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1. Introduction and summary

During the last two decades a variety of methods have been developed
for the problem of estimation of unknown density / wrt Lebesgue measure
and its yth derivative g( = /(")) using i.i.d random variables X,, • • •, Xn when
X, ~/ . For example, see Wegman (1972). In almost all the papers on the
estimation of f(x) or g(x), various authors assumed the existence of
derivatives of / of order r( > v) at x to obtain rates for the mean-square
convergences and other desirable properties for their estimators. Here it is
shown that if

(Al) g is Lipschitz (from left) of order a (>0)a t x,

then estimators g(x) can be constructed for which E[(g(x)- g(x)f} =
O(n-(2«-<sv(2«+2.,+i)) f o r a n y g i v e n g > 0 S i m i [ a r s t a tements hold for almost

sure convergence of g(x). It can also be shown that (g(xi), g(x2)) is
asymptotically bivariate normal under certain conditions for x, ^ x2. If (Al) is
satisfied with a ^ l , then our estimators have all the desirable properties
while other methods are not applicable in this situation since they require
differentiability conditions on g. (For example, see Susarla and Kumar (1975)
and its references.) Our estimators are defined by using the inversion theorem
for some absolutely integrable characteristic functions. The motivation for
our estimators is given in O'Bryan and Susarla (1975, 76) and Susarla and
O'Bryan (1975).

Unless otherwise stated, limits are taken as n —>». Let R = (— x , x ) and
i2 = - 1. We provide only the proofs for the asymptotic unbiasedness and the
mean square consistency as the proof of asymptotic normality is similar to
that in Susarla and Kumar (1975).

166

https://doi.org/10.1017/S1446788700018164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700018164


[2] A Fourier inversion method 167

2. Definition of g

Let Y,, • • •, Ym • • • be i.i.d. random variables with density function w( •)
vanishing off (0,1). We assume throughout that X and Y, are independent for
any i and j . Let.

\t\k\h(t)\dt <co\(2.1) < £ ( • ) = E[e'Y<]<E<£>>c = U

The estimator for g(x) is defined by

(2.2) g(*) = r ^ R

where (//„ is the sample characteristic function of X,, • • •, Xn, k(u) = 7[_i,i|(u),
Mn t

 x . and /̂ .,, 1 0. We show below that, by varying Mn( f =c) and /xn( 1 0)
in an appropriate way, one can obtain various asymptotic results about g(x)
under some conditions including (Al). For ease of reference later on, let

(2.3) AA(x)= f | g ( x - A n ) - g ( x ) | w(u)du.
Jo

3a. Asymptotic unbiasedness of g(x)

The following theorem gives necessary and sufficient (with and without
rates) conditions for the asymptotic unbiasedness of g(x). Let the bias
E[g(x)]~g(x) be denoted by Bn(x).

THEOREM 3.1. Let k g v and AA(x)—»0 as A \ 0. Then there exist fin and
Mn such that Bn(x)-^0. On the other hand, if Bn{x + t)- Bn(x)-*0 as n -^^
and t | 0, then A A (x)^0 . If k > v (see (2.1)), then \Bn(x)\ =

PROOF. By a triangle inequality,

f f
( - /f)"e "x(f>(nJ)4i(t)dt =2TT\ g(x - finu)w(u)du

JR JO

where

with i// denoting the characteristic function of X, (the equality here follows
from inversion theorem and differentiation under integral sign), and

)])=(27r)
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The first term in the rhs of the above inequality is seen to be exceeded by

U

by a change of variable while the second term is exceeded by A^(x) (see
(2.2)). Hence

(3.1) |Bn(x)|SM;("+1)f |f|"| 0 ( 0 1 * + *«.(*)•

First let fin | 0 and then let Mn f oo so that the rhs of the above inequality
goes to zero. This is possible since 4> G <t>k (see (2.1)) with k^v. This
completes the proof of the first part.

The second result follows by a triangle inequality and the condition
Bn(x + t)- Bn(x)\->0 as « | oo and t I 0. The third result follows from

(3.1) and the facts that AMn(x) S c/x „ for some constant c by (Al) and that the
first term of rhs of (3.1) is bounded ( / x ^ ' M ^ T ' / U N 0 ( 0 1 * - Note that
/ U N <t>(t) \dt < oo since </> G <S>k by assumption.

REMARK 3.1. The condition placed on g, namely (Al) or AA(x)—»0 as
A | 0, is the weakest assumption among all results similar to theorem 3.1.

3b. Mean square consistency

The mean square consistency results (with and without rates) for g are
obtained in this section. It can be shown very easily from the independence of
(XhY,), ; = 1, •••,!! that

LEMMA 3.1. n(v + \)2 var(g(x))\

An improvement (in terms of rate) of Lemma 3.1 is

LEMMA 3.2. Let <j>E.<&k (see (2.1)) with k s v, and let AA(x) (see
(2.3))—»0 as A | 0 and f be continuous at x. Then for /u.n and Mn satisfying the
conclusion of the first part of Theorem 3.1,

nM-'2"+nvar(g(x))-TT-2f(x) \ (\ u" cossudu) ds
JR \JU I

for even v. For odd v, replace cos by sin.

PROOF. We consider the case of even v only, the other case being similar.
In this proof, let K(s) = f'ou" cos su du. Then

K2(s)ds<*> and | sK2(s) \->0 as
R
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Since (X,, Y,), • • •, (Xn, Yn) are i.i.d,

(3.2) nM;(^+1>var(g(x)) =

where Itrg^x) = Re[/M,ci- /r)V'(X>+"»Y'-x)dr]. Since

E[gM(x)] = E[g(x)], £ [g . , (x ) ]^ g(x)

by first part of Theorem 3.1. So consider

t' cos

(3.3) = M2"+1 | R K2(s)/^ (x + ^ -

= M2"+1 f *:
where /^n(w) = /o/(x - nnit)w(u)du.

Following the pattern of proof Theorem 1A of Parzen (1962), we can
show that the double integral in the rhs of (3.3)—»/(x)/JC2(s)ds by using the
conditions fRK2(s)ds < °°, \sK2(s)\—>0 and the continuity of / at x. Thus the
proof follows from (3.2) and (3.3).

As a corollary to the above two results, we have

THEOREM 3.2. Let the conditions of the first part of Theorem 3.1 hold.
Then there exist fin and Mn such that E[(g(x)- g(x))2]—»0. //, in addition
(Al) holds at x and k > v, then

(3.4) E[(g(x)-g(x))2] =

with M^*a+k+»+2aik-"i = n"+k+1 and ^Tk+l = M^k.

PROOF. We use the equality £[ (g(x) - g(x))2] = (Bn(x))2 + var(g(x)).
The first result follows from the first part of Theorem 3.1 and Lemma 3.1. The
second part follows from the rate part of Theorem 3.1 and Lemma 3.2. In the
latter case, we chose Mn so that the square of the rate in Theorem
3.1 = n-'M2;+1.

REMARK 3.2. As fc—«>, the rate in (3.4) goes to O(n"2oi/(2<I+2"+1)). This
limiting rate coincides with rate result of Theorem 2 of Wahba (1971) if v = 0.
For a = 1, our rate misses the rate of Theorem 2 of Wahba (1971) and the rate
obtained by Singh (1974) for any v by a positive quantity (in the exponent of
n"1) which goes to zero as k ] oo. if g is Lipschitz (from left) of order 1 at x
(which is implied by the differentiability conditions on / or g as the case may
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be), neither Wahba nor Singh has any rate results while we can obtain the rate
O(n"2"c)/2"+3)) for any given e >0.

3c. Asymptotic normality of g(x)

The following result concerning the asymptotic normality of
(g(xi), g(x2))' can be proved using Lemma 3.2 and the method of proof used in
Susarla and Kumar (1975) for their asymptotic normality result.

THEOREM 3.3. If the conditions (including those on fin and Mn) of Lemma
3.2 are satisfied and nM;1—>°°, then

g(x2)-E[g(x2)]

converges in law to the bivariate normal distribution with zero mean vector and
the covariance matrix =

R
K2(s)ds

K\S)ds

4. Concluding remarks

The estimator g(x) can be shown to be strongly consistent (with a rate]
by using Lemma 2 of Dvoretzky, Kiefer and Wolfowitz, but the proof is rather
long and involved and to some extent, goes along the lines of proof oi
Nadaraya (1965). All the results presented here can be shown to hold
uniformly in all x belonging to a set D C (— °°, °°) provided conditions uniform
in D are assumed.

The results of this paper can be extended to the problem of estimation ol
f(x)= n"1 2,"_i fi(x) and its partial derivatives using independent p-variate
random vectors X,, • -,Xn whenever Xj~fi, a density wrt the Lebesgue
measure on (Rp, Bp). Such an extension would provide results analogous to
those in Susarla and Kumar (1975).

The mean square result (Theorem 3.2) was shown to be applicable in
empirical Bayes decision problems with non-identical components by Susarla
and O'Bryan (1975) and O'Bryan and Susarla (1975,76).
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