by pk) and the stochastic investment market returns (reflected by ek). We make the following
assumption.

Assumption 2. The covariance matrix

Vark[ηk] = cov(ηk, ηk) = Ek

[
(ηk − Ek[ηk])(ηk − Ek[ηk])

′]
=
(

cov(ek, ek) cov(ek, pk)

cov(ek, pk) cov(pk, pk)

)
> 0,

for k = 0, 1, · · · , T − 1.

Assumption 2 is a mild condition that assumes the rate of return from the risky asset ek and the rate
of increase from the average salary pk are relatively independent in practice. Even in cases where they
are dependent, the time-lag in the dependence structure results in a small value for covk(ek, pk).

2.2. The long-term objective of the TBP structure
This section discusses the long-term objectives of the trustee responsible for managing the TBP retire-
ment fund and presents a mathematical formulation of these objectives as a stochastic optimal control
problem.

First, unlike the traditional DB structure that guarantees benefits, the TBP structure establishes a
benefit target B∗

k at time 0. The fund trustee sets this target as a guide for future benefit payments. The
actual benefit payment Bk depends on the fund’s wealth level at the end of each period, which the trustee
then declares and distributes. The trustee aims to minimize the squared distance between the benefit Bk

and its target B∗
k , which usually remains deterministic and stable over time. The resulting benefit payment

Bk is also expected to be stable over time, providing an advantage of TBP schemes over traditional DC
schemes. Additionally, from the members’ perspective, if the actual benefit is lower than the target
benefit, the fund fails to meet their expectations, and this shortfall should be penalized.

Second, it is the trustee’s responsibility to maintain a balance in benefits between active and retired
members. If retired members receive an excessive temporary benefit payment, it may come at the expense
of younger generations. To safeguard the interests of younger generations, a target terminal wealth must
be set for their retirement. This target also ensures the long-term sustainability of the fund. For instance,
one can use x0

∏T−1
i=0 ri as the target terminal wealth, which represents a conservative expected wealth

accumulated from the initial wealth x0 at time 0 to time T . The trustee is responsible for investing and
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distributing the fund’s wealth in an appropriate manner to ensure that the terminal wealth xT remains
close to the target. For generality, we adopt x∗

0

∏T−1
i=0 ri as the target terminal wealth in this paper, where

x∗
0 is a factor set at time 0.

Let the notation π be the strategy consisting of uk and bk+1, and � be the transformed admissible set
for this strategy. To reflect the target benefit, target wealth, and their relationships with the actual benefit
payment and resulting terminal wealth, we adopt a mean-target objective function. When putting these
elements together into the long-term objective function, fk(y, x), at time k with wealth x and average
wage y, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

fk(y, x) = minπ∈�k Ek

{
T−1∑
t=k

[(
Bt+1 − B∗

t+1

)2 − 2λ1

(
Bt+1 − B∗

t+1

)]
ρ t+1−k

+λ2

(
xT − x∗

0

T−1∏
i=0

ri

)2

ρT−k

}
subject to yk+1 = pkyk and (2.1),

fT(y, x) = λ2

(
x − x∗

0

T−1∏
i=0

ri

)2

,

(2.2)

where λ1 ≥ 0 and λ2 > 0 are the penalty weights given to the deviation of the true value from the

target, ρ > 0 is a discount factor, and x∗
0 is a factor such that x∗

0

T−1∏
i=0

ri reflects the target wealth at time T .

The choice of λ1 and λ2 reflects the balance of risks between the benefit adequacy for the current retiring
generation and the interest of future generations. It is important to note that Bk is distributed for only
one generation retiring at time k, while xT is considered for the overall future generations. Therefore, λ1

and λ2 adopt different magnitudes, which will be illustrated in Section 5.
It should be noted that each year, members retiring from our TBP scheme receive a lump-sum benefit

and leave the fund. On the other hand, all active members are in their accumulation phase. The fund
trustee makes the investment decision for all active members collectively, which has two implications.
Firstly, the investment decision is uniform for all active members, including those retiring in the future.
Secondly, this decision is made jointly with benefit distribution decisions, taking into account the already
retired members.

The advantages of adopting a mean-target objective function are evident. As discussed in Section 1,
this approach provides a clear indication of targets and allows for a comprehensive analysis of the dis-
tribution of benefits and remaining wealth. It also facilitates the weighting of parameters based on the
risk-sharing mechanisms between generations, making the structure transparent and intuitive for inter-
preting a TBP plan. By examining the effects of model parameters, the study can provide valuable
guidance for the day-to-day operations of a TBP fund. Additionally, it provides simplicity, allowing
us to solve the problem analytically. The mean-target framework leads to a quadratic control structure,
which can be solved analytically and backwardly through time via the dynamic programming approach.
Although the penalty on both upside and downside risks is a by-product of the mean-target anatomy,
this is precisely what we need in this IRS strategy. This objective is consistent with the mean-target”
objective, as pointed out by Wang et al. (2018):

the practical objectives of a target benefit plan are then threefold: to provide benefits that are
adequate (at or above the target), to maintain stability (benefits not too far from the target on
either side), and to respect intergenerational equity (limiting transfers between generations).

Remark 3. Mortality risk and other risks. The two significant sources of risk that a pension fund mem-
ber faces are wage inflation and the risky asset’s return, which are represented by the stochastic processes
pk and ek. While mortality risks and the stability of the fund’s demographic structure also play crucial
roles in real-life scenarios, we treat them as exogenous factors that are known in advance. Although
it is theoretically possible to model these factors stochastically, doing so would increase the model’s
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complexity and lead to overly complicated solutions to our Bellman equations. To provide the fund’s
demographic structure, we adopt overlapping generation models in Section 5, which are widely used to
study intergenerational risks. This approach has been extensively discussed in previous studies such as
Gollier (2008) and Cui et al. (2011).

To account for interest rate risk, we allow the long-term projection of risk-free return to vary over
time, but it remains a deterministic variable specified by analysts. In other words, it is exogenous. This
deterministic assumption is reasonable because the rate is typically relatively stable over time, and the
set of possible values is finite.

In terms of consumer price inflation (CPI) faced by members, the fund trustee can partially hedge the
risk by selecting a benefit target that links to the long-term projection of the CPI. Hence, its stochasticity
is not explicitly considered in our model.

Remark 4. Another feature of the TBP pension plan is its sharing mechanics of intergenerational risk.
This paper employs parameters λ1 and λ2 to balance the benefits of retiring generations during [0, T]
and the wealth available at time T for future retiring members. Section 5 investigates how parameters
such as λ1, λ2, the benefit target B∗

k , and the wealth target at time T affect the fund’s wealth and optimal
strategies.

Solving problem (2.2) with the presence of two control variables, Bk+1 and uk, is not straightforward
in the multi-period case. To make the problem technically tractable, we need to transform the objective
function as shown below. By following a completion-of-square procedure, we obtain

Ek

⎧⎨
⎩

T−1∑
t=k

[(
Bt+1 − B∗

t+1

)2 − 2λ1

(
Bt+1 − B∗

t+1

)]
ρ t+1−k + λ2

(
xT − x∗

0

T−1∏
i=0

ri

)2

ρT−k

⎫⎬
⎭

= Ek

⎧⎨
⎩

T−1∑
t=k

[(
Bt+1 − B∗

t+1 − λ1

)2 − λ2
1

]
ρ t+1−k + λ2

(
xT − x∗

0

T−1∏
i=0

ri

)2

ρT−k

⎞
⎠
⎫⎬
⎭

= Ek

⎧⎨
⎩

T−1∑
t=k

(
Bt+1 − B∗

t+1 − λ1

)2
ρ t+1−k + λ2

(
xT − x∗

0

T−1∏
i=0

ri

)2

ρT−k

⎞
⎠
⎫⎬
⎭− λ2

1

T−1∑
t=k

ρ t+1−k

The lengthy expression can be shortened by defining

αk = xk − x∗
0

k−1∏
i=0

ri,

b∗
k+1 = B∗

k+1 + λ1,

and

bk+1 = Bk+1 − B∗
k+1 − λ1 = Bk+1 − b∗

k+1.

In problem (2.2), x∗
0

T−1∏
i=0

ri is the wealth target at the terminal time T ; here, x∗
0

k−1∏
i=0

ri can be taken as the

wealth target at time k. Consequently, the difference between the wealth xk and its target at time k can

be expressed as αk = xk − x∗
0

k−1∏
i=0

ri, which represents the excess of wealth at time k. Then based on (2.1),

we have
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αk+1 = xk+1 − x∗
0

k∏
i=0

ri

= xkrk + θ ′
kuk − Bk+1 + ck+1Ak+1ykpk − x∗

0

k∏
i=0

ri

= rk

(
xk − x∗

0

k−1∏
i=0

ri

)
+ θ ′

kuk − Bk+1 + ck+1Ak+1ykpk

= rkαk + θ ′
kuk − bk+1 − b∗

k+1 + ck+1Ak+1pkyk

The optimization problem (2.2) is equivalent to finding the optimal bk+1 and uk for the following
problem: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Vk(y, α) = min
π∈�k

Ek

{
T−1∑
t=k

b2
k+1ρ

t+1−k + λ2α
2
Tρ

T−k

}
,

subject to yk+1 = pkyk and

αk+1 = αkrk + θ ′
kuk − bk+1 − b∗

k+1 + ck+1Ak+1pkyk

VT(y, α) = λ2α
2.

(2.3)

Moreover, by comparing the objective functions of the optimization problems in Equations (2.2) and

(2.3), we have fk(y, x) = Vk(y, α) − λ2
1

T−1∑
t=k

ρ t+1−k.

3. Solution to the optimization problem
3.1. A further transformation into matrix form
To proceed with solving the problem in Equation (2.3), we first transform it into its matrix form. Let 0i×j

denote the zero matrix with the dimensions i × j, and⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

zk =
(

yk

αk

)
, πk =

(
uk

bk+1

)
, Ck =

(
pk 0

ck+1Ak+1pk rk

)
,

Dk =
(

0′
n×1 0

θ ′
k −1

)
, Nk =

(
0

−b∗
k+1

)
, M =

(
0 0

0 λ2

)
, L =

(
0n×n 0n×1

0′
n×1 1

)
.

(3.1)

Then, problem (2.3) can be written in the form as:

Vk(z) = min
π∈�k

Ek

{
T−1∑
t=k

ρ t+1−kπ ′
kLπk + z′

TMzTρ
T−k

}
, subject to zk+1 = Ckzk + Dkπk + Nk, (3.2)

with a boundary condition VT(z) = z′Mz.
The optimization problem (3.2) is a discrete-time stochastic linear–quadratic (LQ) optimal control

problem with a discount rate. The standard treatment of solving the stochastic LQ optimal control prob-
lem requires that the carrier matrices are positive definite matrices, that is, L> 0 and M > 0 in problem
(3.2). However, both L ∈ S+ and M ∈ S+ in our model are irreversible (see (3.1)). This structure of Dk, M,
and L allows us to demonstrate the strictly positive definiteness and invertibility of some matrices critical
for the existence of solutions (see Proposition 1 for more details). Thus, by combining our method with
the classical method for solving the stochastic LQ optimal control problem, we can obtain the analytical
solution of our model. The outline of the solving procedure is sketched in the next subsection.
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3.2. The solution
Following the dynamic programming principle, we can derive the corresponding Bellman equation for
Equation (3.2) as follows:

Vk(z) = ρ min
π∈�k

Ek

[
π ′

kLπk + Vk+1(zk+1)
]= ρ min

π∈�k

Ek

[
π ′

kLπk + Vk+1(Ckz + Dkπk + Nk)
]

. (3.3)

To derive the expression for Vk(z), we construct a series of matrics �k, Gk, and Fk for all k =
0, 1, · · · , T satisfying the following recurrence relation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�k = ρ
(

Ek

[
C′

k�k+1Ck

]− Ek

[
C′

k�k+1Dk

] (
L + Ek

[
D′

k�k+1Dk

])−1
Ek

[
D′

k�k+1Ck

])
,

G′
k = ρ

(
N ′

k�k+1Ek [Ck] + G′
k+1Ek [Ck] − N ′

k�k+1Ek [Dk]
(
L + Ek

[
D′

k�k+1Dk

])−1

×Ek

[
D′

k�k+1Ck

]− G′
k+1Ek [Dk]

(
L + Ek

[
D′

k�k+1Dk

])−1
Ek

[
D′

k�k+1Ck

])
,

Fk = ρ
(

Fk+1 + N ′
k�k+1Nk + 2G′

k+1Nk − N ′
k�k+1Ek [Dk]

(
L + Ek

[
D′

k�k+1Dk

])−1

×Ek

[
D′

k

]
�k+1Nk − G′

k+1Ek [Dk]
(
L + Ek

[
D′

k�k+1Dk

])−1
Ek

[
D′

k

]
Gk+1

−2G′
k+1Ek [Dk]

(
L + Ek

[
D′

k�k+1Dk

])−1
Ek

[
D′

k

]
�k+1Nk

)

(3.4)

with boundary conditions at time T :

�T = M, GT = 02×1, FT = 0, (3.5)

where �k is a symmetric matrix of order 2 × 2, Gk is a column vector of order 2 and Fk is a scalar.
These boundary conditions are derived by equating the boundary condition equation VT(z) = z′Mz in
problem (3.2) with VT(z) = z′�Tz + 2G′

Tz + FT . These conditions represent the scenario at time T when
no investment strategy decisions need to be made. In this case, the value function is solely determined
by the terminal conditions.

It is worth noting that the series �k, Gk, and Fk are independent of the state variable zk, and their
recursion formulas and boundary conditions do not depend on zk. Based on Equations (3.4)–(3.5), we
can obtain the estimated numerical values of �k, Gk, and Fk for all k = 0, 1, · · · , T − 1 using historical
or stochastic simulated data. In Appendix A, we provide the formulas for calculating the expecta-
tions of those random matrices or vector multiplications, such as Ek

[
C′

k�k+1Ck

]
, Ek

[
C′

k�k+1Dk

]
and

Ek

[
D′

k�k+1Dk

]
. These formulas can be computed using the market data Ek[pk], E[p2

k], Ek[pkθ
′
k], Ek[θk]

and Ek[θkθ
′
k]. The calculations in Section 5 can be simplified accordingly.

The following proposition shows that L + Ek

[
D′

k�k+1Dk

]
> 0 and hence

(
L + Ek

[
D′

k�k+1Dk

])−1

exists, which guarantees that the definition of Equations (3.4)–(3.5) is meaningful.

Proposition 1. �k > 0 and L + Ek

[
D′

k�k+1Dk

]
> 0 for k = 1, 2, · · · , T − 1.

The proof of Proposition 1 directly follows from Lemmas 1–3 in Appendix B. Lemmas 1 and 2 present
a method for representing the returns from risky assets as a linear space. This allows for the investigation
of their linear correlation, independence, and the representation of random variable groups. Additionally,
necessary and sufficient conditions for the nonsingularity of the second-order moment matrix and the
covariance matrix are provided. Lemma 3 provides the necessary and sufficient condition for the positive
definiteness of the block matrix.

The proof for Proposition 1 is sketched as follows: we first simplify the expression of Ek [D′
k�k+1Dk]

using the structure of Dk and M (see (3.1)). Next, using mathematical induction and Lemmas 1–2, we
show that L + Ek [D′

k�k+1Dk]> 0 for k = 1, 2, · · · , T − 1. We then decompose the matrix �k+1 into
J1 + J2, where J1 ∈ S+ and J2 has a special structure similar to M (see (3.1)). Using mathematical
induction and the partition of positive semidefinite matrices (Lemma 3), we further prove �k > 0 for
k = 1, 2, · · · , T − 1. The complete proofs are presented in Appendix C.
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We are now ready to state the main theorem of this paper.

Theorem 1. The solution to Bellman Equation (3.3), namely, the value function of problem (3.2) is
given by:

Vk(z) = z′�kz + 2G′
kz + Fk, (3.6)

and the corresponding optimal strategy is given by:

πk = − (L + Ek

[
D′

k�k+1Dk

])−1 (
Ek

[
D′

k�k+1Ck

]
z + Ek

[
D′

k

]
�k+1Nk + Ek

[
D′

k

]
Gk+1

)
, (3.7)

where �k, Gk, and Fk are determined by (3.4) and (3.5).

The proof of Theorem 1 is based on the classical stochastic LQ optimal control theory and the concept
of mathematical induction. Specifically, when k = T − 1, we apply the method of differentiation (i.e.,
the first-order condition) to Bellman Equation (3.3) to obtain the optimal solution and the optimal value
of the objective function, which is a quadratic function. This establishes the validity of the theorem
for k = T − 1. Assuming the theorem holds for k + 1, we demonstrate, using first-order conditions and
Bellman Equation (3.3), that it also holds for k (the methodology is akin to that of the T − 1 case). By
virtue of the principle of mathematical induction, we thus establish the result. The details of this proof
are presented in Appendix D.

With reference to Theorem 1 and bearing in mind that αk = xk − x∗
0

k−1∏
i=0

ri and fk(y, x) = Vk(y, α) −

λ2
1

T−1∑
t=k

ρ t+1−k, we have the following results for the original problem (2.2).

Theorem 2. Let x = xk, y = yk for k = 0, 1, · · · , T − 1, the optimal value for problem (2.2) is

fk(x, y) =
(

y, x − x∗
0

k−1∏
i=0

ri

)
�k

⎛
⎝ y

x − x∗
0

k−1∏
i=0

ri

⎞
⎠+ 2G′

k

⎛
⎝ y

x − x∗
0

k−1∏
i=0

ri

⎞
⎠+ Fk − λ2

1

T−1∑
t=k

ρ t+1−k,

and the corresponding optimal strategy is given by:

πk =
(

uk

bk+1

)
= −(L + Ek

[
D′

k�k+1Dk

])−1

×
⎛
⎜⎝Ek

[
D′

k�k+1Ck

]
⎛
⎜⎝

y

x − x∗
0

k−1∏
i=0

ri

⎞
⎟⎠+ Ek

[
D′

k

]
�k+1Nk + Ek

[
D′

k

]
Gk+1

⎞
⎟⎠ .

Theorem 2 demonstrates that the optimal value function of the optimal problem (2.2) is quadratic
in nature and depends on both the present average wage level yk and the current excess wealth level

(relative to risk-free investment) xk − x∗
0

k−1∏
i=0

ri. The optimal strategy πk takes the form of a linear feedback

control, that is, a linear function of the present average wage level yk and the current excess wealth

level xk − x∗
0

k−1∏
i=0

ri. Therefore, when determining the investment strategy uk and benefit payment strategy

Bk+1 = bk+1 + B∗
k+1 + λ1 (since bk+1 = Bk+1 − B∗

k+1 − λ1), the fund trustee must take into account both the
current levels of wage and wealth.

The economic implications are not immediately apparent due to the stochastic nature and matrix form
of the solution. However, we can gain insights by considering a special case where k = T − 1, n = 1 (only
one risky asset), and the coefficient matrices are deterministic. In this case, the optimal strategy can be
simplified as follows:
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πT−1 =
(

uT−1

bT

)
= 1

θT−1

⎛
⎝b∗

T − cTATpT−1y − rT−1

(
x − x∗

0

T−2∏
i=0

ri

)
0

⎞
⎠ .

In the time period [T − 1, T], since this scenario is deterministic, the benefit distribution is given by
BT = B∗

T + λ1 (derived from bT = 0). This means that we distribute the benefit according to the planned
target B∗

T , with the consideration of the weight λ1. Regarding the investment strategy, a higher target

benefit B∗
T or a higher weight λ1 (then a higher b∗

T = B∗
T + λ1), as well as a higher wealth target x∗

0

T−2∏
i=0

ri,

will result in a more aggressive investment in the risky asset. The implications of this relationship will
be further explored in Section 5.

4. Results for DC plans
One of the primary goals of this paper is to compare the benefits provided by a TBP plan with those
offered by a DC scheme. Members would prefer to join a TBP fund if it provides a more reliable and
higher distribution of benefits than a DC plan. The study compares the performance of the two plans
with respect to the replacement rate, which is the percentage of the final salary accounted for by benefit
payments. In the case of a TBP fund, the objective function takes the form of a quadratic equation based
on the benefit payments and terminal wealth. Conversely, in a DC fund, no benefit payments are made
during the accumulation phase. Therefore, it is natural to express the problem in a targeted form, focusing
only on the terminal wealth at retirement. In this section, we consider an individual employee who joins
a DC fund at their first job. The terminal wealth at retirement is the sum of the accumulation from
regular contributions and the investment income. To facilitate a comparison to that of TBP members,
we express the DC objective in a targeted form for terminal wealth.

To maintain consistency with the notation used in Section 2 for TBP members, we adopt a similar
notation for the DC structure, using a bar over the variable to indicate its DC counterpart. For instance,
ȳk represents the wage of a specific DC member. However, in contrast to a TBP fund where investment
decisions and wealth accumulation are done collectively, a DC fund allows members to make individual
investment decisions by selecting a portfolio mix. As a result, the formulation for a DC fund is based on
an individual’s account balance (wealth) and follows the dynamics:

x̄k+1 = (x̄k − ū′
k1)rk + ū′

kek + C̄k+1

= x̄krk + ū′
k(ek − rk1) + c̄k+1ȳk+1 (4.1)

= x̄krk + θ ′
kūk + c̄k+1p̄kȳk.

Let x̄ = x̄k, ȳ = ȳk, define the objective function as:⎧⎨
⎩

f̄k(ȳ, x̄) = min
π∈
k(ȳ,x̄)

Ek

[
(x̄T − d)2

]
s.t. ȳk+1 = p̄kȳk and (4.1),

f̄T(ȳ, x̄) = (x̄ − d)2,
(4.2)

where d is the target wealth at terminal time T and 
k(ȳ, x̄) is the admissible set. To simplify the nota-

tion, we introduce a new state variable ᾱk by defining ᾱk = x̄k − d

/
T−1∏
i=k

ri. Then, by (4.1), the dynamics

of ᾱk is expressed as follows:

ᾱk+1 = ᾱkrk + θ ′
kuk + c̄k+1p̄kȳk. (4.3)

By letting ȳ = ȳk and ᾱ= ᾱk, we can rewrite the optimization problem (4.2) as the following:{
V̄k(ȳ, ᾱ) = min

u∈
k(ȳ,ᾱ)
Ek

[
ᾱ2

T

]
, s.t. ȳk+1 = p̄kȳk and (4.3),

V̄T(ȳ, ᾱ) = ᾱ2.
(4.4)
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Applying the dynamic programming principle, we can derive the Bellman equation for problem (4.4)
as follows:{

V̄k(ȳ, ᾱ) = min
u∈
k(ȳ,ᾱ)

Ek

[
V̄k+1(p̄kȳ, ᾱrk + θ ′

kuk + c̄k+1p̄kȳ)
]

, s.t. ȳk+1 = p̄kȳk and (4.3),

V̄T(ȳ, ᾱ) = ᾱ2.
(4.5)

To solve problem (4.5) analytically, we construct the series wk, φk, and ψk for all k = 0, 1, · · · , T
satisfying the following recurrence relation:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wk = wk+1r2
k

(
1 − Ek[θ ′

k]E
−1
k [θkθ

′
k]Ek[θk]

)
,

φk = (2wk+1c̄k+1 + φk+1)
(
Ek[p̄k] − Ek[θ ′

k]E
−1
k [θkθ

′
k]Ek[p̄kθk]

)
rk,

ψk = (wk+1c̄2
k+1 + φk+1c̄k+1 +ψk+1

)
Ek[p̄2

k] − (2wk+1c̄k+1 + φk+1)
2

4wk+1

Ek[p̄kθ
′
k]E

−1
k [θkθ

′
k]Ek[p̄kθk],

(4.6)

with boundary conditions wT = 1, φT = 0, ψT = 0.

Proposition 2. wk > 0 for k = 0, 1, · · · , T .

The proof of Proposition 2 uses mathematical induction and Lemma 3 (see Appendix E for details).
Proposition 2 guarantees the existence of solutions to problem (4.4). Based on Proposition 2, we have
the following theorem.

Theorem 3. Let ᾱ = ᾱk, ȳ = ȳk, then for k = 0, 1, · · · , T , the solution to Bellman Equation (4.5),
namely, the value function of problem (4.4) is given by:

V̄k(ȳ, ᾱ) = wkᾱ
2 + φkȳᾱ +ψkȳ

2, (4.7)

and the corresponding optimal strategy (for k = 0, 1, · · · , T − 1) is given by:

u∗
k = −E−1

k [θkθ
′
k]

(
rkEk[θk]ᾱ+ 2wk+1c̄k+1 + φk+1

2wk+1

Ek[p̄kθk]ȳ

)
, (4.8)

where wk, φk, and ψk are determined by (4.6)

The proof of Theorem 3 follows a similar approach to that of Theorem 1 (refer to Appendix F for

details). Notably, based on the expression ᾱk = x̄k − d

/
T−1∏
i=k

ri, Theorem 3 shows that the optimal value

function of problem (4.4) for the DC plan is a quadratic function of the current average wage ȳk and
the current excess target wealth, that is, the difference between the current account balance x̄k and the
discounted value of the terminal target wealth d. Moreover, the optimal investment strategy is a linear
feedback control that depends on the current average wage ȳk and the current excess target wealth, x̄k −
d

/
T−1∏
i=k

ri.

5. Empirical tests
This section provides a numerical example to illustrate the characteristics of our models’ operations.
Specifically, we examine the effects of model parameters such as λ1, λ2, target benefit, and target wealth
on the benefit distribution and investment strategy in the case of a TBP plan. We also investigate the
long-term behavior of the wealth process and funding ratio process. Additionally, we introduce a target
replacement ratio to define the target benefit in a TBP and the target accumulation in a DC plan. We
compare the optimal benefit distribution and the resulting wealth process between a TBP and a DC plan.
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Our findings reveal that the wealth process in a TBP plan exhibits smoother dynamics compared to a
DC plan, particularly during the early accumulation phase. Moreover, by adjusting the model parameters,
TBP members can expect higher and more stable benefits over time.

The demographic structure. Due to the lack of data on the age-structured working population and retir-
ing population,6 we utilize overlapping generation (OLG) models to describe the demographic structure.
OLG models are widely used for analyzing macroeconomic dynamics (Galor, 1992) and life cycle behav-
ior such as saving for retirement (Fanti and Gori, 2012). A unique characteristic of OLG analysis is that
individuals live for a finite period, long enough to overlap with at least one period of another member’s
life. This paper employs a particular OLG model to characterize the age distribution, which is analogous
to the one utilized in Gollier (2008) to examine a CDC fund. The empirical analysis covers a span of 54
years from 1965 to 2018, denoted by T = 54. In each year k = 1, 2, ..., T , a new generation of workers
aged 25 years starts contributing 10% of their salary, while another generation aged 65 years retires with
an endogenously determined pension benefit Bk. The benefit Bk is distributed as a lump-sum payment
to support each member surviving for 14 years after retirement, with the limiting age of 80 years. The
replacement rate is calculated as follows:

Bk

14yf
k

where yf
k represents the final salary per year of a member. This replacement rate indicates the percent-

age of the individual’ s final salary that is replaced by their retirement income, which reflects the extent
to which a pension system effectively provides retirement income that can sustain the quality of life of
its members. As per the latest data from the Organisation for Economic Co-operation and Development
(OECD), this figure was only 41% in Australia in 2018.

Final salary yf
k. As the average earnings data from the Australian Bureau of Statistics (ABS) is seg-

mented by age, the actual primary data yf
k cannot be accessed publicly. However, it is commonly observed

that individuals tend to reduce their work commitments as their living expenses decrease, such as after
paying off their home loans, in the years leading up to retirement. Hence, it is assumed in this paper
that the final salary of an individual is a fraction, less than 1, of their average earnings. Specifically, it
is assumed that the final salary is 80% of the average earnings.

5.1. Data structure and statistical estimation for the financial market and earnings
The equity market holds a prominent position among Australia’s investment markets. According to
recent data, Australian listed shares account for over 22% of superannuation funds, while international
stocks make up 25% of such funds.7 Australian equities are known for offering higher dividends com-
pared to other countries, which can be attributed to specific tax treatments as discussed in Bergmann
et al. (2016). Therefore, when measuring the returns on Australian equities, it is essential to account
for dividend payments. In this paper, equity returns refer to the total shareholder return (TSR), which
is the sum of capital gains and dividends. To obtain the time series for TSR, we rely on a newly com-
piled dataset on the equity market that was published by the Reserve Bank of Australia (RBA) in August
2019. The dataset provides quarterly data from different types of companies, including the financial sec-
tor (especially banks), resources sector (mainly miners), and others (excluding financials and resources).
We extract the time series from 1965 to 2018, totaling 54 years, to model the three risky assets (financial,
resources, and others).

6The publicly available data resources mostly cover the total population (e.g., Human Mortality Database), working-age and
elderly population (e.g., OECD data), or working population without its age structure (e.g., Australian Bureau of Statistics). These
resources do not provide the specific data required for our analysis.

7ASFA. Superannuation statistics, December 2019. URL https://www.superannuation.asn.au.
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Regarding the risk-free rate, we use the deposit interest rate paid by commercial or similar banks for
demand, time, or savings deposits. The International Monetary Fund collects and documents this rate,
which is published in the International Financial Statistics. For earning data, we rely on the Average
Weekly Earnings report published by the ABS. We extract annualized data from 1965 to 2018 to use in
this study.

To obtain the conditional expectations and covariance matrices, we utilize an autoregressive vec-
tor structure of the time series data. The parameters for this model are estimated using the Bayesian
method. There is an extensive body of literature on Bayesian vector autoregression and its associated
estimation and forecasting techniques in macroeconomics. Detailed information on the Bayesian vector
autoregressive model can be found in Kadiyala and Karlsson (1997), while the appropriate choice of
prior is discussed in Chan et al. (2019). To avoid introducing additional mathematical notation in this
section, we provide a brief description of the estimation procedure in Appendix G.

In this section, our focus is on the in-sample forecasts of the state variables. Using the Bayesian
Markov chain Monte Carlo approach, we can conveniently generate in-sample forecasts for these vari-
ables conditional on the posterior draws. Therefore, we can easily compute the conditional mean and
covariance, as used in Theorem 1.

5.2. Parameter settings
This subsection outlines the parameter values used in the model.

The initial wealth of TBP. It should be noted that retiring members are already accounted for in the
TBP pension at the fund’s setup, as an initial fund is necessary in the TBP scheme to meet upcoming
payment obligations. In line with Cui et al. (2011), this paper sets the initial fund value as the product of
f0 and the target benefit at the end of the first period B∗

1, where f0 can be adjusted to observe the impact of
initial wealth. Specifically, x0 = f0B∗

1, and the base value of f0 is set to 1. Notably, compared to Cui et al.
(2011), who use the fund liability (including the benefit for all the generations) as the initial wealth,
our approach is conservative, as B∗

1 represents the benefit for only one generation. The optimal setting
for initial wealth is beyond the scope of this paper, but we analyze the impacts of varying initial wealth
in the next subsection. As noted by Gollier (2008), this initial fund can be accumulated from existing
individual accounts or raised through a privatization program.

The target benefit and target wealth. To simplify the presentation, we define the target benefit as a
function of the target replacement rate denoted by Rtar. Based on the demographic structure of OLG, the

target benefit B∗
k is computed as Rtar × 14yf

k. Additionally, we use x0

T−1∏
i=0

ri as the base value for the wealth

target and adjust it by multiplying with (Wtar)T to study the effects of different target wealth values. We
set the base values as Rtar = 0.8 and Wtar = 1.05.

The weights λ1 and λ2. By choosing a higher value of λ1, the analyst places more emphasis on the
well-being of members retiring before time T . To balance the welfare interests across generations, the
parameter λ2 represents the weight assigned to the fund surplus after deducting benefits. The goal of the
trustee is to provide generous benefits to retired generations and accumulate large surpluses for active
members. Thus, λ1 and λ2 can be viewed as the weights given to the interests of retiring and future
generations, respectively. Since the benefit for a single retiring generation is much smaller than the total
wealth of all active generations, the magnitude of λ2 is typically much larger than λ1. We set the base
values as λ1 = 1 and λ2 = 10.

Other parameters. We set the discount factor to ρ = 0.95. The contribution rate remains constant at
10% throughout the period from 1965 to 2018. The number of active members is fixed at Ak = 40, while
each generation has Rk = 1 retired member staying with the fund, for k = 1, 2, ..., T .
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The notations and base parameter values are summarized below.

• Time span is from 1965 to 2018, that is, T = 54.
• A member enters the TBP at the age of 25 years, retires at the age of 65 years, and leaves the

fund with a lump-sum benefit payment. The survival time is 14 years until the limit age of 80
years.

• The number of active members Ak = 40. The number of retired members in the fund Rk = 1.
• Final salary for members retiring at time k is yf

k.
• Target benefit B∗

k = Rtar × 14yf
k where Rtar = 0.8.

• Target wealth (Wtar)T × x0

T−1∏
i=0

ri where Wtar = 1.05.

• Initial wealth x0 = f0B∗
1 where f0 = 1.

• λ1 = 1 and λ2 = 10.
• Discount factor ρ = 0.95.
• Contribution rate 10%.
• Three risky assets: Financial, Resources, and Others.

5.3. The features of TBP fund
TBP members are primarily concerned with the amount and stability of benefit payments distributed
from the fund. On the other hand, the fund trustee focuses more on the investment strategy, the progres-
sion of the wealth process, and the corresponding funding ratio. In this subsection, we analyze how the
model parameters in problem (2.2) affect these areas of interest.

The Effects of weights λ1 and λ2.
The formulation of (2.2) suggests that parameter λ1 controls the distribution of Bk − B∗

k over time.
This is confirmed by Figure 1, where we adopt three sets of λ1 and λ2. Figure 1(a) shows the benefit
payments Bk plotted against time from 1966 to 2018, where the difference between the plots is not visible
due to the large magnitude of the benefit payment. The excess benefit, Bk − B∗

k , is mainly determined
by the value of λ1, and the role of λ2 is minimal, as shown in Figure 1(b). In other words, the benefit
payment Bk is primarily determined by B∗

k and λ1, with minimal impact from λ2, which is further verified
by Figure 2, where additional sets of λ1 and λ2 are plotted.

Another notable observation is that the resulting benefit payment Bk approaches B∗
k as k approaches

T . This trend is evident in Figure 1(c), where we plot the replacement rate against time. The replacement
rate converges to 0.8, which can be attributed to the discount factor ρ in (2.2). As we approach T under
the mean-target framework, the level of stochastic randomness decreases, providing more certainty for
the optimal control variable to attain the target.

Turning to investment strategies, Figure 3 shows how the λ values affect the amount invested in the
resources sector. Note that short-selling is allowed in the model formulation, and negative investment
amounts around 1980 and 1990 can be attributed to two well-known economic recessions in Australia’s
history, one caused by the 1973 oil crisis and the other by the early 1990s global recession that followed
Black Monday in October 1987. It is reasonable for fund trustees to short-sell stock before prices drop
and repurchase it at a lower price. Unlike the benefit payment, λ2 plays a leading role in the investment
behavior. When the investment amount is positive, the green line is the highest among the three scenarios,
but when the amount is negative, it is the lowest. This means that the higher the emphasis on λ2, that
is, the greater the focus on the wealth target, the more aggressive the investment strategies, as observed
in Figure 3. Figure 4 provides an overview of the investment allocation to three risky assets, where
we see that the investment allocation to the resources sector has declined since the peak in 2012/2013,
consistent with the practice observations from RBA.8

8Debelle G. (2017), ‘ Business Investment in Australia,” Speech at the UBS Australasia Conference 2017.
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Figure 1. The effects of λ1 and λ2 on the benefit payments Bk for k = 1966, 1967, ..., 2018. (a) The value
of Bk. (b) gives the deviation of Bk from the target benefit B∗

k .(c) The value of benefit payment in terms
of replacement ratio.

The effects of the benefit target and final wealth target.
From the perspective of the fund trustee, how much flexibility is available in establishing the fund’s

target benefits and wealth? This subsection aims to address this question by examining the impact of
benefit targets and wealth targets on benefit payments and investment strategies. Setting appropriate
benefit targets (B∗

k) and wealth targets is crucial to achieving a balance between the benefits of retiring
members and those of active members. However, when the fund is significantly in surplus and the initial
wealth can support all generations financially, there may be less conflict between a high B∗

k and a high
wealth target. In such cases, higher B∗

k would result in greater benefits for retiring members. Nevertheless,
in other circumstances, the establishment of B∗

k and the wealth target could lead to conflicting objectives.
In Figure 5, we present the benefit payments for three target replacement rates Rtar: 0.8, 0.85, and

0.9, using base values of λ1 = 1 and λ2 = 10. As per our previous findings, we anticipate the differ-
ence between Bk and B∗

k to be approximately λ1 initially, gradually converging to 0 by 2018, as shown
in Figure 5(b). The investment strategies proposed in this paper enable the achievement of the target
replacement rate, as demonstrated in Figure 5(c), indicating adequate funding. Figure 6 displays the ben-
efit payments for varying wealth targets Wtar =1, 1.1, and 1.2, with a fixed benefit target of Rtar = 0.8.
In cases where the wealth target is unrealistically high, such as Wtar = 1.2, the trustee must decrease
benefits for members retiring between 0 and T . As time progresses toward T , the deviation between Bk
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Figure 3. The effects of λ1 and λ2 on the amount invested in the resources sector.

and B∗
k in Figure 6(b) ultimately becomes negative, suggesting that achieving the target benefit may be

unsustainable without jeopardizing the benefits of the current generation.
With regard to investment strategies, Figure 7 illustrates the amount invested in the resources sector

for varying benefit targets (left) and wealth targets (right). Notably, both higher targets result in more
significant investments in the long position (positive) for risky assets, and more selling in the short
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position (negative). The short positions observed around 1980 and 1990 could be attributed to economic
recessions, consistent with the findings in Figures 3 and 4.

Figure 8 presents the joint impacts of benefit and wealth targets, showing the trends in benefit and
investment strategies for 1974 and 2014. Figures 8(a) and (b) indicate that, with fixed values of λ1 and
λ2, the benefit distribution is mainly influenced by the target benefit, regardless of the wealth target. On
the other hand, regarding investment strategies, Figures 8(c) and (d) suggest that the wealth target plays
a more significant role and leads to a more aggressive strategy to achieve a higher wealth target.

Is this structure sustainable over the long term?
Figure 9 illustrates the progression of the TBP wealth process with varying wealth targets (see (a)),

initial wealth x0 = f0B∗
1 (see (b)), and benefit targets (see (c)). Among these factors, the effect of initial

wealth is most noticeable in Figure 9(b), as higher values of x0 correspond to greater wealth for the fund.
Figure 9(a) depicts the impact of target wealth on the wealth process. As indicated in the previous

analysis, an extremely ambitious target poses a challenge to the investment strategy across generations.
However, setting an unreasonably low target is also inadequate. The red curve in Figure 9(a) represents
a low target wealth at time T . With the results derived in this paper, the curve initially rises and then falls
as the expiry date approaches. A low target wealth at T acts like a brake on wealth accumulation, and
as time approaches T , the need to reach the low target wealth becomes more pressing. The investment
strategy must react by forcing wealth decumulation, which can potentially result in negative values close
to the expiry date.

Figure 9(c) illustrates the impact of target benefit on the wealth process. A low target replacement
rate, such as 30%, which is significantly below the market average of 41% in Australia, can result in an
unsatisfactory wealth process, as indicated by the blue curve. With each member’s retirement, the low
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Figure 9. The effects of the target wealth, initial wealth x0, and target benefit on the wealth process xk

along with time.

target benefit undermines the wealth accumulation momentum in the early stages. As a result, the blue
curve exhibits a declining trend, and even negative values, over the first several years, spanning about
20 years. As the deadline approaches, the pressure of the target benefit necessitates more aggressive
strategies, resulting in an increasing trend as seen from 1995.

In summary, adjusting the model parameters carefully is crucial to establish a robust optimal strategy
and to ensure the sustainability of the fund in the long run.

The funding ratio process.
The funding ratio expresses the ratio between a pension fund’s available assets and liabilities, reflect-

ing its current financial position. In practice, fund managers often target the funding ratio at one.
However, the empirical analysis of this paper, without considering rebalancing, implies a funding ratio
that is purely determined by the market. The liability, defined as the total benefit payments for Ak active
members at k = 1, 2, ..., 54, can be expressed as AkBk, where Bk denotes the lump-sum benefit to the
retiring member at time k (with only one member). The asset is simply defined as the wealth xk, leading
to the funding ratio process xk/(AkBk). Figure 10 illustrates the impact of initial wealth on the funding
ratio process. As we explained in Section 5.2, when f0 = 1, the initial wealth x0 = f0B∗

1 = B∗
1 represents

the target benefit payment for only one retiree at each time k. Considering Ak = 40 active members in
the fund, this base value for x0 is far from adequate to provide an adequate funding ratio. This explains
the low values in the early stages of Figure 10. We then observe a small spike in growth until 1972. The
subsequent relatively flat period from 1975 to 1985 corresponds to Australia’s economic recession. With
the gradual improvement in the economy, the ratio climbs to the end of the planning horizon. Therefore,
carefully managing the initial wealth is essential for maintaining an adequate funding ratio and ensuring
the sustainability of the fund over the long term.

5.4. The features of DC and comparison with TBP
In this subsection, we investigate the features of our optimal investment model for an individual DC
account facing the same financial market as in Section 5.3. We assume that a member of the DC fund
earns the average salary published by the ABS and contributes 10% of their salary to the fund for
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40 years before retiring in 2005, 2006,. . ., 2018. We consider 14 scenarios in total. Unlike the TBP
scenario, where the fund as a whole requires initial wealth, we assume that members of the DC fund
have no savings at the beginning of their contribution period, that is, x̄0 = 0. The 40 years of contribut-
ing and investing in the financial market lead to an accumulated value that will financially support their
retirement. We adopt the investment strategy derived in Section 4 that corresponds to a target 100%
replacement rate.

The volatile wealth process.
Figure 11 illustrates the wealth processes for the 14 DC account entry time scenarios. Compared to

the wealth processes in the TBP, the DC wealth processes are highly volatile, particularly in the first
several years. Since the initial wealth is 0, the wealth processes are primarily driven by returns from the
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Table 1. Static investment strategies.

Cash Conservative Balance Growth
Short-term fix income 100% 70% 30% 15%
Mixed risky asset 0 30% 70% 85%

risky assets, which can fluctuate considerably. However, after 10–25 years of accumulation, the wealth
processes smooth out and maintain an increasing trend over time. We also observe that late entry into
the labor market can lead to higher earnings and salary inflation. However, due to the high volatility, it
is still possible to retire with a low balance after 40 years of contribution. Furthermore, later generations
require more financial support due to the effect of consumer inflation, which is the relative risk of DC
pension schemes.

Additionally, it appears from Figure 11 that the entry time has a significant impact on achieving
a desirable account balance at retirement. Those who start accumulating in 1978 have a much higher
balance than those who start in other years. This higher balance could be attributed to the mining boom
in Australia during the late 1970s and early 1980s, driven primarily by the energy market, particularly
steaming coal, oil, and gas. Members who began accumulating around this period adopted an aggressive
investment strategy and benefited from the booming financial market, especially in the resource sector,
which left them with a substantial account balance by the late 1980s and the opportunity to switch
dynamically to a more conservative direction.

Comparison with the static investment strategy.
The pension industry still favors static investment allocations due to their straightforward approach

and strong historical performances. For instance, the Australian government’s MySuper initiative offers
default products that are devoid of unnecessary features and charges. If employees do not choose their
superannuation fund, they are automatically enrolled in the default MySuper product. The fund’s invest-
ment options have the same asset classes, but with varying weightings that match different risk appetites.
We have utilized their weightings and titles from Table 1 for our static investment strategies.

The wealth processes resulting from the optimal strategy obtained in this study and four static strate-
gies (cash, conservative, balanced, and growth) are compared in Figure 12. The DC account balance
at retirement is shown on the y-axis for 14 scenarios, ranging from 2005 to 2018. Blue lines depict
static investment cases, while red lines depict dynamic cases. As expected, the “growth” strategy has
the highest balance among the four static options due to its high proportion of risky assets. However, a
concerning observation for this strategy is its declining trend after 2015, which corresponds to workers
who joined the DC fund in 1975. This trend could be due to the oil price shock that occurred during that
period.

While the dynamic cases exhibit slightly more volatility than the static cases, they often result in
higher balances. We computed the account balance for four target levels, with higher targets indicating
more aggressive dynamic investment strategies and consequently, greater accumulated account balances.
To surpass static investment strategies, the critical adjustment required is to modify the target, which
stimulates a steeper wealth accumulation trajectory.

DC versus TBP. Figure 13 compares the retirement benefits from a TBP plan and a DC account using
optimal investment and benefit payment strategies. As expected, the TBP trustees provide a more stable
benefit over time than a DC account. However, it is not guaranteed that retirees will receive a higher
benefit from a TBP plan compared to a DC account. The two solid lines in the graph (red for DC
and blue for TBP, with the same replacement rate target of 80%) demonstrate that a DC account can
potentially yield a greater benefit amount than a TBP. To achieve a higher benefit payment, the TBP
trustees must adjust either the λ1 value or the target benefit, which aligns with our findings in Figures 1
and 2.
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6. Conclusion
In this paper, we conduct a multi-period analysis of the TBP pension scheme and compare it with
the more conventional DC structure. Our approach utilizes a discrete-time stochastic framework to
formally analyze and determine optimal investment and benefit payment decisions. Unlike traditional
mean-variance and utility-based specifications, our objective function provides analysts with sufficient
flexibility to adjust parameters in line with regulatory or administrative requirements. The joint model-
ing of the investment market and labor income market, along with collective decision-making regarding
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investment selection and replacement rates, allows our analysis to capture the impact of various factors
and their interactions. While our empirical analysis is applied to Australian data, we identify several
attractive features of the TBP pension scheme, such as a smoother benefit distribution over time and the
flexibility brought by adjustable model parameters. However, we also uncover some alarming insights.
As the TBP features stochastic dynamics and requires a more comprehensive set of model parameters,
care is needed when setting up these parameters in practice. In cases where the target is inappropriate,
the TBP can lead to disastrous performance, adversely affecting the current generation and resulting
in long-term deterioration of members’ benefits. Our proposed stochastic modeling framework enables
practitioners to analyze and identify key risk drivers in parameter settings.
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Appendices
Appendix A. Formulas for some expectations
Our model involves some mathematical expectations, including random matrix or vector multiplication,
such as, Ek [Ck], Ek [Dk], Ek

[
C′

k�k+1Ck

]
, Ek

[
C′

k�k+1Dk

]
, Ek

[
D′

k�k+1Dk

]
, etc. In the following, we give

some of their formulas to facilitate the calculation.
Suppose that �k+1 =

(
a11

k+1 a12
k+1

a21
k+1 a22

k+1

)
, then by (3.1), we have

Ek [Ck] = Ek

[(
pk ck+1Ak+1pk

0 rk

)]
=
(

Ek[pk] ck+1Ak+1Ek[pk]

0 rk

)
, Ek

[
C′

k

]= (Ek [Ck])
′ , (A1)

Ek [Dk] = Ek

[(
0′

n×1 0

θ ′
k −1

)]
=
(

0′
n×1 0

Ek[θ ′
k] −1

)
, Ek

[
D′

k

]= (Ek [Dk])
′ , (A2)

Ek

[
C′

k�k+1Ck

]= Ek

[(
pk ck+1Ak+1pk

0 rk

)(
a11

k+1 a12
k+1

a21
k+1 a22

k+1

)(
pk 0

ck+1Ak+1pk rk

)]

=
((

a11
k+1 + ck+1Ak+1

(
a21

k+1 + a12
k+1

)+ c2
k+1A2

k+1a22
k+1

)
E[p2

k]
(
a12

k+1 + a22
k+1ck+1Ak+1

)
rkE[pk](

a21
k+1 + a22

k+1ck+1Ak+1

)
rkE[pk] r2

k a22
k+1

)
,

(A3)

Ek

[
C′

k�k+1Dk

]= Ek

[(
pk ck+1Ak+1pk

0 rk

)(
a11

k+1 a12
k+1

a21
k+1 a22

k+1

)(
0′

n×1 0

θ ′
k −1

)]

=
((

a12
k+1 + a22

k+1ck+1Ak+1

)
Ek[pkθ

′
k] − (a12

k+1 + a22
k+1ck+1Ak+1

)
Ek[pk]

rka22
k+1Ek[θ ′

k] −rka22
k+1

)
, (A4)

Ek

[
D′

k�k+1Ck

]= (Ek

[
C′

k�k+1Dk

])′ =
( (

a12
k+1 + a22

k+1ck+1Ak+1

)
Ek[pkθk] rka22

k+1Ek[θk]

− (a12
k+1 + a22

k+1ck+1Ak+1

)
Ek[pk] −rka22

k+1

)
, (A5)

Ek

[
D′

k�k+1Dk

]= Ek

[(
0n×1 θk

0 −1

)(
a11

k+1 a12
k+1

a21
k+1 a22

k+1

)(
0′

n×1 0

θ ′
k −1

)]

= a22
k+1

(
Ek[θkθ

′
k] −Ek[θk]

−Ek[θ ′
k] 1

)
. (A6)

These calculation formulas show that the relevant parameters can be calculated by the primary market
parameters Ek[pk], E[p2

k], Ek[pkθ
′
k], Ek[θk] and Ek[θkθ

′
k].

Appendix B. Useful Lemmas

Lemma 1. (Yao et al., 2014): Let ς = (ς1,ς2, · · · , ςN)′ be a random vector, then |E[ςς ′]| = 0 if only
if (iff) there exists a nonzero vector a = (a1, a2, · · · , aN)′ such that a′ς = a1ς1 + a2ς2 + · · · , aNςN = 0
hold with probability 1, where |H| denotes the determinant for square matrix H.

Lemma 2. Let ς = (ς1, ς2, · · · , ςN)′ be a random vector. Then |Var[ς ]| = 0 iff there exists a nonzero
vector a = (a1, a2, · · · , aN)′ and a constant g such that

n∑
i=1

αiςi = g with probability 1.
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Proof. Since Var[ς ] is a semidefinite matrix, then |Var[ς ]| = 0 is equivalent to the existence of
a nonzero vector a and a constant g such that a′Var[ς ]a = a′E[(ς − E[ς ])(ς − E[ς ])′a = 0. Let ςp =

N∑
i=1

aiςi = a′ς , then we have

a′E[(ς − E[ς ])(ς − E[ς ])′a = E[(a′ς − E[a′ς ])(a′ς − E[a′ς ])′

= E
[
(ςp − E[ςp])(ςp − E[ςp])′]= Var[ςp] = 0.

According to the probability theory, there exists a constant g, such that ςp =
n∑

i=1

αiςi = g with

probability 1. This completes the proof. �

Let H a symmetrical square matrix and be partitioned as H =
(

H11 H12

H′
12 H22

)
, where H11 and H22 are

also symmetrical square matrices. Then the following lemmas hold.

Lemma 3 (Kreindler and Jameson, 1972): H > 0 ⇔ H11 > 0 and H22 − H′
12H−1

11 H12 > 0.

Appendix C. Proof of Proposition 1

Proof. We prove the proposition by mathematical induction. When k = T − 1, we first prove
ET−1

[
D′

T−1MDT−1

]
> 0. By (3.4), we have

ET−1

[
D′

T−1MDT−1

]= ET−1

[(
0n θT−1

0 −1

)(
0 0

0 λ2

)(
0′

n 0

θ ′
T−1 −1

)]

= ET−1

[(
0n λ2θT−1

0 −λ2

)(
0′

n 0

θ ′
T−1 −1

)]
= λ2ET−1

[(
θT−1

−1

) (
θ ′

T−1 −1
)]

.

Since M ≥ 0, we have ET−1

[
D′

T−1MDT−1

]≥ 0. If ET−1

[
D′

T−1MDT−1

]
> 0 is not true, it must have∣∣ET−1

[
D′

T−1MDT−1

]∣∣= λ2
2

∣∣∣∣ET−1

[(
θT−1

−1

) (
θ ′

T−1 −1
)]∣∣∣∣= 0. Because λ2 > 0, it follows that

∣∣∣∣ET−1

[(
θT−1

−1

) (
θ ′

T−1 −1
)]∣∣∣∣= 0.

By Lemma 1, there exists a nonzero vector ā = (a′, a0)′, where a = (a1, a2, · · · , an)′ such that a′θT−1 +
a0 × (−1) = 0, that is, a′θT−1 = a0. If a is a nonzero vector, then by Lemma 2, we have |Var[θT−1]| = 0,
which contradicts to Var[θT−1] = Var[eT−1 − rT−1] = Var[eT−1]> 0 by Assumption 1. If a is a zero vector,
then we also have a0 = a′θT−1 = 0, which contradicts to that ā = (a, a0)′ is a nonzero vector. Therefore, we
have ET−1

[
D′

T−1MDT−1

]
> 0. Notice that L ≥ 0 and�T = M, we further have L + ET−1

[
D′

T−1�TDT−1

]=
L + ET−1

[
D′

T−1MDT−1

]
> 0.

Let ϒT−1 = (cTATpT−1, rT−1, θT−1)
′. In the following, we first prove that ET−1

[
ϒT−1ϒ

′
T−1

]
> 0. It is

obvious that ET−1

[
ϒT−1ϒ

′
T−1

]≥ 0. If
∣∣ET−1

[
ϒT−1ϒ

′
T−1

]∣∣= 0, according to Lemma 1, there exists a
nonzero vector ā = (m1, m2, a′)′, where a = (a1, a2, · · · , an)′, such that

m1cTATpT−1 + m2 rT−1 + a′θT−1 = m1cTATpT−1 + m2 rT−1 + a′(eT−1 − 1rT−1) = 0, (C1)

which gives m1cTATpT−1 + a′eT−1 = (a′1 − m2) rT−1. Notice that cTAT > 0, if (m1, a′)′ is a nonzero
vector, which means that (m1cTAT , a′)′ is also a nonzero vector. Then by Lemma 2, we have |Var[ηT−1]| =
0. This contradicts to Var[ηT−1]> 0 by Assumption 1. If (m1, a′)′ is a zero vector, since rT−1 > 0, by (C1),
it follows that m2 = 0, which contradicts to that ā = (m1, m2, a′)′ is a nonzero vector. Therefore, we must
have ET−1

[
ϒT−1ϒ

′
T−1

]
> 0.
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Now, we prove that ET−1

[(
C′

T−1MCT−1 C′
T−1MDT−1

D′
T−1MCT−1 L + D′

T−1MDT−1

)]
> 0. On one hand, since λ2 > 0,M ≥ 0

and L ≥ 0, it is obvious that

ET−1

[(
C′

T−1MCT−1 C′
T−1MDT−1

D′
T−1MCT−1 L + D′

T−1MDT−1

)]

= ET−1

[(
C′

T−1

D′
T−1

)
M
(

CT−1 DT−1

)+( 02×2 02×(n+1)

0′
2×(n+1) L

)]
≥ 0.

(C2)

On the other hand, notice that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
02×2 02×(n+1)

0′
2×(n+1) L

)
=
(

0(n+2)×(n+2) 0(n+2)×1

0′
(n+2)×1 1

)
,

(
C′

T−1

D′
T−1

)
M (CT−1, DT−1)= λ2

(
ϒT−1

−1

) (
ϒ ′

T−1 −1
)

,

(C3)

by (C2) and (C3), we have∣∣∣∣∣ET−1

[(
C′

T−1MCT−1 C′
T−1MDT−1

D′
T−1MCT−1 M̄ + D′

T−1MDT−1

)]∣∣∣∣∣ .

The last inequality come from the fact that

λn+3
2

∣∣∣∣∣
(

ET−1

[
ϒT−1ϒ

′
T−1

] −ET−1 [ϒT−1]

−ET−1

[
ϒ ′

T−1

]
1

)∣∣∣∣∣= λn+3
2

∣∣∣∣∣ET−1

[(
ϒT−1

−1

) (
ϒ ′

T−1 −1
)]∣∣∣∣∣≥ 0,

and λn+2
2

∣∣ET−1

[
ϒT−1ϒ

′
T−1

]∣∣> 0 as have been proved above. Therefore, we have

ET−1

[(
C′

T−1MCT−1 C′
T−1MDT−1

D′
T−1MCT−1 L + D′

T−1MDT−1

)]
> 0.

By Lemma 3 and notice that ρ > 0, we further have

�T−1 = ρ (ET−1 [C′
T−1MCT−1]

−ET−1 [C′
T−1MDT−1] (L + ET−1 [D′

T−1MDT−1])−1ET−1 [D′
T−1MCT−1]

)
> 0.

In summary, the proposition holds for k = T − 1.
Now suppose that the proposition is true for k + 1, that is,�k+1 > 0 and L + Ek+1

[
D′

k+1�k+2Dk+1

]
> 0.

We first prove that L + Ek

[
D′

k�k+1Dk

]
> 0.

Since �k+1 is a 2 × 2 symmetrical matrix, we set �k+1 =
(

a11 a12

a12 a22

)
, where a11, a12 and a22 are

scalars. Since �k+1 > 0, we have a11 > 0, a22 > 0 and a11a22 − a2
12 > 0. By (3.4), it follows that

Ek

[
D′

k�k+1Dk

]= Ek

[(
0 θk

0 −1

)(
a11 a12

a12 a22

)(
0′ 0

θ ′
k −1

)]

= ET−1

[
a22

(
θT−1θ

′
T−1 −θT−1

−θ ′
T−1 1

)(
0′ 0

θ ′
T−1 −1

)]
= a22Ek

[(
θk

−1

) (
θ ′

k −1
)]

.
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Following the proof of the T − 1 case, we can prove that Ek

[(
θk

−1

) (
θ ′

k −1
)]
> 0 under

Assumption 1. Note that a22 > 0, so we have Ek

[
D′

k�k+1Dk

]
> 0, which further gives

L + Ek

[
D′

k�k+1Dk

]
> 0.

Let φ = a22 − a2
12

a11
> 0, since a11 > 0 and a11a22 − a2

12 > 0, then φ > 0. Then �k+1 can be decomposed
into �k+1 = J1 + J2, where

J1 =
(

a11 a12

a12
a2

12
a11

)
≥ 0, J2 =

(
0 0

0 φ

)
≥ 0.

Let ϒk = (ck+1Ak+1pk, rk, θk)
′, also following the T − 1 case, we have Ek

[
ϒkϒ

′
k

]
> 0 and∣∣Ek

[
ϒkϒ

′
k

]∣∣> 0. Then, it follows that

∣∣∣∣∣Ek

[(
C′

k

D′
k

)
J2

(
Ck Dk

)]+
(

02×2 02×(n+1)

0′
2×(n+1) L

)∣∣∣∣∣

=
∣∣∣∣∣ϕEk

[(
ϒk

−1

) (
ϒ ′

k −1
)]+

(
0(n+2)×(n+2) 0(n+2)×1

0′
(n+2)×1 1

)∣∣∣∣∣

=
∣∣∣∣∣
(

ϕEk [ϒkϒ
′
k] −ϕET−1 [ϒk]

−ϕEk [ϒ ′
k] + 0′

(n+2)×1 ϕ + 1

)∣∣∣∣∣

=
∣∣∣∣∣
(
ϕEk [ϒkϒ

′
k] −ϕEk [ϒk]

−ϕEk [ϒ ′
k] ϕ

)∣∣∣∣∣+
∣∣∣∣∣
(
ϕEk [ϒkϒ

′
k] −ϕEk [ϒk]

0′
(n+2)×1 1

)∣∣∣∣∣

= ϕn+3

∣∣∣∣∣
(

Ek [ϒkϒ
′
k] −Ek [ϒk]

−Ek [ϒ ′
k] 1

)∣∣∣∣∣+ ϕn+2 |Ek [ϒkϒ
′
k]|> 0,

where the last inequality come from the fact that

⎧⎪⎪⎨
⎪⎪⎩
ϕn+3

∣∣∣∣∣
(

Ek [ϒkϒ
′
k] −Ek [ϒk]

−Ek [ϒ ′
k] 1

)∣∣∣∣∣= ϕn+3

∣∣∣∣∣Ek

[(
ϒk

−1

) (
ϒ ′

k −1
)]∣∣∣∣∣≥ 0,

ϕn+2 |Ek [ϒkϒ
′
k]|> 0.

It is obvious that Ek

[(
C′

k

D′
k

)
J2

(
Ck Dk

)]+
(

02×2 02×(n+1)

0′
2×(n+1) L

)
≥ 0. Hence, we further have

Ek

[(
C′

k

D′
k

)
J2

(
Ck Dk

)]+
(

02×2 02×(n+1)

0′
2×(n+1) L

)
> 0.
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Notice that J1 ≥ 0, which gives Ek

[(
C′

k

D′
k

)
J1

(
Ck Dk

)]≥ 0. Therefore, it follows that

Ek

[(
C′

k�k+1Ck C′
k�k+1Dk

D′
k�k+1Ck L + D′

k�k+1Dk

)]

= Ek

⎡
⎢⎣
⎛
⎜⎝

C′
k

D′
k

⎞
⎟⎠�k+1

(
Ck Dk

)+
(

02×2 02×(n+1)

0′
2×(n+1) L

)⎤⎥⎦

= Ek

[(
C′

k

D′
k

)
(J1 + J2)

(
Ck Dk

)+
(

02×2 02×(n+1)

0′
2×(n+1) L

)]

= Ek

[(
C′

k

D′
k

)
J1

(
Ck Dk

)]+
(

Ek

[(
C′

k

D′
k

)
J2

(
Ck Dk

)]+
(

02×2 02×(n+1)

0′
2×(n+1) L

))

> 0

Notice that ρ > 0, by Lemma 3, we further have

�k = ρ
(

Ek

[
C′

k�k+1Ck

]− Ek

[
C′

k�k+1Dk

] (
L + Ek

[
D′

k�k+1Dk

])−1
Ek

[
D′

k�k+1Ck

])
> 0.

Therefore, the proposition holds for k. By the principle of mathematical induction, this completes
the proof. �

Appendix D. Proof of Theorem 1

Proof. We also prove this theorem by mathematical induction on k. For k = T − 1, by the Bellman
Equation (3.3), it follows that

ρ−1VT−1(z)

= min
πk

ET−1

[
π ′

T−1LπT−1 + VT(CT−1z + DT−1πT−1 + NT−1)
]

= min
πT−1

ET−1

[
π ′

T−1LπT−1 + (CT−1z + DT−1πT−1 + NT−1)′M(CT−1z + DT−1πT−1 + NT−1)
]

= z′ET−1

[
C′

T−1MCT−1

]
z + 2N ′

T−1MET−1 [CT−1] z + N ′
T−1MNT−1 (D1)

+ min
πT−1

{
π ′

T−1

(
L + ET−1

[
D′

T−1MDT−1

])
πT−1

+2π ′
T−1

(
ET−1

[
D′

T−1MCT−1

]
z + ET−1

[
D′

T−1

]
MNT−1

)}
.

By Proposition 1, L + ET−1

[
D′

T−1MDT−1

]
> 0. Then, the first-order condition (which is also suffi-

cient) about πT−1 in Equation (D1) yields

πT−1 = − (L + ET−1

[
D′

T−1MDT−1

])−1 (
ET−1

[
D′

T−1MCT−1

]
z + ET−1

[
D′

T−1

]
MNT−1

)
. (D2)
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Substituting (D2) into (D1) and simplifying it, we obtain

ρ−1VT−1(z)

= z′ET−1 [C′
T−1MCT−1] z + 2N ′

T−1MET−1 [CT−1] z + N ′
T−1MNT−1

− (z′ET−1 [C′
T−1MDT−1] + N ′

T−1MET−1 [DT−1]) (L + ET−1 [D′
T−1MDT−1])−1

× (ET−1 [D′
T−1MCT−1] z + ET−1 [D′

T−1] MNT−1)

= z′ET−1 [C′
T−1MCT−1] z + 2N ′

T−1MET−1 [CT−1] z + N ′
T−1MNT−1

−z′ET−1 [C′
T−1MDT−1] (L + ET−1 [D′

T−1MDT−1])−1ET−1 [D′
T−1MCT−1] z

−N ′
T−1MET−1 [DT−1] (L + ET−1 [D′

T−1MDT−1])−1ET−1 [D′
T−1] MNT−1

−2N ′
T−1MET−1 [DT−1] (L + ET−1 [D′

T−1MDT−1])−1ET−1 [D′
T−1MCT−1] z

= z′ (ET−1 [C′
T−1MCT−1] − ET−1 [C′

T−1MDT−1] (L + ET−1 [D′
T−1MDT−1])−1ET−1 [D′

T−1MCT−1]
)

z

+2N ′
T−1M

(
ET−1 [CT−1] − ET−1 [DT−1] (L + ET−1 [D′

T−1MDT−1])−1ET−1 [D′
T−1MCT−1]

)
z

+N ′
T−1MNT−1 − N ′

T−1MET−1 [DT−1] (L + ET−1 [D′
T−1MDT−1])−1ET−1 [D′

T−1] MNT−1.

By (3.4) and (3.5), it follows that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�T−1 = ρ (ET−1 [C′
T−1MCT−1] − ET−1 [C′

T−1MDT−1]

× (L + ET−1 [D′
T−1MDT−1])−1ET−1 [D′

T−1MCT−1]
)

,

G′
T−1 = ρN ′

T−1M
(
ET−1 [CT−1] − ET−1 [DT−1] (L + ET−1 [D′

T−1MDT−1])−1ET−1 [D′
T−1MCT−1]

)
,

FT−1 = ρ
(
N ′

T−1MNT−1 − N ′
T−1MET−1 [DT−1] (L + ET−1 [D′

T−1MDT−1])−1ET−1 [D′
T−1] MNk

)
.

Hence, we further have VT−1(z) = z′
T−1�T−1zT−1 + 2G′

T−1zT−1 + FT−1. Notice that �T = M, by (D2),
(3.7) holds for k = T − 1. Therefore, the theorem holds for k = T − 1.

Now suppose that the theorem is true for k + 1, namely we have

Vk+1(z) = z′�k+1z + 2G′
k+1z + Fk+1.

Then according to Bellman Equation (3.3) and by the fact that�k+1 is a symmetric matrix, it follows
that

ρ−1Vk(z)

= min
πk

Ek

[
π ′

kLπk + (z′C′
k + π ′

kD
′
k + N ′

k)�k+1(Ckz + Dkπk + Nk) + 2G′
k+1(Ckz + Dkπk + Nk) + Fk+1

]
= z′Ek

[
C′

k�k+1Ck

]
z + N ′

k�k+1Nk + 2N ′
k�k+1Ek [Ck] z + 2G′

k+1Ek [Ck] z + 2G′
k+1Nk + Fk+1

+ min
πk

{
π ′

k

(
L + Ek

[
D′

k�k+1Dk

])
πk + 2π ′

k

(
Ek

[
D′

k�k+1Ck

]
z + Ek

[
D′

k

]
�k+1Nk + Ek

[
D′

k

]
Gk+1

)}
.

(D3)

By Proposition 1, L + Ek

[
D′

k�k+1Dk

]
> 0. Then, the first-order condition (which is also sufficient)

about πk in Equation (D3) yields

πk = − (L + Ek

[
D′

k�k+1Dk

])−1 (
Ek

[
D′

k�k+1Ck

]
z + Ek

[
D′

k

]
�k+1Nk + Ek

[
D′

k

]
Gk+1

)
. (D4)
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Substituting (D4) into (D3) and simplifying it, we obtain

ρ−1Vk(z)

= z′Ek

[
C′

k�k+1Ck

]
z + N ′

k�k+1Nk + 2N ′
k�k+1Ek [Ck] z + 2G′

k+1Ek [Ck] z + 2G′
k+1Nk + Fk+1

− (z′Ek

[
C′

k�k+1Dk

]+ N ′
k�k+1Ek [Dk] + G′

k+1Ek [Dk]
) (

L + Ek

[
D′

k�k+1Dk

])−1

× (Ek

[
D′

k�k+1Ck

]
z + Ek

[
D′

k

]
�k+1Nk + Ek

[
D′

k

]
Gk+1

)
= z′Ek

[
C′

k�k+1Ck

]
z + N ′

k�k+1Nk + 2N ′
k�k+1Ek [Ck] z + 2G′

k+1Ek [Ck] z + 2G′
k+1Nk + Fk+1

−z′Ek

[
C′

k�k+1Dk

] (
L + Ek

[
D′

k�k+1Dk

])−1
Ek

[
D′

k�k+1Ck

]
z

−N ′
k�k+1Ek [Dk]

(
L + Ek

[
D′

k�k+1Dk

])−1
Ek

[
D′

k

]
�k+1Nk

−G′
k+1Ek [Dk]

(
L + Ek

[
D′

k�k+1Dk

])−1
Ek

[
D′

k

]
Gk+1

−2N ′
k�k+1Ek [Dk]

(
L + Ek

[
D′

k�k+1Dk

])−1
Ek

[
D′

k�k+1Ck

]
z

−2G′
k+1Ek [Dk]

(
L + Ek

[
D′

k�k+1Dk

])−1
Ek

[
D′

k�k+1Ck

]
z

−2G′
k+1Ek [Dk]

(
L + Ek

[
D′

k�k+1Dk

])−1
Ek

[
D′

k

]
�k+1Nk

= z′
(

Ek

[
C′

k�k+1Ck

]− Ek

[
C′

k�k+1Dk

] (
L + Ek

[
D′

k�k+1Dk

])−1
Ek

[
D′

k�k+1Ck

])
z

+2
(

N ′
k�k+1Ek [Ck] + G′

k+1Ek [Ck] − N ′
k�k+1Ek [Dk]

(
L + Ek

[
D′

k�k+1Dk

])−1

×Ek

[
D′

k�k+1Ck

]− G′
k+1Ek [Dk]

(
L + Ek

[
D′

k�k+1Dk

])−1
Ek

[
D′

k�k+1Ck

])
z

+
(

Fk+1 + N ′
k�k+1Nk + 2G′

k+1Nk − N ′
k�k+1Ek [Dk]

(
L + Ek

[
D′

k�k+1Dk

])−1

×Ek

[
D′

k

]
�k+1Nk − G′

k+1Ek [Dk]
(
L + Ek

[
D′

k�k+1Dk

])−1
Ek

[
D′

k

]
Gk+1

−2G′
k+1Ek [Dk]

(
L + Ek

[
D′

k�k+1Dk

])−1
Ek

[
D′

k

]
�k+1Nk

)
.

By (3.4), we further have Vk(z) = z′�kz + 2G′
kz + Fk. Therefore, the theorem holds for k. �

Therefore, (3.6) and (3.7) holds for k = 0, 1, · · · , T − 1. By the principle of mathematical induction,
we complete the proof.

Appendix E. Proof of Proposition 2

Proof. For k = T , then, by boundary condition of Equation (4.6) we have wT = 1> 0, that is, the
proposition is true at time T . �

Assume wk+1 > 0, it is known from the proof of Proposition 1 that that
(

Ek[θkθ
′
k] −Ek[θk]

−Ek[θ ′
k] 1

)
= Ek

[(
θk

−1

) (
θ ′

k −1
)]
> 0

under Assumption 1. Then by Lemma 3, we have

1 − (−Ek[θ
′
k])E

−1
k [θkθ

′
k](−Ek[θk]) = 1 − Ek[θ

′
k]E

−1
k [θkθ

′
k]Ek[θk]> 0.

Notice that rk > 0, then according to (4.6), we have wk = wk+1r2
k

(
1 − Ek[θ ′

k]E
−1
k [θkθ

′
k]Ek[θk]

)
> 0.

By the principle of mathematical induction, the proposition is proved.
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Appendix F. Proof of Theorem 3

Proof. We first prove (4.7) by mathematical induction on k. For k = T , by the boundary conditions of
(4.6), we have wT ᾱ

2 + φT ȳᾱ +ψT ȳ2 = ᾱ2. On the other hand, it is known from the boundary condition
of Bellman Equation (4.5) that V̄T(ȳ, ᾱ) = ᾱ2. Therefore, (4.7) holds for k = T . �

Now suppose that (4.7) is true for k + 1, namely we have

V̄k+1(ȳ, ᾱ) = wk+1ᾱ
2 + φk+1ȳᾱ +ψk+1ȳ2.

Then according to Bellman Equation (4.5), it follows that

V̄k(y, α)

= min
uk

Ek

[
wk+1(ᾱrk + θ ′

kuk + c̄k+1p̄kȳ)2 + ϕk+1p̄kȳ(ᾱrk + θ ′
kuk + c̄k+1p̄kȳ) +ψk+1(p̄kȳ)2

]
= min

uk

{
wk+1ᾱ

2r2
k + wk+1u′

kEk[θkθ
′
k]uk + wk+1c̄2

k+1Ek[p̄
2
k]ȳ2 + 2wk+1ᾱrkEk[θ

′
k]uk

+ 2wk+1ᾱrkc̄k+1Ek[p̄k]ȳ + 2wk+1c̄k+1Ek[p̄kθ
′
k]ukȳ + ϕk+1Ek[p̄k]ȳαrk (F1)

+ϕk+1ȳEk[p̄kθ
′
k]uk + (ϕk+1c̄k+1 +ψk+1) Ek[p̄

2
k]ȳ

2
}

= wk+1r2
k ᾱ

2 + wk+1c̄2
k+1Ek[p̄

2
k]ȳ

2 + (2wk+1c̄k+1 + ϕk+1) Ek[p̄k]rkᾱȳ + (ϕk+1c̄k+1 +ψk+1) Ek[p̄
2
k]ȳ

2

+ min
uk

{
u′

kwk+1Ek[θkθ
′
k]uk + (2wk+1ᾱrkEk[θ

′
k] + (2wk+1c̄k+1 + ϕk+1) ȳEk[p̄kθ

′
k]
)

uk

}
.

By Assumption 1 and Proposition 2, we have Ek[θkθ
′
k]> 0 and wk+1 > 0, which implies

wk+1Ek[θkθ
′
k]> 0. Then, the first-order condition (which is also sufficient) about uk in (F1) yields

u∗
k = −E−1

k [θkθ
′
k]

(
rkEk[θk]ᾱ+ 2wk+1c̄k+1 + φk+1

2wk+1

Ek[p̄kθk]ȳ

)
. (F2)

Substituting (F2) into (F1) and simplifying it, we obtain

V̄k(y, α)

= wk+1r2
k ᾱ

2 + wk+1c̄2
k+1Ek[p̄2

k]ȳ
2 + (2wk+1c̄k+1 + φk+1) Ek[p̄k]rkᾱȳ

+ (φk+1c̄k+1 +ψk+1) Ek[p̄2
k]ȳ

2 − 1

2

(
2wk+1ᾱrkEk[θ ′

k] + (2wk+1c̄k+1 + φk+1) ȳEk[p̄kθ
′
k]
)

×E−1
k [θkθ

′
k]

(
rkEk[θk]ᾱ+ 2wk+1c̄k+1 + φk+1

2wk+1

Ek[p̄kθk]ȳ

)
= wk+1r2

k ᾱ
2
(
1 − Ek[θ ′

k]E
−1
k [θkθ

′
k]Ek[θk]

)+ (2wk+1c̄k+1 + φk+1)
(
Ek[p̄k] − Ek[θ ′

k]E
−1
k [θkθ

′
k]Ek[p̄kθk]

)
rkᾱȳ

+ ((wk+1c̄2
k+1 + φk+1c̄k+1 +ψk+1

)
Ek[p̄2

k] − (2wk+1c̄k+1 + φk+1)
2

4wk+1

Ek[p̄kθ
′
k]E

−1
k [θkθ

′
k]Ek[p̄kθk]

)
ȳ2.

By (4.6), we further have V̄k(ȳ, ᾱ) = wkᾱ
2 + φkȳᾱ +ψkȳ2. Therefore, (4.7) holds for k. By applying

mathematical induction, (4.7) holds for k = 0, 1, · · · , T . By the proof of (4.7) above (see (F2)), the
optimal strategy follows for k = 0, 1, · · · , T − 1. This completes the proof.

Appendix G. A Brief Introduction of Vector Autoregressive Structure Estimation
To obtain the conditional expectations and conditional covariance matrices, we consider a vector
autoregressive structure of the underlying dynamic process that

η̃k = b0 + Bη̃k−1 + εk where εk ∼ N(0,�)
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with η̃k = [ek, log (pk)] and the autoregressive coefficients b0 ∈R
5, B ∈R

5×5. We rewrite this in its matrix
form as:

Y = Xβ + ε

where Y = [η̃2, ....., η̃T]′, X = [[1, η̃′
2]

′, ..., [1, η̃′
T−1]

′]′, β = [b0, B]′ and ε = [ε2, ....., εT]′. The model is
highly parameterized; the standard approach is to use the Bayesian method for parameter estimation.
The model parameters in this case are β = vec([b0, B]) and �. We consider the following independent
prior that

β ∼ N(μ0,�0) and � ∼ IW(ν0, S0).

As the posterior distribution in this case is unknown analytically, we employ the Bayesian Gibbs sampler
to obtain the posterior coefficients as well as the in-sample forecasts used in this paper. Here, we set μ0

as a zero vector, �0 as an identity matrix, ν0 = 10 and S0 = 0.01I5.
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