COMPOSITIO MATHEMATICA

Big Galois representations and p-adic L-functions

Haruzo Hida

Compositio Math. 151 (2015), 603-664.

doi:10.1112/S0010437X14007684

FOUNDATION Y;—/\\V I%I?A%{IP)I%\NlA'I‘ICAL
COMPOSITIO AKX sociEry

MATHEMATICA VI~ | 150 YEARS

https://doi.org/10.1112/50010437X14007684 Published online by Cambridge University Press


http://dx.doi.org/10.1112/S0010437X14007684
https://doi.org/10.1112/S0010437X14007684

/ Compositio Math. 151 (2015) 603664
\\\

NP 0i:10.1112/50010437X14007684

Big (Galois representations and p-adic L-functions

Haruzo Hida

ABSTRACT

Let p > 5 be a prime. If an irreducible component of the spectrum of the ‘big’ ordinary
Hecke algebra does not have complex multiplication, under mild assumptions, we prove
that the image of its Galois representation contains, up to finite error, a principal
congruence subgroup I'(L) of SLy(Zy[[T7]]) for a principal ideal (L) # 0 of Zy[[T]] for
the canonical ‘weight’ variable t = 1+T. If L € A, the power series L is proven to be a
factor of the Kubota—Leopoldt p-adic L-function or of the square of the anticyclotomic
Katz p-adic L-function or a power of (" — 1).
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Introduction

Throughout the paper, we fix a prime p > 3, field embeddings (C P (@ & Qp Cc C, and a
positive integer N prime to p. Let x be a Dirichlet character modulo Np"+!. Consider the space
of modular forms My, 1(To(Np™t1), x) with (pf N,r > 0) (containing Eisenstein series) and cusp
forms Sy41(To(Np™™1), x). Here x is the Neben-typus. Let Z[x] C Q and Zy[x] C @, be the rings
generated by the values x over Z and Z,, respectively. The Hecke algebra H = Hy1(To(Np™t1),
X; Z[x]) over Z[x] is

H=Z[\][T(n)|n=1,2,...] C End(Mgy1(To(Np" 1), x)).
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For any Z[x]-algebra A C C, Hp 1 (To(Np™t1), x; A) == H ®z[y A is actually the A-subalgebra
of End(My1(To(Np™t1), x)) generated over A by the T(I). Then we put

Hip1y = Hyorgw = Hept(Do(Np™), s W) 1= H @z W

for a p-adic complete discrete valuation ring W C C, containing Z,[x]. Let A = Z,[[T]]
(respectively Ay = W[T]]), and write t =1+ T € A* (as Spf(A) = G,, with variable t).

We often write our T'(I) as U(l) when N is divisible by [. The ordinary part Hy; ,/w C
Hj 41,y /w is then the maximal ring direct summand on which U(p) is invertible. We write e for
the idempotent of Hyq , /w; so, e is the p-adic limit in Hy , /w of U(p)™ as n — oo. We write
the image of the idempotent as Mzrfl for modular forms and S,‘;fl for cusp forms. Let y; = the
N-part of x x the tame p-part of x. Then, by [Hid86a, Hid86b] (and [Hid1la, §3.2]), we have a

unique ‘big’ Hecke algebra H = H, | /iy such that:

(1) H is free of finite rank over Ay equipped with T'(n) € H for all n;
(2) ifk>1ande: ZY — ppe (W) is a character, H/(t—e(y)7*)H = Hiy1 oy, for xp := x1w'™F
(y=1+peZy),sending T(n) to T'(n), where w is the Teichmiiller character.

The corresponding objects for cusp forms are denoted by the corresponding lower
case characters; so, h = Z[x|[T'(n) | n = 1,2,...] € End(Sp11(To(Np™1), X)), Bprryw =
hier1(Do(Np ™), x; W) := h ®z[y W, the ordinary part hgyq, C hgi1,, and the ‘big’ cuspidal
Hecke algebra h = h,, (V) . Replacing modular forms by cusp forms (and upper case symbols
by lower case symbols), we can construct the cuspidal Hecke algebra h. Then, similarly to the
case of modular forms, we have the following characterization of the cuspidal Hecke algebra h y:

(1) h is free of finite rank over Ay equipped with T'(n) € h;
(2) h/(t —e(7)7Y*)h 2 hgy1 .y, sending T(n) to T'(n), if k > 1.

We have a surjective Ay-algebra homomorphism H — h sending 7'(n) to T'(n).

Write @ for the quotient field of A, and fix an algebraic closure @ of Q. A two-dimensional
Galois representation is called odd if its determinant of complex conjugation is equal to —1. We
have a two-dimensional odd semi-simple odd representation pg of Gal(Q/Q) with coefficients in
the total quotient ring Q(H) of H (see [Hid86b] and [Hid11a, § 4.3]). The total quotient ring Q (H)
is the ring of fractions by the multiplicative set of all non-zero divisors; so, Q(H) = H®, Q. This
representation preserves an H-lattice £ C Q(H)? (i.e. an H-submodule of Q(H)? of finite type
which spans Q(H)? over Q(H)), and as a map of Gal(Q/Q) into the profinite group Autg (L), it
is continuous. The representation py restricted to the p-decomposition group D), = Gal(@p /Qp)
(associated to i,) is isomorphic to an upper triangular representation with unramified rank 1
quotient. Write p§j for the semi-simplification over D,. As is well known now (e.g. [Hidlla,
§4.3.2]), py satisfies, for t =1+ 1T,

Te(pu(Trob) = TOU N, 0D~ (5 ) ad )~ (5 o)
: ’ 0 1 )™\ o Up))
(Gal)
where v* = (1+p)® € Z; for s € Zy and [r,Q,] is the local Artin symbol.

For each prime P € Spec(H), let x(P) be the residue field of P. Then Tr(pg) mod P
has values in H/P, and by the technique of pseudo representations (cf. [Hid00, §2.2]), we can
construct a unique semi-simple Galois representation pp : Gal(Q/Q) — GLa(k(P)) such that

Tr(pp(Frob;)) = (T'(1) mod P) for all prime [{ Np.
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For any ideal a C H with reduced H/a, we write p, = [[ppp : Gal(Q/Q) — GL2(Q(H/a))
for the total quotient ring Q(H/a) of H/a, where P runs over minimal primes of Spec(H/a).
If a = Ker(H — 1) (respectively a = Ker(H — T™4)) for an irreducible component Spec(I) C
Spec(h) (respectively a connected component Spec(T) C Spec(h)), we write pp (respectively pr)
for pg, where T™4 is T modulo its nilradical. If T or its irreducible component Spec(I) C Spec(T)
is fixed in the context, we write p : Gal(Q/Q) — GL2(F) for pm, = pm, for the maximal ideals
mr of T and my of 1.

Let Spec(Il) be an irreducible (reduced) component of Spec(H) and write its normalization
as Spec(I). We often call I a component of H and regard it as sitting inside @ (when W is finite
over Z,). We denote by Q(I) the quotient field of I. We call a prime ideal P C R of a ring R
a prime divisor if Spec(R/P) has codimension 1 in Spec(R). We call an ideal ® of I a divisor
if ® = (p P™F for finitely many prime divisors P. Write a(n) for the image of T'(n) (n prime
to Np) in I and a(l) for the image of U(l) if I|Np. If a prime divisor P of Spec(I) contains
(t — e(y)y*) with k& > 1, by (2) we have a Hecke eigenform fp € M1 (To(Np" 1) exp)
such that its eigenvalue for T'(n) is given by ap(n) := (a(n) mod P) € Q, for all n. A prime
divisor P with P N Ay = (t — e(y)y*) with & > 1 and a character ¢ : Ly — jipee (W) is called
an arithmetic point (or prime), and we write ep = ¢ and k(P) = k > 1 for an arithmetic
P. Thus I gives rise to an analytic family 71 = {fp | arithemtic points P in Spec(I)(Q,)} of
slope 0 classical Hecke eigenforms. A component I (or the associated family) is called cuspidal if
Spec(I) C Spec(h). A cuspidal component I is called a CM component if there exists a non-trivial
character ¢ : Gal(Q/Q) — I* such that p; = py ® €. If a cuspidal T is not a CM component, we
call it a non-CM component.

Put I'(a) = {x € SL2(A) | # = 1 mod a - Ma(A)} for an ideal a C A, and write I'(L) = I'(a)
if a = (L) (L € A). The representation py : Gal(Q/Q) — GL2(Q(I)) leaves stable a I-lattice £ in
Q(I)? with Q - £ = Q(I?. We assume throughout the paper, after extending scalars W,

(F) the representation py has values in GLy(I) (i.e. we assume the ability to find an I-free £).

If 7 is absolutely irreducible, by the technique of pseudo representation, (F) can be checked
to be true. If I is a unique factorization domain with Spec(I)(W) # ¢, in particular, if T is
regular (so far, there is no known non-regular example of I), replacing £ by its reflexive closure
(i.e. the intersection of all I-free modules in Q(I)? containing L), L is free of rank 2 over L.
By resolution of singularity of surfaces (see [Lip78]), we can find an injective local A-algebra
homomorphism I — I*” C Q(I) for a regular two-dimensional I*"*, though I*”* may not be finite
over I. Thus replacing I by I (and extending scalars to achieve Spec(I*")(W') # ), we have a
model ppsm : Gal(Q/Q) — GLa(I*™) isomorphic to pr over Q(I). See § 9 for details of these facts.
Anyway, we assume (F) in this paper.

Actually we choose £ coming from the projective limit (relative to p-power level) of Tate
modules of modular jacobians, and for this choice of £, I-freeness of L is known if T is Gorenstein
(which in turn follows from irreducibility of p and the p-distinguished-ness condition (R) below).
Thus in most cases, we can choose the scalar extension to I of the canonical £ free over 1. Write
[p1] for the isomorphism class of py over Q(I). Pick and fix a non-CM component I of prime-to-p
level N, and assume the following condition (R) throughout the paper,

(R) plp, = (S %) with § unramified and € # 6.

THEOREM 1. Suppose p > 3. Then there exists a representation p € [py] with values in GLa(I)
such that G := Im(p) N SLa(A) contains I'(a) for an ideal 0 # a C A. If ¢ is the A-ideal maximal
among a with G D T'(a), the ideal cp C Ap localized at a prime divisor P of A only depends
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on the isomorphism class [py] as long as py is absolutely irreducible for all prime divisors 3| P
in I; in particular, if p = pn for the maximal ideal m of I is absolutely irreducible, the reflexive
closure (L) of ¢ is independent of the choice of p with G D I'(a) # 1.

The reflexive closure ¢ of an ideal ¢ C A means the intersection ((,)5.(A) C A of all principal
ideals (M) containing ¢ which is a principal ideal. It can also be defined as the intersection
¢ =(pcp inside @ for P running over all prime divisors of A (see [Bou98, ch. 7] for these facts).
We write 0 # L = L(I) € A for a generator of the ideal ¢. We call ¢ as above the conductor of p
(or of G).

We prove the theorem under one of the following conditions:

s) Im(pr) and pr(D,) are both normalized by an element g € GLy(I) with § := (g mod my
P
having eigenvalues @, 3 in F, with a2 # BZ;
(u) pr(Dp) contains a non-trivial unipotent element g € GLo(I);
v) pr(D,) contains a unipotent element g € GLo(I) with g Z 1 mod m;.
P

Obviously, (v) implies (u); so, we actually assume either (s) or (u). By [Zhal2], the condition
(u) is always satisfied; so, the theorem is stated only assuming (R) and p > 3.

The reason for assuming the conditions (R) and one of (s) and (u) is technical. These
conditions are used to show in a key lemma, Lemma 2.9, that the Lie algebra M° of
Im(pr)NSL2(A) (in the sense of Pink [Pin93]; see the following section) is large so that sly(A) /MO
is a A-torsion module.

The condition (u) is always satisfied by pr; it was first proven in [GV04] as Theorem 3 under
(R) and absolute irreducibility of the residual representation p over Q[u,]. The two assumptions
in [GV04] ((R) and absolute irreducibility of p) are now eliminated for the validity of (u) by a
method different from [GV04] (see [Hid13b, Zhal2]), and (u) holds unconditionally. The condition
(s) is easy to check (for example, it is valid if €[, has order > 3; indeed, by local class field theory,
we view €7, as a character of Z;, which has values in ', and hence, if { = €(o) has order > 3 for
o € I, the adjoint action Ad(j) of j = p(c) on sla(I/my) has three distinct eigenvalues ¢,1,(™!
in Fp). In the condition (s), we may replace g by lim,_, g?" for a sufficiently large p-power ¢;
so, we may assume that g has eigenvalues in Z,. This theorem will be proven in § 3. The proof is
difficult if I # A, and the easier case of I = A is treated in [Hid11a, Theorems 4.3.21 and 4.3.23].
When p is absolutely irreducible, we call L = L(I) as in the theorem the global level of py or of L.
More generally, when pp is absolutely irreducible, the localized ideal ¢p is well determined by pr
(see Lemma 3.3). When pp is reducible, there is a way of normalizing ¢p as we will explain in § 3.
We believe that the following stagdard choice Lcan (1) of the lattice £ satisfies this normalization;
so, we state the result for Lc,y(I) in this introduction, though such a choice is not necessary.
Then we define (L(I)) = ()p ¢p using this normalized cp.

To describe this standard example of £ stable under the Galois action, we note that p, was
constructed in [Hid86b] through the Galois action on the xj-part J of

lime - (T,J1(Np") @z, W)

n

for the p-adic Tate module 7},J1(Np™) of the jacobian Ji(Np"),g of the modular curve

X1(Np") /g Suppose that I is cuspidal. Let Lcan(I) (respectively Lcan(I)) be the image of J @p I

(respectively J @p 1) in J @, Q(I) = Q(I)? for h = h,, /7 . Consider the following version of (F):

(Fean) Lecan (ﬁ) is free of rank 2 over L.
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This condition holds under (R) and absolute irreducibility of p (see § 7 for this fact). Under the
condition (R) (and (Fcan)), the Galois module Ecan(f) fits into the canonical exact sequence of
Dp-modules 0 — I— Lecan (ﬁ) NN 0, coming from the connected-étale exact sequence of the
Tate modules e-T),J; (Np™), and the assertion (Gal) is realized through this exact sequence. Thus
assuming (R), we take the Galois representation py : Gal(Q/Q) — GLy(I) realized on Lean (I).

If R is a p-profinite local ring (or its localization), as we will describe in § 10, any Galois
representation p : Gal(Q/Q) — GLg(R) ramified at finitely many primes has a well-defined
prime-to-p conductor C(p). We call I minimal if C'(py) is minimal among C(pr ® £) for £ running
all finite order characters of Gal(Q/Q) unramified at p. Since the global level of p; and py ® ¢
are equal, to describe L(I), we may assume that I is minimal and primitive in the sense of
[Hid86a, §3 p. 252] (so, fp € Fy is a p-stabilized N-new form). In many cases, we can relate the
generator L(II) with p-adic L-functions. Write p(N) = |(Z/NZ)*|. The following is a summary
of determination of L(I).

THEOREM II. Suppose p > 5, (Fean) and (R) and one of the conditions (s) and (v). Take a
non-CM minimal primitive cuspidal component I of prime-to-p cube-free level N.

(1) IfIm(p) contains SLy(Fp) and p > 7, then L(I) = 1.

(2) If the projected image of p in PGL2(F,) is either a tetrahedral, an octahedral or an
icosahedral group, then T|L(I)|T™ for an integer n > 0.

(3) Suppose that p is absolutely irreducible and p = Ind(]%‘,@ for a quadratic field M and a
character ¢ : Gal(Q/M) — F; . Write €(1)) for the prime-to-p part of the conductor of 1:

Y

(a) if there is no other imaginary quadratic field M’ such that p = Ind%,@ for a character
p: Gal(Q/M') — ?; and either M is real or p does not split in M, L(I) is a factor of
(tP" —1)2 for an integer m > 0;

(b) suppose pt(N) and N = C(p). If M is an imaginary quadratic field in which p splits, 1
ramifies at a prime over p and there is no other quadratic field M’ such that p = Ind(]%[, 7]
for a character @ : Gal(Q/M') — F;, then L(I) is a factor of the square of the product of
the (primitive) anticyclotomic Katz p-adic L-functions (cf. [Kat78]) of prime-to-p conductor
€(3p ") whose branch character modulo p is the anticyclotomic projection ) of 1. Here 1)
is given by o — ¥(0)y(coc™1)~! for complex conjugation c.

(4) Suppose pf(N) and (Fean). If p =2 0 © 1) (with 0 ramified at p and 1) unramified at p) and
there is no quadratic field M’ such that p = Ind%/ © for a character g : Gal(Q/Q) — F;, then L(I)
is a factor of a product of the Kubota—Leopoldt p-adic L-functions specified in Definition 4.1(2).

The product of p-adic L-functions in the theorem will be made precise in §8 depending
on p. The assertion (1) is a version of a result of Mazur and Wiles in [MW86] and Fischman
[Fis02] where I = A is assumed (see Remark 8.3). The assertion (3b) is the most difficult to
prove, and a sketch and the strategy of the proof are given after Theorem 8.5 before giving its
long detailed proof. Theorem 8.5 gives a result slightly stronger than (3b) (in particular, we
do not need to assume that N is cube-free). The assertion (4) can be proven similarly to (3b),
and Ohta’s determination [Oht03] of the congruence module between the Eisenstein component
and a cuspidal component is crucial. Some more complicated cases missing from Theorem II are
discussed in §9.

This type of result, asserting that the image of the modular Galois representation of each
non-CM Hecke eigenform contains, up to conjugation, an open subgroup of SLy(Z,), was proven
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in a paper by Ribet [Rib75] (and [Rib85]) in 1975 and by Momose [Mom81] in 1981. As we will
see in Proposition 5.1, a CM component and a non-CM component do not intersect at any of the
arithmetic points, and therefore Im(py) contains, up to conjugation, an open subgroup of SLa(Z,)
for arithmetic points 9 € Spec(I) (@p) as long as I is a non-CM component. An investigation of
the image for A-adic Galois representations was first done in 1986 by Mazur—Wiles in [MW86]
(just after the representation was constructed in [Hid86b]). We call a prime divisor B € Spec(I)
full (in a weak sense) if Im(pg) contains, up to conjugation in GLa(x()) for the residue field
k(B) = Q(I/P) of P, an open subgroup of either SLy(Z,) or SLa(F,[[T7]]). Fullness of most
primes above (p) C A is treated in [Hid13a] (see also [SW99], in particular, results about ‘nice’
primes there). The existence of such a full prime divisor is a key ingredient of the proof of the
above theorems.

1. Lie algebras of p-profinite subgroups of SL(2)

If A is a ring of characteristic p, the power series log(1+ X) and exp(X) do not make much sense
to create the logarithm and the exponential map; so, the relation between closed subgroups
in GL,(A) and Lie subalgebras of gl,(A) appears not very direct. The principal congruence
subgroup

Fa(a) :=8SLa(A)N(1+a-glh(A)) ={z € SL2(A) | z =1 mod a}

for an A-ideal a obviously plays an important role in this paper. To study a general p-profinite
subgroup G of SLy(A) for a general p-profinite ring A, we want to have an explicit relation between
p-profinite subgroups G of the form SLy(A)N (1 + X) and a Lie Z,-subalgebra X C gly(A).
Assuming p > 2, Pink [Pin93] found a functorial explicit relation between closed subgroups in
SL2(A) and Lie subalgebras of gla(A) (valid even for A of characteristic p). We call subgroups
of the form SLp(A) N (14 X) (for a p-profinite Lie Z,-subalgebra X of gla(A)) basic subgroups,
following Pink.

We prepare some notation to quote here the results in [Pin93]. Let A be a semi-local p-
profinite ring (not necessarily of characteristic p). Since Pink’s result allows semi-local p-profinite
algebra, we do not assume A to be local in the exposition of his result. We assume p > 2. Define
maps O : SLy(A) — sly(A) and ¢ : SLo(A) — Z(A) for the center Z(A) of the algebra Ma(A) by

@(x):x—%Tr(x) (é ‘f) and C(:U):%(Tr(x)—Q) (é ‘f)

For each p-profinite subgroup G of SLy(A), define L by the closed additive subgroup of sly(A)
topologically generated by ©(z) for all x € G. Then we put C = Tr(L- L). Here L- L is the closed
additive subgroup of My(A) generated by {zy | z,y € L} for the matrix product zy, similarly L™
is the closed additive subgroup generated by iterated products (n times) of elements in L. We
then define L; = L and inductively L,4+1 = [L, Ly]; so, Ly = [L, L], where [L, L,] is the closed
additive subgroup generated by Lie bracket [z,y] = zy — yx for x € L and y € L,. Then by
[Pin93, Proposition 3.1], we have

[L,L)CL,C-LCLL=L1D DLy DLy D+ and ([L,=[]L"=0. (L1)

n>1 n=1

In particular, L is a Lie Zy-subalgebra of sly(A4). Put My(G) = C(}9) ® L,, C Ma(A) = gla(A),
which is a closed Lie Zy,-subalgebra by (1.1). We write simply M(G) (respectively M°(G)) for
Ms(G) (respectively Mo(G) Nsla(A) = [L, L]). Define

H, ={x € SLe(A) | ©(x) € L,, Tr(x) —2€ C} forn > 1.
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If © € Hp, then 2 = O(z) + ((z) + (§9); thus, Hyn C SLa(A) N (1 + My(G)). If we pick z €
SLo(A)N (1 + My, (G)), thenx =1+ c¢-1+y withy € L, and ¢ € C. Thus Tr(z) —2=2c€ C
and O(z) = (§ ) +c- (§9) +y—3(2+2¢)- (§9) = y. This shows

Hp, = SLa(A) N (1 + M, (G)) in particular, Ha = SLa(A) N (1 4+ M(G)).

Here is a result of Pink [Pin93, Theorem 3.3 combined with Theorem 2.7].

THEOREM 1.1 (Pink). Let the notation be as above. Suppose p > 2, and let A be a semi-local
p-profinite commutative ring with identity. Take a p-profinite subgroup G C SLa(A). Then we
have:

(1) G is a normal closed subgroup of H; (defined as above for G);

(2) M, is a p-profinite subgroup of SLa(A) inductively given by Hp+1 = (H1,H,) which is the
closed subgroup topologically generated by commutators (x,y) with z € Hy and y € Hp;

(3) {Hn}n>2 coincides with the descending central series of {Gp, }n>2 of G, where G, 11 = (G, Gy)
starting with G; = G.

In particular, we have

(P) the topological commutator subgroup G’ of G is the subgroup given by SLa(A)N(1+M(G))
for the closed additive subgroup M(G) C Ms(A) as above.

Put M?(g) = M;(G) Nsla(A). By the above expression, G — M;(G) (respectively G —
M? (G)) is a covariant functor from p-profinite subgroups of SLa(A) into closed Lie Z,-subalgebras
of gla(A) (respectively sly(A)). In particular, M;(G) and Mo(g) are stable under the adjoint
action x > grg~! of G. For an A-ideal a, writing G, = (G mod a) = (G-T'a(a))/T a(a), M;(G,) C
gla(A/a) (respectively M?(?a) C sla(A/a)) is the surjective image of M;(G) (respectively
M?(g)) under the reduction map x + (2 mod a). Since #; is a basic subgroup with #;/G
abelian, we call H; the basic closure of G. If G is normalized by an element of GLa(A), by
construction, the basic closure H; is also normalized by the same element. Thus the normalizer
of G in GLg(A) is contained in the normalizer of H; in GLg(A). By the above theorem, any
p-profinite subgroup of SLy(A) is basic up to abelian error.

LEMMA 1.2. Let A be an integral domain finite flat either over Fy[[T]], A or Z, with quotient
field Q(A). If a subgroup G C SLa(A) contains the subgroup I' 4(¢) for a non-zero A-ideal ¢, then
aGa~! for a € GLy(Q(A)) contains I' 4(¢’) for another non-zero A-ideal ¢’ depending on .

Proof. We give a proof assuming p > 2. Write I'(¢) for " 4(¢). We may suppose that G = I'(¢) for
¢ C myu; so, G is p-profinite. Then M(G) D ¢?- £ for £ = My(A). Replacing o by o for a suitable
€ ANQ(A)* for the quotient field Q(A) of A, we may assume that o € My(A) N GL2(Q(A)).
Then (aLa™'NE) D ala for at = det(a)a™ € My(A). Since £ and aLa’ are both free A-module
of rank 4, £/aLa’ is a torsion A-module finite type annihilated by a non-zero A-ideal ¢”. Then
M(al(c)a "t NSLe(A)) D 2 - afat D 2L, Thus the ideal ¢, = ¢?¢” does the job. O

Let B)z, C GL(2)z, (respectively Z/7 ) be the upper triangular Borel subgroup (respectively
the center of GL(2) 7 /Z, ) as an algebraic group. Write U,z for the unipotent radical of Bz, and
put ZU(A) = Z(A)U ( ) C GLa(A). Let B,5 (respectively il/7 ) be the Lie algebra of B,z
(respectively U,z ). We write B = G2, x U by the splitting G2, > (a,a’) — (8 3) € B. Define
=300 (T € A
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LEMMA 1.3. Suppose p > 2, and let I be a domain finite flat over A. Let G C SLa(I) be a
p-profinite subgroup. Suppose the following two conditions.

(B) The group G contains a subgroup of B(I) N SLy(I) which is, under the projection: B —
B/ZU = G,,, isomorphic to the image of

T={w = (" )

(U) The subgroup U = {(} ¥) | v € A} NG is non-trivial.

We denote by u the ideal u = {u eA| ((1) 11”) € U}. Let G’ be the topological commutator subgroup
of G and U' = U NG'. The group T acts on U and U’ by the conjugate action. Then we have
the following.

(1) The action of Zy[[T]] on U and U’ coincides with the action of A via the isomorphism
Zp|[T]] = A sending t(1) to t (under the notation in (B)). Under this identification, U/U’ is
torsion of finite type (as a A-module) killed by the ideal (T') of A.

(2) If moreover there exists g = (&%) € B(I) NG whose image in B(I)/ZU(I) is non-trivial,
U/U’ is killed by ad~! — 1. If ad! — 1 is prime to T, U/U’ is finite.

Replacing the pair (U,U’) by (U= GnNU(I),U =G NU(T)), the same assertions (1-2) hold
under the condition U # 1.

seZp}%F(t:I—i—T).

Proof. Since the proof is the same for (U,U’) and (U,U’), we give a proof for the pair (U, U’).
Often we identify u with the Lie subalgebra {(8 8) |be u} in sl (A). Under this identification, by
definition, we have U =1+ u C G. Since U and G’ are normalized by the adjoint (conjugation)
action of G N B(A)U(I), T — B(I)/ZU(I) acts on U and U’. Then the Z,-module U/U’ carries
a continuous action of I" via I' = {t* | s € Z,} = T. Note that Z,[[I']] = A. Since the A-module
structure on U induced by the adjoint action of 7 and the one induced by the isomorphism
log:U > (14+u) — u € umatch, U 2 u C slp(A) is a A-module of finite type (as A is noetherian).
Thus U/U’ is a A-module of finite type embedded in G/G’. Pick 7 € B(I) NG whose image in T
is equal to (%2 t_q/z). Then 7 —1 acts on U/U’ by multiplication by T" and kills G/G’. Thus T is
in the annihilator Ann(U/U’) of U/U’ as asserted in (1).

If we have further g = (8 2) € GN B(I) as in (2), by the same argument, U/U’ is killed by
ad™t — 1 # 0. Thus U/U’ is a module over a finite extension A[f] C I of A for § = ad™! — 1.
Taking a minimal polynomial ®(X) of 6 over @, we have A[f] = A[X]/(P(X)); so, A[f] is finite
flat over A. If 6 is prime to T, U/U’ is killed by an open ideal (6,T) of A[f] C L. Since U/U’ is a
A-module of finite type, it is a finite A-module. a

Here is another easy remark.

LEMMA 1.4. Let the notation and the assumption be as in Lemma 1.3. In addition, we assume
that we have j = (8 CO,) € GLy(Zy) such that jGj~' = G and ( — (' € Zy . Then the group G
contains the subgroup T; in particular, the group Z(A)T C SLy(A) normalizes G.

Proof. Forgetting about the center Z(A), we only need to show that 7 normalizes G. By
assumption, there exists 7 € G of the form 7 = (8 aﬁl) for a = t'/2. By computation, for the

commutator (7, 7), we have (7, j) = ((1) ““(1_1“/_1)) € G. Thus U =U(T)NG contains (é W(l_fc'_l)).
Since U is a Zy-module, we can divide elements in U by the Z,-unit (1 — CC’_I); so, U contains

(3 41) and 771 (§ ue)T = (§ a”'u) = 3 € U. Then G contains 787! = #(1) = (tl(f t_(l)/z)’ and G

contains 7 = {t(1)* | s € Z,} which in particular normalizes G. O

610

https://doi.org/10.1112/50010437X14007684 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X14007684

BiG GALOIS REPRESENTATIONS AND p-ADIC L-FUNCTIONS

For a prime divisor P of Spec(A), we write Ay for the subring Z, C x(P) if x(P) is of
characteristic 0, and if P = (p), we put Ay = F,[[T]] = A/P C x(P).

LEMMA 1.5. Let the notation and the assumption be as in Lemma 1.3. Put G = GNSLa(A) and
let Gy be the subgroup of G topologically generated by gUg™! for all g € G. If there exists a
prime divisor P € Spec(A) such that the image of Gy in SLy(A/P) contains an open subgroup of
SLa(Ag), then we can find a A-module £ C M(G) Nsly(A) such that sly(A)/£ is A-torsion with
sla(Ap)/Lp = 0 after localization and £ C M(Gy)Nsla(A) C M(G)Nsla(A) C sla(A). Moreover
Gy contains I'z(¢) for a non-zero A-ideal ¢ = {\ € A | \- Ma(A) C M(Gy)} prime to P.

Proof. As before, we identify u with the Lie subalgebra {(8 8) |b € u} in sly(A); then U =1 + u.
Let H (respectively $)) be the image of a subgroup H (respectively a submodule §)) of
SLa(A) (respectively of sla(A)) in SLy(A/P) (respectively in sly(A/P)). If GY; is the topological
commutator subgroup of Gy, its image G’U in SLo(A/P) is the topological commutator subgroup
of Gy. Since Gy contains an open subgroup of SLy(Ap), é’U contains an open subgroup of
SLa(Ap). Since G' D Gy, we find U = G'NU D U"” := G; NU. In any case, we find
U =1+1u# 1, where u is the image of u in sla(A/P) (so, i # 0). By Lemma 1.3, U' = U NG’
is non-trivial, and if PtT, v’ = {u € sla(A) | 1 + u € U’} is a non-trivial Lie A-subalgebra of
sly(A) with non-trivial image @ in sly(A/P). Even if P | T, since Gy, contains an open subgroup
of SLa(Ayp), U' cU is non-trivial; so, W' # 0. Let H C G’ be the subgroup generated by
gU'g71 for all g € G. Let M = M(Gy) and M = M(Gy). Then we have a natural surjection
7 : M — M given by x — z mod P for x € My(A). Let £ = > geGy gwg~t C M Nsla(A) and
£=3 geGy IV 1 € M Nsly(A/P). As seen in the proof of Lemma 1.3, v’ is a torsion-free
A- submodule of sl3(A); so, £ is a torsion-free A-submodule of sl3(A). Note that £ is stable under
the adjoint action of Gyr. Since Gr contains an open subgroup of SLo (Ap), the adjoint action of
Gy on £ is irreducible; so, £®x #(P) has dimension 3 over x(P); so, £®, k(P) = sly(k(P)). By
Nakayama’s lemma, we have £p = sla(Ap). In particular, slo(A)/£ is a A-torsion module of finite
type. The Lie algebra L = MY contains £, and hence L-L D £-£. For the annihilator a of sly(A)/£,
by a simple computation M contains L = a ( 9) @ & C Ma(A). Since £p = sl(Ap), a is prime
to P. Thus for the maximal A-submodule M of M, we conclude M O L, and Msy(A)/ M is a
torsion A-module. Thus the annihilator ideal ¢ of My(A)/M is prime to P and Gy D Tx(c). O

Question 1.6. Under the conditions (B) and (U) in Lemma 1.3, are M(G) and M(G) A-modules?
It is likely to be the case up to finite error, and if they are, our argument in the rest of the paper
could be simplified a lot. They are obviously stable under the adjoint action of T.

2. Fullness of Lie algebra
We start with the following well-known fact whose proof is left to the reader.

LEMMA 2.1. Let K be a field of characteristic 0. If £ is a non-trivial proper Lie subalgebra over
K in sly(K), then £ is a conjugate in sla(K) of one of the following Lie K-subalgebras:

(1) {z € M | Trp/q(z) = 0} as an abelian Lie subalgebra for a semi-simple quadratic extension
M of K (Cartan subalgebra);

(2) g ={(8) |z € K} (nilpotent subalgebra);
(3) Bk = {(8 _xa) | a,z € K} (Borel subalgebra).
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COROLLARY 2.2. Let K # F3 be a field of characteristic different from 2 and L/K be a field
extension. Let 0 # £ C sly(L) be a vector K-subspace stable under the adjoint action of SLa(K).
Then there exists g € GLa(L) such that g€g~! D sly(K). If £ contains some non-zero elements
in slo(K), £ contains sla(K) without conjugation.

Proof. Put n(X) = {(}%) € sla(X) | # € X} for any intermediate extension L/X/K. As
K # Ty and F3, we have some diagonal matrix g = (8 agl) in SLy(K) with a? # a~2. The space
n(X) is the eigenspace in sly(X) of Ad(g) with eigenvalue a?. Since adjoint action: Y > gYg~!
(Y € sly(L)) of g € SLo(K) is absolutely irreducible (as K has characteristic # 2), we see
that £ spans sly(L) over L, and hence the eigenspace £(a?) in £ of Ad(g) with eigenvalue a?
is non—trivial In particular, £ N n(L) = £(a?) # 0. Let T be the diagonal torus in GLo; so,

={(2¢9) € GLy(X) | a,b € K*}. Note that T(X) acts transitively on n(X)\{0}. Thus
conjugatlng £ by an element of T'(L), we may assume that (8 (1)) € £. Since the adjoint action of

SL2(K) on sly(K) is absolutely irreducible, £Nsly(K) # {0} implies £ D sly(K), as desired. O

Here is a well-known corollary (whose proof can be found in [Hid1la, Corollary 4.3.14]).

COROLLARY 2.3. If G is a closed subgroup of SLy(Z,) of infinite order, then G has one of the
following four forms:

(1) G is an open subgroup of SLy(Zy);

(2) G is an open subgroup of the normalizer of M* N SLy(Q)) for a semi-simple quadratic
extension Mg, C M2(Qyp);

(3) G is SLa(Zy)-conjugate to an open subgroup of the upper triangular Borel subgroup B(Z,) C
SL2(Zy);

(4) G is SLy(Zy)-conjugate to an open subgroup of the upper triangular unipotent subgroup
U(Zy) C SLa(Zy).

LEMMA 2.4. Suppose that p > 2 and let A be an integral domain finite flat over Fy[[T]]. If a
closed subgroup G of SLy(A) contains T := {(0 s ) | s € Zp} and non-trivial upper unipotent
and lower unipotent subgroups, then G contains an open subgroup of SLa(F,[[T]), and if G is
p-profinite, M(G) contains an open submodule of My (F,[[T7]]).

Proof. Replacing G by GNT' 4(m4), we may assume that G is p-profinite. Writing K = F,((T"))
and L = A ®p, 77 K, L is a finite field extension of K. Consider the X-span £x of MY(G) for
X = K, L. Then dimy, £;, = 3; so, £, = sla(L). Thus up to conjugation, £x contains sly(K)
by the existence of non-trivial unipotent elements. Thus we may assume that A = F,[[T]]. By
conjugation action of 7, the unipotent groups U = U(F,[[T]]) N G and Uy = 'U(F,[[T]]) N G are
non-zero Fp[[T]]-modules, thus [U(F,[[T]]) : U] < oo and ['U(F,[[T]]) : Ui] < cc. Let u (respectively
u;) be the Lie algebra of U (respectively Uy); so, for example, u = {u — 1 € sla(F,[[T]]) | u € U}.
Thus we find that [u,u] # 0 is also an F,[[T]]-module in M%(G), and hence MO(G) has rank
3 over F,[[T]]. Also C = Tr(M°(G) - ./\/lO(G)) as in Theorem 1.1 contains uu; regarding u and
u; as an ideal of F,[[T]] by an obvious isomorphism U(F,[[T]]) = ‘U(F,[[T]]) = F,[[T]]. Then
G contains I'g 77 (1), and hence G is open in SLa(FFp[[T]]). Note that M(G) is well defined
containing C - 1 & M%(G) with rankg 71 M°(G) = 3 and C # 0. This implies that M(G) is
open in My (F,[[T7]). O

LEMMA 2.5. Let V' be a local Zy,-algebra and A be a flat V-algebra. Then for a subgroup

B of B(V) containing (g f,) with § — &' € V* and a unipotent element (}5) with e € V>,
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the semi-group B = {g € B(A) | gBg~! C B(V)} is contained in B(V) modulo the center of
GLa(A). If A is reduced, the same assertion holds replacing {g € B(A) | gBg~! c B(V)} by
{9 € GL2(A) | gBg~"' C B(V)}.

Proof. Take g = (2%) € GL2(A) satisfying gBg~ C B(V); so, we have (¢7)(§ ) (¢ 3)71 = (53
which immediately implies ¢ = 0. Thus if A is reduced ¢ = 0, and g € B(A). Thus we may
assume either g = (& 5) € B(A) or that A is reduced to continue. The identity

(3 Z) ((1) i) (3 Z) - ((1) (a/ld)€> e B(V)

implies d/a,a/d € V*. Note g = (39) (} b/a). The identity for u =b/a

01
-1
1w\ (6 B\[(1 u (0 u(d =) +p
(0 1) <0 5') (0 1) - (0 1 € B(V)
implies u € V. Thus g = a((l) Zﬁ) € Z(A)B(V). This finishes the proof. O

LEMMA 2.6. Let L/K be a finite field extension and s be a Lie K -subalgebra of sla(L) containing
MU(K). Suppose that we have a diagonal matrix j € GLo(K) such that s is stable under the adjoint
action Ad(j) onsla(L) and Ad(j) has three distinct eigenvalues on slp(K). If the L-span s, := L-s
is equal to sla(L), then s contains sly(K).

Proof. The nilradical R of s is in the nilradical of s;, = sla(L); so, R = 0, and s is semi-simple.
Thus we can decompose s into a product of simple Lie algebras: s =51 @ --- ® s, for K-simple
components s;. Since sy, is simple (non-trivial), dimg s,, = 3. Thus each s,,, generates sly(L) over
L. Suppose thats we have more than one simple component of s. Since [8,,,5,] = 0 for m # n,
for any s, € s7 and any o, 8 € L, [aSm, Sn] = aB[Sm, sn] = 0. This implies that for the L-span
L - 59, we have [L - 8,,, L - 5,] = 0; so, [sla(L),sl2(L)] = 0, a contradiction. Thus we conclude s
is simple. The centralizer of j (i.e. the subalgebra fixed by Ad(j)) in s is a Cartan subalgebra
hi split over K (as j is diagonal in GLo(K) with Ad(j) having three distinct eigenvalues), and
ho = hx Nsla(K) is a split Cartan subalgebra of sly(K) normalizing Y(K) in s. Thus sk is
a split K-simple algebra containing an isomorphic image of sly(K). Therefore, for a subfield
K’ C L containing K, s is an inner conjugate of sla(K’); i.e. s = g - slo(K')g ! for g € GLa(L).
Since g - sla(K')g™! = s D hol(K) C sly(K), we have g thotl(K)g C sla(K’). We can then
find hy € SLa(K”) such that hy g~ hotl(K)gh1 C hoth(K'). Pick (J4) € hy g hotl(K)ght with
0 # u € K'. Define hy = (g (1)) Then, for h = hihy, h=lg71hoU(K)gh C hotd(K). Then by
Lemma 2.5, gh € K'*B(K). Note that gh - sla(K')(gh)™! = g - sla(K')g™!; so, we may assume
that g € B(K); so, in particular, § D sla(K). This finishes the proof. a

LEMMA 2.7. Let V be a p-profinite discrete valuation ring with quotient field K. If a closed
subgroup H C SLo(V)™ has open image in each factor of SLy(V'), a conjugate in GLa(K)™ of
H contains an open subgroup of SLa (V') diagonally embedded in SLo(V)™.

Proof. The p-profinite property of V implies that V" has finite residue field. We may assume that
H is p-profinite. Since the topological commutator subgroup of H still has open image in each
factor of SLa(V') (cf. [Hidlla, Lemma 4.3.8]), replacing H by its commutator, we may assume
that H is basic. The result in Theorem 1.1 can be applied to the semi-local ring A = V™.
Consider the closed Lie Zy,-subalgebra M;(H) of gla(A) associated to H and its subalgebra
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MY(H) = My(H) N sly(A). Write 90 for the V-span of MY(H). This Lie algebra 90 is stable
under the adjoint action of H. Write 9t; (respectively H;) for the projection to the j-th factor
sly(V) (vespectively SLo(V)) of 9 (respectively H). Then 92, is the V-span of MY(H;). Since
MY (H;) N n(K) for the upper nilpotent Lie algebra n(X) as in the proof of Corollary 2.2 is an
open ideal of V., M{(H ;) is an open Lie Z,-subalgebra of 9t; by the absolute irreducibility of the
adjoint action of H; on M;; i.e. [M; : MI(H;)] < co. Then, by our assumption and Corollary 2.2,
9M; for each j has rank 3 over V. We proceed by induction on m. If the intersection of 9t with
one factor sla(V'), say the first one, is non-trivial, the intersection is stable under the adjoint
action of 91 and H. Then the intersection projected to the first component has to have an open
image in the first component sly(V') as sla(K) is a simple Lie algebra. Thus the intersection is
either trivial or contains an open subalgebra of sly (V). If it contains an open subalgebra, we can
project H and 991 to the complementary direct summand, and by induction, we get the job done.
Thus we may assume that any intersection of 9t with a direct factor sla(V') is trivial. Thus the
projection to the complementary direct summand sly(V)™~! is an injection. By the induction
assumption, conjugating H by an element in B(K)™ !, we may assume that the image of 9 in
slo(V)™ 1 is contained in the diagonal image A(slay(V)) of slo(V). Thus we are reduced to the
case where m = 2 regarding M C slo(V) x A(sl(V)) 22 5l(V)2. Then K -9 C slp(K)? is a graph
of an isomorphism L : sly(K) — sla(K) of Lie K-algebras. As is well known, such an isomorphism
is inner given by a conjugation by an element of GLy(K). This finishes the proof. O

COROLLARY 2.8. Let V' be a p-profinite discrete valuation ring with quotient field K, and let
Ao = Z, if K has characteristic 0 and Ay = F,[[T]] C V if K has characteristic p > 0 for an
element T' € V analytically independent over F,. If a closed subgroup H C SLy(V)"™ has image
in each factor of SLo(V') containing an open subgroup of SLa(Ap) up to conjugation in GLa(K),
then a conjugate in GLo(K)™ of H contains an open subgroup of SLa(Ag) diagonally embedded
in SLo(V)™.

Proof. If a p-profinite subgroup G of SLy(V) contains up to conjugation an open subgroup of
SLa(Ap), we have K - M?(G) = sly(K) as the adjoint action of G on both sides of the identity is
absolutely irreducible; so, V- M%(G) is an open Lie subalgebra of slo(V). We apply the argument
which proves Lemma 2.7 to the Lie algebra V - M°(H) which has projection to each factor sly(V)
with open image. Then after conjugation, V- M%(H) contains the diagonal image of an open Lie
V-subalgebra of sly(V). Thus M°(H) must contain an open Lie V-subalgebra of sly(Ag), which
implies that H contains an open subgroup of SLa(Ap) diagonally embedded into SLo(V)™. O

Recall the quotient field @ of A. As before, we fix a domain I finite flat over A. For g € GLy(I)
and x € sly(I), we write Ad(g)(z) = grg~! (the adjoint action of g). Hereafter we assume p > 2.
The following lemma will be applied to G = Im(pr) NT'A(my) to show that Im(py) for a non-CM
component [ contains a congruence subgroup I'p(c). A main idea is to reduce the problem to
openness of SLa(Ap) NIm(ppy) in SLa(Ap) for a prime divisor P € Spec(A). The proof is onerous
if I # A as I/PI may not be even a reduced ring. We use Lemma 2.7 and Lemma 2.8 at step
(c) in the proof (if I # A) to reduce this problem to the containment of an open subgroup of
SL3(Ag) in Im(pg) for prime divisors B | P of I (which is shown by Ribet in our application
when P is arithmetic).

LEMMA 2.9. Let G = GNSLa(A) for a p-profinite subgroup G of SLy(I) satisfying condition (B)
of Lemma 1.3. Let P be a prime divisor of A. Suppose that I is an integrally closed domain flat
over A and one of the following conditions on existence of elements j,v in GLa(I):
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(1) there exists j € B(I) with jGj~! = G such that the three eigenvalues of Ad(j) are in Z,
distinct modulo my;

(2) there exists j € B(I) with jGj~! = G and v € G NU(I) such that the two eigenvalues of j
are in Z, distinct modulo wmy and that v is non-trivial modulo my;

(3) there exists j € B(I) with jGj~! = G and v € G NU(I) such that the two eigenvalues of j
are in 7, distinct modulo my and that v is non-trivial modulo B for all prime ideals *B|P.

If the image Ggz of G in SLo(I/B) for every prime divisor SB| P in I contains, up to conjugation,
an open subgroup of SLa(Ap), then there exists a non-zero ideal ¢ in A prime to P and « € B(Ip)
such that a.-Ga~' D T'z(c). In particular, the image aGpa ! of aGa ™! in SLy(Ip/Plp) contains
an open subgroup of SLy(Ayp), and replacing G by o - Ga™ !, the subgroups U = G NU(A) and
Uy = GN'U(A) for the opposite unipotent subgroup U are both non-trivial with non-zero image
in GLa(A/P). If assumption (2) holds, we can choose a € B(I).

Proof. Replacing j by lim, .« 7", we may assume that j has finite order with two eigenvalues
in Z, distinct modulo my; and hence is semi-simple. Write j = (C *) € B(I). Conjugating G by

0 ¢’
oy = ((1) */(41*4/)) € U(I), we assume that j = (g g,) normalizes apGag ' C GLa(A). We replace G
by aoGaal. By Lemma 1.4, we have the group 7 contained in G. Since oy commutes with upper

unipotent element, this does not affect v in condition (2) or (3). Write v = (§ ¥). We have
uw e I* under (2), and w €I} under (3). (2.1)

Conjugating by a1 = (ual 9), under either (2) or (3), we have v = ({ }) € G. Since (t(s),v) =
t(s)vt(s)~to~t = (§ ¥'[1) for t(s) in (B) of Lemma 1.3, in either case, we have U(A) C G.

First, we assume [ = A and (1) and prove the lemma. Thus @q} contains an open subgroup of
SL2(Ap). We have the adjoint operator Ad(j) acting on Ms(I), M = M(G) and M = M(Gsg).
Write three eigenvalues of Ad(j) asa = (¢’ ", 1and a~*. Then for X = My(I), M and M, we have
a decomposition X = X[a]®X[1]@X[a"!] into the direct sum of eigenspaces X [\] with eigenvalue
A. The reduction map M[\] = M[\] modulo 9 is a surjective map for any prime Q € Spec(I). If
@qg contains an open subgroup of SLa(Ap), we find that M|[)] is non-trivial for all eigenvalues \,
and hence M[)] # 0 surjects down to M[\]. Since M[a] = MNU(I), we find U = 1+ M|a] C G’
maps onto U = 1+ M|a] C @;3. Similarly U; = 1+ M[a™!] € G’ maps onto U; = 1+ Mla~!] C @lp.
Since Gy contains an open subgroup of SLo(Ayp), the two eigenspaces M[a] and M[a~'] are both
non-trivial; so, U # 1 and Uy # 1. Sinceu={bel| (}%) € U} and wy = {c € 1| (}9) € U}
are non-zero I-ideals, U # 1 and U; # 1 implies u and u; are prime to . We often identify u
(respectively u;) with the corresponding Lie algebra { (J8) | b € u} = (I)NM;(G) (respectively
$1(I) N M1(G)). Therefore Gy contains open subgroups U of U(1/B) and U, of ‘U(I/9). This
implies that @qg contains an open subgroup H of SLy(I/B) as U and U; generate an open
subgroup of SLy(I/%B). Indeed, for b € u and ¢ € uy, taking X = (§8) and ¥ = (99), we have in
M(H) the element

X,Y]=XY -YX = (%C _%C).

Similarly, by Theorem 1.1, M(H ) contains Tr((8 8) (2 8)) = ab as a central element; so, it contains
uu; Ms(I); i.e. Gy contains an open subgroup I'(uuy) /Ty (uu, P) in SLa(I/93). Then for the closed
subgroup Gy C G topologically generated by conjugates gUg ™! for all ¢ € G, Gy contains an
open subgroup of SLy(Ag) by Corollary 2.3 and Lemma 2.4. By Lemma 1.5, we get the desired
assertion.
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Since the two conditions (2) and (3) are similar, the proof is basically the same, though we
need to localize the argument at P under (3). As is clear from the above proof under (1), we only
need to prove Pfuu;. We give a proof under I = A and (2). Since the reduction map M[1] — M][1]
modulo B is onto, G has an element g € B(I) with eigenvalues z, 2’ with z # 2’ mod . By
Lemma 1.3(2), U/U’ is killed by (2’27t —1,T), and we find ¢ € INLy in the annihilator of U/U".
Let

Mo == MnN D) & S(TD) and My := M N (UI/P) & LUT/B)).

Then, under the reduction map modulo B, M, surjects down to Mgy which has non-trivial
intersection ‘U(I/B). Thus we have an element (a,b) € My with a € U(I) and b € *U(I) with
b mod P # 0. Since G D U(A), we have (ca,0) € Mo; so, (0,cb) = (ca,cb) — (ca,0) € My. Thus
we find that U; and U; cannot be trivial. Then by the same argument as above, we conclude the
assertion. Under (3), we go exactly the same way, replacing I and A in the above argument by
Ip and Ap.

Now we assume (1) and that I D A. We proceed in steps. First we prove

(a) conjugating G by an element in B(Ip), we achieve that @33 N SLa(Ap) (for the topological
commutator subgroup @;3 of @‘D) is open in SLy(Ap) for all prime divisors |P in I.

Since Gy (up to conjugation) contains an open subgroup of SL(Ap) for each B| P, its derived
group @%3 contains an open subgroup of a conjugate of SLa(Ap). Thus the x()-span of M =
MO (Gy) has dimension 3 (by the irreducibility of the adjoint action of an open subgroup of)
SLa(Ap). Thus a-eigenspace M]a] = 4(x(3))NM under the action of Ad(j) is non-trivial. Taking
0 # ugp € I/B such that (8 “33) € Ma] and putting ag = (“%1 (1)), we have U(Ag) C M(am@mail).
By the approximation theorem (e.g. [Bou98, VII.2.4]) applied to the Dedekind ring Ip, we find
a € B(Ip) such that o mod B = ag for all PB|P; so, replacing G by aGa™!, we start with G
with Gy containing U(Ay) for all P|P. Let Qo := Q(Ap). Consider the Qp-span sy of M°(Gy).
Then £(*P) - 53 = sla(k(P)) as the adjoint action of SLy(Ag) (more precisely of its conjugate)
is absolutely irreducible. Then by Lemma 2.6 applied to L = () and K = Qq, sy contains
sl2(Qo), which implies the claim.

Next we show, for the topological commutator subgroup G’ of G that

(b) conjugating G by an element in B(Ip), we achieve U = UA) N G # 0 and
U =UN)NG #£0.

To see this, we use the same symbol introduced at the beginning of this proof. In particular,
Jj= (g g[“)’) € B(I) and Gp (respectively @;3) is the image of G (respectively G’) in SLy(I/PT).
Since Gy (and hence @33) for each | P contains an open subgroup of SLa(Ap), we find the
image M (Ggy)[A] of M[A] in gla(I/9) is non-trivial for all eigenvalues A of Ad(j) and all B|P,
we conclude, as before:

(1) M[A] # 0 and M(Ggy)[A] # 0 for all B|P;

(2) the I-ideal a generated by n={a € I| (§&) € Mla]} is prime to P (= U # 0);

(3) the I-ideal a; generated by ny = {a € I'| (39) € M[a"']} is prime to P (= Uy # 0).
By (1), we can pick u € n prime to P such that (u mod ) € Ay for all B|P. Conjugating G by
a = (u,"9) € B(Ip) with image @ € B(Q(A)), we may assume that u=nNA = A and &@%@*1
contains an open subgroup of SLy(Ap) for all P|P. Since « is diagonal, j still normalizes G
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and G’. Just to have u # 0, we only need to choose any 0 # u € Q(I)n; so, we can assume that
u is prime to any given finite set of primes. We now claim that

(c) @lp (and hence Gp) contains an open subgroup of SLa(Ag) regarding Ag C I/PI.

To see this, recall M%(G) = M(G) Nsly(A) for a p-profinite subgroup G of SLy(A). Write
M = M°G) and M = MO(Gp). Replacing I by the integral closure of I in the Galois closure
of Q(I) over @, we may assume that Q(I) is a Galois extension of ). Then P = H‘J}GE e for
the finite set 3 of primes P in I over P. Identify «(*3) with a finite extension k of k := k(P)
for all B|P. Since Gy contains an open subgroup of SLa(A) for every S € X, by Corollary 2.8,
the image @\/ﬁ of G in SLy(Ip/+/Plp) = [ I p SL2(k) contains an open subgroup H of SLa(Ao)
diagonally embedded in [[q p SL2(k), where VP = [Ipes B (the radical of P in I). Then H acts
on - MY by the adjoint action. Since U(A) C Ap - M?, under the action of the group algebra
k[H], U(r) C M generates an irreducible subspace equal to sla(k) (since U(k) C sla(k) is the
highest weight root space and the adjoint square is absolutely irreducible as p > 2). Therefore
k- M°(Gp) contains sly(k), which implies that @/P contains an open subgroup of SLa(Ag) by
Lemma 2.4 and Corollary 2.3.

Next we look into the A-span s4 := A- M of MY for a subalgebra A of Q(I), which is a Lie
A-subalgebra of sly(Q(I)). Let u = MO[a] Nsly(A) and u; = M%[a=1] N sla(A). We claim

(d) sg = Q- MY contains sl5(Q), dimg Q - u = dimg @ - u; = 1 and P{u.

To see this, pick a prime factor B|P of P in I. Taking A = Iy, the image 54 of 54 in sl (k(*B))
contains a non-trivial upper nilpotent algebra uyp which is the image of the Lie algebra of U.
Since the image Gy of G in SLo(k(%B)) contains an open subgroup of SLa(Ap), 54 = sla(k(R)),
which implies s4/Ps4 = sla(x(P)). From Nakayama’s lemma, we deduce sy, = sl2(Iy). Thus s
spans over Q(I) the entire slo(Q(I)). Again applying Lemma 2.6 for sg, K = @ and L = Q(I),
we get sg D sla(Q). This proves that dimg @ -u = dimg Q - u; = 1. In particular, U =14+u C G
and Uy = 1 +u; C G are non-trivial unipotent subgroups. Regarding u and u; as ideals of A, we
find G D I'p (uu). By (c), the image u in sly(A/P) is non-trivial; so, P{u.

Therefore, to finish the proof under (1) and I # A, we need to prove that

(e) Ptuy.

Let H = @/P N SLa(Ap), which is an open subgroup of SLa(Ag). Put H = 7~ (H) for the
projection 7 : G' —» @;3. Note that H is still normalized by j. For the order I' = A + PI C I,
H C GLy(I'). Note that PI’ is still a prime in I’ with residue field x(P). In the above argument,
we replace G by H, I by I and sg by s = Ap - MO, Then s is a Lie Ap-subalgebra of Q-
simple Lie algebra sgp. We consider the adjoint action of Gp, which is now an open subgroup
of SLa(Ap). By our replacement of I by I', P is a prime in I’ with x = x(P) = (PI). Consider
the image 5p of s in sly(I/PI). Since 5p is generated by « - i under the action of the group
algebra x[Gp], noting Gp is now an open subgroup of SLy(Ag), we have 5p = sla(k). Thus Gp
acts on 5p = sly(k) by the adjoint representation Ad(x). Therefore its a~!-eigenspace 5p[a=1] of
Ad(y) is non-trivial in k[G]| - u = sla(k). This shows Ap[G] - u = sla(k). By Nakayama’s lemma,
we conclude Ip[G] - u = sla(Ip). Since Ap[G] - u spans sla(Ip) stable under the action of G, it
contains sla(Ap). Thus s D Ap[G] - u D sla(Ap), and

tﬂ(Ap) DAp-uy=snN tﬂ(Ap) D sla(Ap) ﬂtﬂ(Ap) = tL[(AP).

Thus Ap - u; = '84(Ap), and we conclude u; # 0; so, Pfuy.
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We now assume (2) or (3) in the lemma and I # A. As we have seen, u={be A | (} %) € G}
has non-trivial image u in sly(I/9) for all primes B|P. We have shown above, from the non-
triviality of u, sy, = sla(Ip). After reaching this point, by the same argument as above, we
conclude u; # 0; so, we get the desired assertion. O

Remark 2.10. We insert here another shorter proof of the above lemma under (1) assuming an
extra assumption P{(p). We first replace I by the integral closure of I in the Galois closure of
Q(I) over Q. Write g = Gal(Q(I)/Q) for the finite Galois group. Let H be as in step (c) in the
above proof. We then replace G by G = {h € G|r(h) € H} for the reduction map 7 : GLy(Ip) —
GLy(Ip/Plp). We now replace I by A + PI. By this, we lose normality of I but Ip becomes local
with only one maximal ideal Plp satisfying x(P) = x(PI) and M(Gp) C gla(Z,) invariant under
g. Recall
Mo = M (UI) @ UT)).

As before, we find Ip - M? = sly(Ip), and Ip - Mg = U(Ip) © '4U(Ip). Thus g acts on Ip - M° and
Ip - Myp. The g-cohomology sequence attached to the exact sequence

0— Plp-Mo—Ip- My — k(P)- My — 0
gives a short exact sequence for M = M,
0— H%g,Plp-M)— H%g,Ip- M) — k(P)-M — 0 (%)

since H'(g, Plp- M) =0 (as Plp- My is a Q,-vector space). Similarly, g acts on Ip- M° and we
have a short exact sequence (*) for M = M. Since M is a A-module, the quotient X := H(g,
Ip-Mg)/ My is a A-module of finite type. The quotient Y := H%(g,1p- M%)/ MO contains X as a
direct summand (i.e. Y = X @ Z with Ad(j) acting trivially on Z), and on Y the open subgroup
Gp of SLy(Z,) acts by the adjoint action. Consider the Ap-span Ap-Y = (Ap- X) & (Ap - Z).
Since H%(g, Ap- M[a]) = (Ap) = H(g,4(Ip)), the Gp-module Y := Y ®, , x(P) does not have
any highest weight vector Wlth respect to B(k(P)) NGp; so, Y = 0. By Nakayama’s lemma, we
have Y = 0; so, we get Ap - X = 0. Thus H(g,Ip - M[a"}]) surjects down to ‘U(k(P)) under
the reduction map modulo P; i.e. u; = M[a"!] has non-trivial image in 'U(x(P)). In particular,
PJ(uut.

Remark 2.11. In step (b) in the above proof, conjugation by oo = (“61 ?) brings G into a subgroup
aGa~! containing I' (¢) for its conductor ¢ # 0. To prove this fact, we only needed to make u # 0.
As remarked in the proof, allowing u to be another non-zero element u' in Q(I) - n, we achieve
u # 0; so, we get another conductor ¢ using this v/ and o = (ual 9); i.e. o/Ga/ ™t D Ta(d)
maximally. For any other prime divisor P’ # P, as long as py is irreducible for all P'|P’ (and

o/Go/ ™! € GLy(Ipr)), we will prove cpr = ¢/o, in Lemma 3.3.

THEOREM 2.12. Suppose p > 2 and that 1 is integrally closed. Let G be a p-profinite subgroup of
SLo(I) satisfying condition (B) of Lemma 1.3 and one of the three conditions (1-3) of Lemma 2.9.
Take a prime divisor P of A. Suppose that the projected image Gy < SLo(I/B) of G contains
an open subgroup of SLa(Ay) for all prime factors B|P in I. Then there exists o € B(Ip) such
that, writing G, = aGa~! and G4 = G, N SLa(A):

(1) the image M"(G,) in sla(A) spans over Q the entire Lie algebra sla(Q);

(2) there exists a unique non-zero ideal ¢, of A prime to P (dependent on «) maximal among
ideals a C A such that G, D T'a(a) (& Go D T'a(a));
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(3) the ideal ((y)~, (A) (the intersection of all principal ideals containing ¢o) is a principal
ideal (L), and T'x (L) /T A(¢cq) is finite.

The above ideal ¢, will be called the conductor of G, or G,. The assertion (1) follows from
Lemma 2.9. The other two assertions are covered by [Hid11la, Theorem 4.3.21].

Remark 2.13. When G is the largest p-profinite subgroup of Im(pr) N SLa(I), there should be
a canonical A-subalgebra Iy C I finite over A such that G, for a suitable o € B(Ip) contains
I'1, (¢q) for an ideal ¢, # 0 of Iy. The author hopes to be able to come back to this problem later.

3. Global level of pr

Take an irreducible non-CM component Spec(l) of Spec(h) with its normalization Spec(I).
Assume the conditions (R) and (F) in the introduction for py. Under (F), we consider py :
Gal(Q/Q) — GLz(I) € GL2(A) having values in GLa(A) for an I-subalgebra A of @, and to
indicate its coefficients explicitly, we write pa for it. We state a condition which is a version
of (Gal).

~

(Galya) Up to isomorphism over A, pa is upper triangular over D,, pa([7®,Qp]) = (tg ’1‘)
(t=14T) and pa([p,Qp)) = (0 a(y)) for the image a(p) of U(p) in I, simultaneously.

The conditions (R), (F) and (Gal) (that is, (Galgr))) combined imply (Galy). Indeed, by (F),
choosing o € D), with p(0) having distinct eigenvalues modulo mg, we can split T2 into the direct

sum of each eigenspace of p(o). Each eigenspace is T-free (by T-flatness = ﬁ—freeness), and hence
(Gal) is satisfied. The condition (Gal;) is what we need, though often we take py realized on

Lcan(I) as a standard choice. If p is absolutely irreducible, the isomorphism class of pg is unique

over I (even over II), and we do not need to take the specific one realized over écan(i). Even if p
is not absolutely irreducible, there is no compelling reason for us to take Lcan(I). We make this
choice often to fix our idea, though we will state the result without assuming that py is realized
on Lean (D).

Here is a heuristic reason for our making this choice (when p is reducible). Pick an Eisenstein
prime divisor P € Spec(I) (i.e. py is reducible). If e is the maximal exponent such that py mod
is a direct sum of two characters, by a trick of Ribet [Rib76] of changing lattice applied to

Pi, (i.e. changing the isomorphism class of Py, Over Iy in the ‘isogeny’ class), we may increase

the level of py from B¢ to P2 at P, still keeping the condition (Galy). This new py modulo B
(not the semi-simplified pg) is non-semi-simple (and hence P2€ is the deepest possible level at
B). If this is the case, via Wiles’ argument through p-deprived quotients, 32¢ would be a factor
of the characteristic power series of the corresponding Iwasawa module, and hence the level 32¢
would be a factor of the corresponding Kubota—Leopoldt p-adic L function by the solution of the
main conjecture by Mazur—Wiles. Anyway, the original level B3¢ divides the Kubota—Leopoldt
p-adic L function, and the assertion of divisibility holds for the starting lattice. Thus our choice
of Lecan(I) is not essential. Ohta’s point in his proof of the main conjecture in [Oht00, § 3.3] under
some assumptions (which developed a seed idea of Harder—Pink) is that the proof can be done
without using Ribet’s trick; i.e. Lcan(I) does create a fully non-splitting extension modulo B.
If this holds for all our cases of cube-free N, the choice of Lcan(I) produces highest possible
divisibility for the component I and justifies our choice.

In the isomorphism class [pg] over I, we have py satisfying (Galy) if p is absolutely irreducible.
In the reducible case, Pl realized on Lean(I)g satisfies (Galfm) for any prime divisor P of I.
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We put G = Im(py) N I’3(mg), which satisfies the condition (B) of Lemma 1.3 by (Gala) for A as
above.
Now we state one more fundamental property of pr,

det(pp) (o) = to8WN©@D/log,(Ny | () for all o € Gal(Q/Q), (Det)

where y is the Neben character as in the introduction and N : Gal(Q/Q) — Z, is the p-adic
cyclotomic character (see the second edition of [Hid11a, Theorem 4.3.1] for this fact).

LEMMA 3.1. Assume (Gak). Then for each prime divisor *f of T, the image of Im(py) N SLa(I)

in SLy(I/B) is an open subgroup of Im(pyp) N SLy(I/%B). In particular, the reduction map: G =
Im(pr) N T3(mz) — Im(pyp) N Fﬁ/‘ﬁ(mi/‘ﬁ) given by x — (x mod ) has finite cokernel.

Proof. Let H := {g € Im(py) | det(g) € I" and (g mod myz) € U(IF)} for F :i/mﬁ and S = HNSLy (1)
for I' = {t*} C A*. By (Gak), we find 7 € p(D,) N H such that 7 = ({}). By (Det), the

group H is an open subgroup of Im(pr). Thus we prove the image Sy of S in SLg(ﬁ/‘B) is open

in Im(pyp) N SLa(I/9R). Let Hy be the image of H in GLy(I/9). Since H is open in Im(py),
Hy is open in}m(pm). Put glm = Hy N SL2(I/9B). Since Hy is open in Im(py), §g3 is open in
Im(pg) N SLa(I/%). On the other hand, set 7' = {r° | s € Z,}. We have H = T’ x S since T’
projects down (under the determinant map) isomorphically to I'. In the same way, for the image
7—,;3 of 77 in GLo(I/P), we have Hy = 7—,% X gfp. For g in Hy, lifting ¢ to H, detg € I'y, so
taking s € Z, with ‘7° = det(g)’, we have g = 7°¢g; with g1 = 77%¢g € G. Then g = 7°g, for
g1 = (91 mod PB) and 7° = (7° mod P). Thus we have Sy = S’B. Then the assertion is clear from
this identity. O

LEMMA 3.2. Take a non-CM component 1. Let P € Spec(A) be an arithmetic point. Suppose
(Galy,,) for py. If one of the three conditions (1-3) of Lemma 2.9 is satisfied for G and P, there
exists a representation p = py (over Ip) such that the projected image Im(ppy) in GLa(Ip/Plp)
contains an open subgroup of SLa(Z,) and Im(p) still satisfies the condition (B) of Lemma 1.3.

For each arithmetic point P € Spec(A), Ip is étale over Ap; so, Ip = Ip.

Proof. We pick a prime divisor 3 of T over P, and consider the Hecke eigenform fi associated
to P; so, fp|T'(l) = agp(l)fy for primes I, where agp(l) = (T(I) mod PB) € Q,. Let [y be the
new form in the automorphic representation generated by fy. By Proposition 5.1, f% does not
have complex multiplication. Then by a result of Ribet [Rib85], the Galois representation pyp
associated to the non-CM new form f% has image containing an open subgroup of SLy(Z,), up
to conjugation by an element in B(k(*R)) (because of the Iwasawa decomposition of GL(2)).
Conjugating pg by an upper triangular matrix, we may assume that Im(pyp) contains an open
subgroup of SLy(Z,) (and the condition (B) in Lemma 1.3 is intact). To show the lemma, we
may replace G by an open subgroup of G as long as the replacement still satisfies one of the
three conditions (1-3) of Lemma 2.9. We may thus replace G by S in the proof of Lemma 3.1.
Hence the reduction map S — Sy is surjective, and Sy is open in Im(pg). Thus Sg N SLa(Z))
is an open subgroup of SLy(Zj). This fullness of py holds for all prime divisors B|P in T. Then
the result follows from Lemma 2.9 applied to this S. O

By Theorem 2.12 combined with the above lemma, we can choose a representative py in its
isomorphism class over Q(I) so that we have a non-trivial conductor ¢ with G D I'p(¢) and an
effective divisor (L) C Spec(A) such that (I'p(L) : T'x(c)) is finite. This proves Theorem I in
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the introduction except for the uniqueness of (L) depending only on the isomorphism class of
pr in GLa(I) for the normalization I of I. In the rest of this section, we discuss the uniqueness
of ¢cp (under an appropriate modification of py if p is reducible). Then we define L := L(I) as a

generator of ()p ¢p for P running over all prime divisors of A.

LEMMA 3.3. Let the notation be as above and P be a prime divisor of A. Take a non-CM
component I of h with normalization Tf, and suppose we have an associated Galois representation
p1 : Gal(Q/Q) — GLy(I) whose image contains T's(a) for a non-zero A-ideal a. Let ¢ be the
conductor of the intersection Im(pr) N SLa(A). Assume that py leaves an Ip-lattice Lp C Q(I)

stable. Then the localization cp depends only on Lp up to scalars. If py is absolutely irreducible

for all prime divisors 3 € Spec(I) over P, then cp is independent of the choice of Lp.

The point of this lemma is that whatever the choice of u € GL2(Q(I)) with ulp = Lp,
as long as Im(u - pyu~!) has non-trivial conductor, its localization at P is equal to c¢p for the
conductor ¢ of the original choice py. This lemma proves the uniqueness of (L) in Theorem I
under absolute irreducibility of » (and finishes the proof of Theorem I). In this lemma, the only
assumptions are (F) and the existence of a (no condition like (Gala) is assumed).

Since the lemma concerns only the intersection of Im(py) with SLa(A), without losing
generality, we may regard p; having values in a larger A-subalgebra in @ than L Replacing
it by the integral closure of A in the Galois closure in Q of Q(I) over @, we assume that Tisa

Galois covering of A.

Proof. Write ¢cp = P™ in the discrete valuation ring Ap. We study dependence on Lp. Write
G = Im(pr) N SLa(A), where py is chosen in the isomorphism class of Py, over Ip so that G has
non-trivial conductor ¢. This is just a choice of a starting lattice £, and we want to first prove the
ideal c¢p = cp(L) := cAp (for localization Ap of A at P) is equal to ¢p(L') for any other choice
L' = zL for a scalar matrix z € GLQ(Q(}T)). Identifying Lp = ﬁ% and writing £% = A% C Lp, we
find Lp = E?D ®Ap Tfp, and E(}; is stable under G.

We have another pf : Gal(Q/Q) — GLa(Ip) realized on £, with non-trivial conductor ¢(L');
so, writing Z for the center of the algebraic group GL(2), we find h € Z(Q(I))GLy(Ip) such that
h(L) = Lp and hpjh™! = pr. We put H = Im(p}) N SLa(A). Then we have the conductor ideal
¢ #0of H Thus GNH DT (cnc) and ¢N ¢ # 0. This shows pr and pj are both absolutely

irreducible over G N H. For o € Gal(Q(I)/Q) and g € G N H, we have

h? pi(g)h =7 = (hpf(9)h )7 = p1(9)” = pi(g) = hpt(g)h ™"

Thus h~'h? commutes with pr|gny. By absolute irreducibility of prlgng, h~'he is a scalar
Zo € Q(ﬁ)x. Thus 0 = 2, is a 1-cocycle of H with values in Q(ﬁ)x. By Hilbert’s theorem 90,
2o = (71¢7 for ¢ € Q(I)* independent of o. Then replacing h by h(™!, we may assume that
h € GLy(Q). Note that h = zu with u € GLy(Ip). Since h € GLy(Q), the elementary divisor
z of h can be chosen in GL2(Q); so, we may assume that z is a scalar matrix in GL2(Q); so,
u € GLa(Ap). Thus G = h- Hh™! C SLy(Ap), and T'(c) C G D hI()h~t = 2I(¢)2~1 = I'(¢).
Since z is a scalar, this implies ¢p = ¢/, and hence (L)p is independent of choice of Lp up to
scalars.

If py is absolutely irreducible for all B|P, the P-adic completion L p= H‘BI P Ecp is unique

up to scalars by a result of Serre and Carayol [Car94], where Egp is the PB-adic completion of Lp.
So the independence of (L)p on L follows. O
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COROLLARY 3.4. Let I be a non-CM component and pick py with values in GLa(Il). Let P be a
prime divisor of A, and assume (Gak). Suppose one of the following three conditions:

(1) we have o € D, such that Ad(p(c)) has three distinct eigenvalues in Fp;

(2) we have o,v € D, such that p(c) has two distinct eigenvalues in F), and p(v) is a non-trivial
unipotent element in SLa(F);

(3) we have o,v € D), such that p(o) has two distinct eigenvalues in ¥y, and pyp(v) is a non-trivial
unipotent element in SLa(k()) for all prime divisors B|P of L.

Assume that Im(py) has conductor ¢. Then P{cp for a prime divisor P of Spec(A) if and only if
Gy for all prime divisors B|P in I contains an open subgroup of SLz(Ayg), up to conjugation.

Proof. We may assume that p(o) and pr(v) are upper triangular by (Galky). We replace G by

its open p-profinite subgroup {g € G | (¢ mod my) € U(I/mz)}. Then G is p-profinite, and all
the assumptions are intact. In particular, it is still normalized by p(o) in assumptions (1-3)
and contains p(v) for v in assumptions (2) and (3). By this modification, the assumptions of
Lemma 2.9 are satisfied. Indeed, we may take j = lim, . p(c)?", and the unipotent part
of p(v) (which is found in G by a similar argument proving Lemma 1.4) does the job for v
in Lemma 2.9(2-3). Thus we can apply Lemma 2.9 in this setting. The direction (=) is plain;
S0, we assume that @‘B contains an open subgroup of SLa(Ap) for all B|P. Then by Lemma 3.2,
Gp contains an open subgroup of SLa(Ag). Then we find o € B(Ip) such that for p' := apra!,
Im(p’) has conductor ¢’ prime to P. Since py and p’ are equivalent under GLy(Ip), by the above

lemma, we find ¢p = ¢/,. Thus we get Pfc. O

When pg is reducible for some B[P, we have p = (g %) for a character ) unramified at p. In
this case, we need to explore if we can define an optimal level L(I). Our idea is to take p; among
its isogeny class with the deepest level at PB. As already explained, this choice should be given
by the representation realized by Lcan ®r1 Ip. We call a prime divisor B of I reducible if pyp is
reducible.

LEMMA 3.5. Let I be a non-CM component with normalization I and put G = SLy(I) N Im(py).
Suppose one of the conditions (1-3) in Corollary 3.4 and (R) and (F) for py. Suppose that there is
no quadratic field Mg such that p is isomorphic to an induced representation from Gal(Q/M).
Let P be a prime divisor of A with a reducible prime divisor 3 of T above P, and assume
(Galg ). Then we can find v € B(Q(I)) such that aGa™t NU(A) is equal to (§4) for a A-ideal
u prime to P and aGa™! C SLg(ﬁp). Moreover, defining cp by a Ap-ideal given by Ap ﬁip .
nga) for nl(ta) = {u S ﬁp \ (i (1)) S aGa‘l}, the Ap-ideal cp C Ap is independent of the choice
of a.

Under the circumstances in the lemma, for each prime divisor P over which we have no
reducible prime divisor |P of I, we put cp = Ap. Then, abusing the language slightly, we set
(L(I)) to be the principal ideal ()p ¢p. Non-existence of quadratic fields M as in the lemma is
equivalent to the fact that 9_1E is not a quadratic character (as we will see later in the proof of
Theorem 8.8), and if 5_1@] 1, has order > 3, plainly condition (1) of Corollary 3.4 is satisfied.

Proof. We may replace G by {g € Im(pr)NSLz(T) | (g mod my) € U(I/mz)}. Then G is a p-profinite

subgroup of SLy(I). We proceed as in the proof of Lemma 2.9 looking into both M(G) and M;(G)
described above Theorem 1.1. Pick another prime divisor P € Spec(A) such that the image
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of ppr = (p1 mod PI) contains an open subgroup of SLy(Z,) (any arithmetic prime does the
job by Lemma 3.2). Then the derived group @;; of the image Gp in SLQ(’]T/ Pif) of G contains
an open subgroup of SLy(Z,). In the same manner as in the proof of Lemma 2.9, we find that
U := GN(I) contains the non-trivial image of U’ = G'NU (I) in U(Ip /PIp), and for the A-module
n={ue T (§%) € G}, the Ip-ideal Ip - n’ is prime to P. Then picking b € n’ with non-trivial
image in i’P/Pﬁp, we find 8 = (bal 9) € B@f’p) such that 3GB3~' NU(A) contains U with U # 1,
and SGB~! has conductor ¢z # 0. Put n; = {u € Q) | (}9) € G5~} cl

We now work over the ring D = IpNlp C Q(I). The ring D is semi-local of dimension
1 whose localizations are all discrete valuation rings, hence it is a principal ideal domain (cf.
[Bou98, VIL3.6]). Let ng = {u € T| (%) € G}. Then we find a € D with D - ng = (a). We
put a = (aal (1)) € B(Q)). Let M =T-n; for ny = {w e Q) | (19) € aGa'}, and put
n={ue Q]| (}% € aGa'} which is contained in D because D - ng = (a). In any case,
aGa~! has conductor ¢, # 0. If ‘B’ |P and Im(pq;/) contains an open subgroup of SLo(Ag) (for Ag
with respect to k(F’)), then a € HX, and ny = Iy If pgy is absolutely irreducible but not full,
the only possibility is pp = Ind@ A (by Lemma 2.1 or Lemma 8.4), where M is a quadratic field
and A : Gal(Q/M) — k(P')* is a character. Then p must be an induced representation from
Gal(Q/M), which is prohibited by our assumption. Thus the conjugation by a has the following
effect for PB|P and P'| P:
o for P’ with irreducible py, we have ngy = iqy;
° for B with reducible pyp, it maximizes nyp to np = ﬁs;; for 9B, and u becomes prime to P;
e  for *P with reducible pg, it minimizes ny g = Tfm SNy
Thus u,n,n; C D with Du = D, and we still have aGa™! in SLy(D) C SLy(Ip). Therefore
G := aGa ! N SLy(A) has the maximal upper unipotent subgroup of the form

Uu) = {((1) I{) ‘ be u} (3.1)

for an ideal u C A prime to P. WeNput ¢, = (I-ny) N A for n; defined for this aGa ™!

We want to show that &, p :=Ip-€, is independent of the choice of a and P. Choose another
point P’ such that the image of pp; = (pr mod P’'I) contains an open subgroup of SL2 (Zy ) Put
D = ]Ip NIp N ]Ip, and choose a generator (b) = D'-n. Then for o/ = (b, 9), /o' € B(Ip) as
a]lp = ]Ip n= bﬂp Since o/a~! € B(Hp) is diagonal, we find €, p = €y p. Thus ¢p = €, p is
independent of the choice of (a,P). For any other prime divisor P’ with absolutely irreducible
pyy for all P'| P, we choose 7 € B(ip/) so that yGvy~! contains 'y (a) # 1. Let ¢, be the conductor
ideal of YG~y~!. Then, as we have seen, under non-existence of the quadratic field M, Im(psyp)
contains an open subgroup of SLa(Ap) for all P'|P’, and by Lemma 2.9, ¢y pr = Apsr. Thus our
definition of ¢cpr = Aps is legitimate, and ¢pr = ¢, pr = Aps. Then (L(I)) is the principal ideal
(\p: ¢pr, which is thus independent of our choice of the pair (a,P). O

In this reducible case, assuming that there is no quadratic field M /Q such that p is isomorphic
to an induced representation from Gal(Q/M), we define (L(I)) as in the above proof.

COROLLARY 3.6. Let the notation and the assumption be as in Lemma 3.5. Normalize py as in
Lemma 3.5. Let P € Spec(A) be a prime divisor prime to (p) such that py is reducible for some
prime divisor B|P of I. Then we have the following.

(1) For ¢ defined after Lemma 3.5, we have cp = Ap-uy, whereus = {c € A | (19) € Im(pr) }.
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(2) For the conductor ¢’ of G, we have ¢p = /p.

(3) The localization cp is equal to ([ p ag) NAp for the minimal isp—ideal ag such that the

reduction (pr mod ay) has values in B(Iyg/agp) (up to conjugation).

Proof. We first prove (1) and (3). By the proof of the above lemma, cp = (Ip - n;) N Ap, which
is equal to (Ap - ny) N Ap since ny is a A-module. Thus Ipcp C m‘BIP agp. Let pi = (pr mod i) for

an ideal i of iﬂp. Suppose that ap 2 cp = qug(p, for i = ap®PB, consider p;. Note that G acts on
sp = Iy - MO(G) C sy = Iy - MY(G) by adjoint action. Consider the image 5, of sy in sly(Iy/b)
for an iqg—ideal b. Then we have an exact sequence of ﬁm[@]—modules 0>V —>35— Sagy —> 0

for G = Im(p;). Then V is a k() vector space of dimension at most 3. If V is made up of

upper triangular matrices, 5 C B(Ip/i), and p; has values in B(Iy/i), a contradiction to the

minimality of ag. Thus we have 0 # X = (08) € V n'u(Ip/i). We also have Y = (§}) € n.
Then 0 # [X,Y] = (§ ). This shows that dim,q) V' = 3. By Nakayama’s lemma, we find
V = Ker(sp — Eam) = ayp -5[2@;;). This shows ap = qugnt D ﬁqgut for uy = ny NA.

To show ayp = Ipuy, replace Q(I) by its Galois closure over @ and it by the integral closure in

the Galois closure. Thus I/A is a Galois covering with finite Galois group g. Then ap = pe(P),
We take ¢ = max(e(B))ypp and write P¢ = PN A which is independent of the choice of B. Let
Peiqg = B¢. Replace G by {g € G | (g mod P) € B(Lp/P<Ip)}. Then by the above argument,
the kernel V = Ker(spe — &p¢) is given by P¢ - sly(Ip). Thus ny ‘has v with non-zero image in
Pe/Pet! for all P|P. By Nakayama’s lemma again, we have V = Ipv = P¢-"(Ip); so, [pv is a
g-module, and u; C H°(g,Ipv) =: u}. We have an exact sequence 0 — PV — V — V — 0. Taking
g-invariant, we have another exact sequence 0 — H°(g, PV) - H%g,V) —> H"(g,V) > Oas V
and V are a Q,-vector spaces. This shows [pu, = PIp. Thus u;IpNAp = nIpNAp, which implies
up = ipl‘lt N Ap = Apuy, by definition. Then we have ¢p = Apuy = P°Ap. By our construction,
we get cp = PIp =y p agp N Ap, proving (1) and (3).

We prove (2). Since we normalized G by conjugating by « as in the proof of Lemma 3.5, by
(3.1), for G := GNSLy(A), we have GNU(A) = U(u) = {(} %) | b € u} for an ideal u C A prime
to P. By a simple computation, for ¢ € u;, we have

66 Y- )
(14250 11)> <(1) —(1 +1bc)‘1b> _ <1—Zbc 1 _bc(10+ bc)_1>’ (3.2)

(—c(l%l—bc)_l (1)) <1 tbc 1 —bc(10+ bc)_1> - <1J6bc (1 -1—(1))0)_1)'

Thus M (G) contains 2 := {(2 %) | a € (p) Nuu,b € (p) Nu,c € wg }. This shows the existence

c —a
of ¢ with ¢/, = u; p = ¢p such that T'y(¢”) C G. Thus ¢ C ¢’. By (1) and (3), it is clear that
¢/, O ¢/o. This finishes the proof of (2). O

4. Eisenstein components

We now describe explicitly the congruence between the Eisenstein component and the cuspidal
component (a description of Eisenstein ideal in the big Hecke algebra) via the theory of A-adic
form.
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We first define the Eisenstein component of the space of A-adic forms. Let M(N, x1; Aw)
(respectively S(N, x1;Aw)) be the space of p-ordinary Apr-adic modular forms (respectively
p-ordinary Ap-adic cusp forms). Thus M(N,x1;Aw) (respectively S(NV,x1;Aw)) is a
collection of all formal g-expansions F(q) = > .7 ja(n, F)(T)¢" € Aw][[g]] such that fp =
Sodo(a(n, F) mod P)¢" gives rise to a modular form in MY (FU(NpT(P)H),erk(p))
(respectively ngl (Do(Npr(P)+1), epXg(p)y)) for all arithmetic points P, where p"(P) is the order
of ep. Again F' — fp induces an isomorphism

M(N, x15Aw) ®ay Aw /P = MPEL (To(Np" ), xyep; Wlep))

for all arithmetic points (see [Hid11a, Theorem 3.2.15 and Corollary 3.2.18] or [Hid93, § 7.3]). This
implies that M(N, x1; Aw ) and S(N, x1; Aw ) are free of finite rank over Ay, and the Ay-module
M(N, x1; Aw) (respectively S(V, x1; Aw)) is naturally a faithful module over H (respectively h).
The above specialization map is compatible with the Hecke operator action. Recall the quotient
field Q of A, and take an algebraic closure Q of Q. We can extend scalars to an extension A/Ay
inside @Q to define S(NV, x1; A) = S(N, x1; Aw) @4, A and M(N, x1; A) = M(N, x1; Aw) @4, A.
If A =T is finite over Ay, associating the family {fp}pegpecn to a form F' € M(N, x1;1), we
may regard these as spaces of ‘analytic families of slope 0 of modular forms’ with coefficients in
I (we also call them the space of I-adic p-ordinary cusp forms and the space of I-adic p-ordinary
modular forms, respectively). See [Hid93, ch. 7], [Hid11a, ch. 3] and [Hid86a] for these facts.

Let Qw = Q(Aw) (and regard Quw as a subfield of @ when W is finite over Z,). Then we
have

M(N,x1;Qw) = SN, x1; Qw) @ E(N, x1; Qw)

as modules over H. The space (N, x1; Qw) is spanned by A-adic Eisenstein series. Assuming
that N is cube-free, we make explicit the Eisenstein series: for any character ¢ : (Z/MZ)* —
W>,0 : (Z/M2Z)* — W* with ¥0 = x1, M1 Ms|Np, p|My and p{M;, there exists a unique
A-adic Eisenstein series in M(N, x1; Qw) defined by its g-expansion

o+ > (3 o) @)

n=1 *0<d|n,ptd

where (d)(T) = t'°8»(D/198,(7) (9, 4)) = 0 if ¢ is non-trivial, and otherwise, writing 1, for the
trivial character modulo M, a(f,1,,) = 3G(T) € Qw with

G = 1) = (1 = Oy (p)p") LM (—k, 0y1)  for all 0 < k € Z.

As a convention, we put §(d) = 0 if d has a non-trivial common factor with M, and that 1(d) =0
if d has a non-trivial common factor with M;, and also 6 is the character of (Z/MapZ)* given
by 01, = 6w'F. We define L) (s,0),11) = 300 | Ox11(n)n~° for this possibly imprimitive 6y .
The existence of the above Eisenstein series is proven under MM | Np (cf. [Hid86a, Theorem
7.2] or [Oht03, §1.4]). Counting the number of pairs (,1), we prove that they span over Qu a
Hecke stable subspace (N, x1; Qw) in M(N, x1; Qw) complementary to S(N, x1; Qw) if N is
cube-free (e.g. [Hid86b, §5]).

Our next goal is to extend Ohta’s construction of Eisenstein series to imprimitive ones
assuming that N is cube-free. In this way, we explicitly make a canonical Hecke eigenbasis
of the Eisenstein component, which enables us to split Ohta’s residue exact sequence (4.1) in
Proposition 4.2 and to compute the characteristic power series of the Kisenstein congruence
module in Corollary 4.3.
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Let us prepare some notation to state Ohta’s exact sequence. For a profinite group G, we write
WIG] = lim . W[G/H] for the continuous group algebra, where H runs over open subgroups
of G. In particular, for the multiplicative group I' = 1 + pZ, C Z,;, we can identify W{[[']] with
Ay by sending v € T to t. Let C, = C,.(N) be the set of all cusps of X, := X1(Np"™1)(C), and
consider the formal linear span W([C,] = {>_ . ass | as € W}. Write simply T, := T'1(Np™*).
Since the Hecke correspondence T s(a) C X1(Np") x X1(Np®) associated to the double coset
Isal’, for a € GL2(Q) (with det(«) > 0) gives rise to a correspondence on Cy. x Cs for r, s > 0, the
Hecke correspondence acts on W[C,]. In particular, W[C,] is equipped with the action of T'(1),
T'(1,1) in [Shi71, ch. 3] and U(q) (q | Np), (2) = 2p-[[ro.Iy] for 2 = (2, 2n) € Z; x (Z/NZ)* with
zp € LY, where 0, € SLy(Z) with 0. = (%) mod Np". The coset [¢] = [(Np")(§ NIy (Np"/q)]
for a prime ¢ | N gives rise to a linear map [g] : W[C,(N)] — WI[C-(N/q)].

These operators are computed explicitly, choosing a standard representative set An,r/ ~ (see
below for Any,r) for the cusps C,.(N) := I'1(Np")\P}(Q) C X,(C) in [Oht03, §2.1], where the
action of T'(I) (11 Np) is denoted by T*(I) and U(q) (¢|Np) is denoted by T%(gq) in Ohta’s paper.
The covering map X, — X, for s > r induces a projection 7y, : W[Cs] - W[C,], and we define
WI[[Cx(N)]] := lim WIC,(N)]. Since Hecke operators T'(1), I-T(1,1) = (I) for I Np, U(q), (z) and
[q] are compatible with the projection 7, ., these operators act on W{[Cs (NN)]]. We let the group
Zy x(Z/NZ)* act on W[[Cx]] by the character [ — [-T(,[) for primes [ diagonally embedded in
Zy x (Z/NZ)*. Thus W[[Cx(N)]] is a module over W{[Z; x (Z/NZ)*]] = lim_ WI(Z/Np"Z)*]
via the action of () and hence is a module over Ay = W][[[']] as I' C Z,;. Then we confirm
T(1), T(1,1), U(g) € Endypy(WI[Cou(N)]}) and that [q] : W[Cou(N)]] = W([Coe(N/q)] are
W[[[']]-linear maps. Then the p-adic projector e = lim,,_, o, U(p)™ is well defined on W[C,] and
on W[[Cx]]- Recalling the identification W[[I']] with Ay = W[[T]] by 7 =1+ p — t, we endow
e - W[[Cx]] with a Ap-module structure. On e - W[[Cx]], Hecke operators act Ay -linearly. As
proved in [Oht99, Proposition 4.3.14], e - W[[C]] is free of finite rank over Ay (and the rank
is given explicitly there). Ohta’s choice of the action of Z; x (Z/NZ)* is one time twist of
our action by the p-adic cyclotomic character; so, the definition of E(6,) looks a bit different
from ours, but our definition is equivalent to that of [Oht03] with this twist. Supposing that
pto(N) = |(Z/NZ)*|, we can decompose

e W[Col] = P e WICool[¥,
P

where e - W[[Cx]]|[¢] is the 1)-eigenspace of a character ¢ : (pup—1 x (Z/NZ)*) — W* regarding
(tp—1 X (Z/NZ)*) C Z; x (Z/NZ)*. Then from a result of Ohta [Oht03, (2.4.6)], assuming
p = 5, for a prime divisor P € Spec(Aw ) prime to (¢(N)) = ¢(N)Aw, we deduce a P-localized
version of the canonical exact sequence of Hecke equivariant maps in [Oht03, (2.4.6)],

0 — S(N, x1; Aw)p = M(N, x15 Aw)p —=> ¢ - W([Cuol]x1]p — 0, (4.1)

where the last map Res is canonical and called the residue map in [Oht03]. This sequence is valid
without localization if p{¢(N). Thus as Hecke modules, e - W[[Cx]][x1] ®a,, @ = E(N, x1;Q).

We extend this definition of e - W[[C]]. Take a prime ¢ outside pN and consider the
C-points of the elliptic Shimura curve X(N;¢7) = GLy(Q)\(GL2(A()) x (C —R))/A(N¢’) and
its connected component X (N;¢7) = SL(Q)\(SLa(A(>)) x $)/A(N¢?) N SLy(A), where

ANG) =T1(N)NT(¢),T(¢7) = {z € GLy(Z) | x = 1 mod ¢/ My(Z)},

z= (S I) mod NMQ(Z)}. (4.2)

T1(N) = {x € GLy(Z)
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Note that X(N;¢’) is isomorphic to a disjoint union of copies of X (N;¢’) indexed by (Z/¢?Z)*.

We write C(N; ¢7) (respectively C'(IN;¢7)) be the set of cusps of X(N; ¢’) (respectively X (N;¢’)).
Then we have C(Np";¢?) = {(An/ ~) x A, }/{£1}, where

Ay = {(;) € (Z/NZ)?

2(Z/NZ) + y(Z/NZ) = Z/NZ}

with (i) ~ (z:) < y=1vy and x =2’ mod y(Z/NZ). If {1} acts freely on Ay, we have

CN3 ) = ((An/~) x Ap) /{£1} = (An/~){£1}) x Ay

Replacing the auxiliary level N by Np" for sufficiently large r (noting p > 5), we may assume
that {£1} acts freely on Aypr. Thus for r > 0, we have

CINp )= || ((Anpr/~) x Ap) /{21 = || ((Anpr /o) /{21 x Ag).

(Z/97Z) (Z/9Z)*

As before (see [Oht03, §2.1]), GLa(Z,) acts on A, by natural left multiplication on column
vectors. Then u € GLy(Z,) acts on |_|(Z i T)% A, via this multiplication but also permuting
indices in (Z/¢’Z)* via multiplication by det(u). The set C(Np";¢’) of cusps inherits the
GL2(Zg)-action from the curve X(Np";¢’), and this action is compatible with the action
(including permutation of the components) on |y iz« Agi. Consider W[[C(Np>;¢’)]] =
lim WI[C(Np";¢’)], which is naturally a Ay -module in the same manner as for W{[Cx(NV)]]
through the action of Z, on (Anpr/~). Then we define V, = li_n)lj WI[C(Np>=;¢?)]], where we
regard
WCWNp™;d )] = D WI(Co(N)]][Ay]
(Z/¢2)*

as a space of W{[[Cu]]-valued functions on | |7 /,i7)x Ags, and by the pull-back of the projection
|_|(Z/qj+1Z)X Agirr — U(Z/qu)x Agi, we have taken the inductive limit. The idempotent e is well
defined on V,, and we have e - V;, = li_r)nj e W[[C(Np>=;¢)]].

On the pro-curve X(Np';¢™) = lim X(Np';¢/) = GLy(Q)\(GL2(A)) x (C—R))/A(Ng™)
for A(N¢>) =, A(N¢) ={z € A(N) | 4 = 1}, GL2(Q,) acts by right multiplication, which
induces the (correspondence) action of GL2(Qy) on the cusps and induces a left action of GL2(Qy)
on Vg. This GLa(Qq)-action induces the action of the maximal open compact subgroup GL2(Zq)
already described on |_|(Z Jgizyx Ags- Plainly Vg is a smooth representation of GL(Qq) with
coefficients in Ay . At each finite g-level, e - W[[C(Np™;¢’)]] is free of finite rank over Ay as
proved by Ohta in [Oht99, §4.3]. Though the curve X;(Np") is specifically dealt with in [Oht99,
§4.3], the argument for X(Np"; ¢’) is the same, or actually for a suitable choice of g € GL2(Qy)
(such that gflf(qj)qg B) fl(qu)q for the principal congruence subgroup f(qj)q C GL2(Zg)), the
right multiplication by g induces a I'-equivariant covering X;(Np"q¢*) 5 X(Np";¢?)° for any
geometrically connected component X(Np"; ¢7)°; so, Ohta’s result actually implies this finiteness.
We have

~ .

HO(F(qj)q, e-Vy) =e- W[[C(Np™; )],

which is free of finite rank over Ay,. Thus e-V; ®4,, Qw is a finitely generated admissible smooth
representation of GLy(Qy), and e - V; is a Ayy-lattice stable under the GL2(Q,)-action.
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Over the pairs of characters (6,) defined modulo M; and My respectively, we confirm that
E(N,x1;Q) is a direct sum of Hecke eigenspaces spanned by E(6,1). Let P € Spec(Aw) be a
prime divisor. Assuming p t ¢(N) if P is above (p) C A, it is easy to see that systems of the
Hecke eigenvalues of E(f,1)) are distinct modulo the prime divisor P. Thus e - W[[Cuo]][x1]p =
D,y Aw,pe(f, ¥) for an eigenbasis e(f,¢) with the same eigenvalues as E(0, ). Ohta showed

Res(E(0,v)) = A(T;0,v)e(0,v) for A(T;0,v) € Aw, (4.3)

where A(T';0,v) € Aw is given as follows [Oht03, 2.4.10]. Taking the power series G(T;€) € Aw
so that G(v* —1;§) = Ly(—s,&w) (v = 1+p) for the Kubota-Leopoldt p-adic L-function L,(s, &)
with a primitive even Dirichlet character &, A(T';0,4)) is given by, up to units in Ay,

T G(T; 09~ w) [Ty n AwIH (NT) = 0~ (D7)} if (6,9) = (wig,, Lan), (4.4)
G306 1) Tl wpre(osn (01 (O(T) — 66~ (DI} otherwise,

where T =t — y~! and €(¢) is the conductor of the Dirichlet character ¢. Here 1y, is a
Dirichlet character modulo Mj. In the exceptional case (6,v) = (w™!,1;) (which is equivalent

to the case of (w™2,11) in Ohta’s paper), as is well known, the Eisenstein ideal is trivial and
A(T;w 1 11) € A,

DEFINITION 4.1. (1) Let Ly, be the product ] g ) gy, A(T; 0, %) for the pairs (¢, ) running
over all characters with Mj M, | Np except for the pair induced by (w=!,11).

(2) Put § =  mod my and v = 1 mod my. Put L(#,v) := [T,y A(T6,¢) in I, where
(0,1) runs over pairs of characters defined modulo M;p and Mo, respectlvely, with M1 My | N
having reduction (6,1) modulo p as characters of ZX x (Z/NZ)*.

Letting o € D, act on W([[T]] by (>, anT™)? = >, a3T", we know that A(T;0,¢)7 =
A(T;0°,97); so, Ly, is Galois invariant, and hence Ly,, € A = Z,[[T]]. The following
proposition is basically proven in [Oht03, Theorem 1.5.5]. Since in the statement in [Oht03],
he assumes N|€(0)€(v)), we give a proof under cube-freeness of N via the theory of admissible
representation of GL2(Qy).

PROPOSITION 4.2. Let the notation be as above. Suppose p > 5 and that N is cube free. Let P
be a prime divisor of Ay prime to (Ly,,) C Aw and ¢(N)Aw. After tensoring the localization
Aw p at the prime P, Ohta’s exact sequence (4.1) is split as a sequence of Hp-modules.

Proof. By assumption, if (0,1) # (w™!,11), P{A(T;0,%) in W[[T]]. Thus A(T;0,v) € Ay p
So, if N =1, we can define the Hecke equivariant section: e - W[[Cx]][x1] = M(N, x1; Aw) by
e(6,v) — E(0,v) for (0,¢) # (w™!,11), and e(w™!,11) = t- E(w™ !, 1;) otherwise (¢ =t—~~1).
This gives rise to a section over Ay, p of Hp-modules.

We proceed by induction on the number of prime factors of N. Suppose we have a section

e W[[Cs(N/q)llp = M(N/q, x1; Aw,p)

for M(N/q,x1; Aw,p) = M(N/q, x1; Aw) ®ay, Aw,p. Take (0,v) with M;Mz|N/q. We claim
that

(C) the space V' spanned by e(0,v)|[q] and e(8,1) in W[[Csxo(N)]]p has rank 2 over Aw p, and
is a direct summand of e - W|[[Coo(N)]] p.
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To prove this claim (C), we use the admissible representation (e-V;) @a Q of GL2(Qg) defined
for the prime to g-part N@ of N (in place of N) whose detailed description is given just before
stating the proposition. Then e(6, 1)) generates a principal series representation 7w, C e-V;®4,, Qw
isomorphic to 77(9(1,1;(1) over Qw, where 72:1 : Qf — A is the unramified character sending
the prime ¢ to ¥(q)(q), and 6, is just the 9|qu regarding 6 as an idele character. Then by the
well-known theory of admissible representations if x(P) has characteristic 0 and by Vigneras’
modulo p representation theory of admissible representations (see [Vig89, Theorem 3]) if
P|(p), an old-new congruence at g occurs only when the ratio ({D\q /0,)(q) is congruent to g**
modulo P (for the maximal ideal P of Ay p). This cannot happen if P is over (p) because
(q) = 9% (0/198,(0) for a root of unity ¢ and ¢5 = (1+T7")% = 1+uT?" +--- mod p if s = p"u
with u € Z).

If k(P) has characteristic 0, regarding P € Homg, 414 (I,Q,), we have P(t) = u with |u—1|, <
1. Then P(zzqﬁgl(q) —¢F1) = Y071 (g)u!o% D/ 108, () _ ¢ E1 — ¢ implies u = AF1¢ for ¢ € tpe (Q,).
We have P = (t — yF1(); so, YO 1w ()¢t ¢’ — ¢! = 0 for another p-power root of unity (’;
hence, iy > ¢ = 0wt (q). Since P 1 ({g)(T) — 0y~tw(l)g~!) (which is a factor of Ly, ),
we find that P = (¢ — (’y). Since P is now an arithmetic prime of weight 2 and N is cube-free,
we know that H and Hy . are reduced algebras by [Hid13a, Corollaries 1.2 and 1.3] (in [Hid13a],
only the cuspidal Hecke algebra is dealt with, but the proof is the same for H). Thus Hp is an
algebra direct sum of the Eisenstein part and the cuspidal part; so, the exact sequence has to
split.

Thus hereafter, we may assume that ({b\q /0,)(q) Z ¢! mod P. By the well-known theory of
admissible representations if x(P) has characteristic 0 and by Vigneras’ modulo p representation
theory of admissible representations (see [Vig89, Theorem 3]) if P|(p), W(Gq,ﬁq) mod PAw p
is irreducible. The vectors e(f,%) and e(6,)|[¢g] modulo PAw p in the irreducible 7, :=
(mq mod PAw, p) are linearly independent. This shows the above claim (C).

To make a section, first assume that ¢ is prime to N/q. Letting (61,1) be the pair with 6,
which is 6 regarded as a character modulo Mg, we have e(61,v¢) = e(8,v¢) — 84(¢)e(8,v¢)|[q] up
to units in Ay, p by the argument in the previous section. Similarly e(8,¢1) = e(6, ) — @q(q)e(e,
¥)|[g] for ¥y which is ¢ regarded as a character modulo M;q. Then

Res(E(61,4)) = Res(E(8,v) — 0,(¢)E(8,4)|[a]) = Res(E(0, %)) — ,(q)Res(E(6,))]
Res(E(0,41)) = Res(E(0, %) — q(q)E(0,¥)|[q]) = Res(E(0,¥)) — 1q(q)Res(E(9, v))

Thus the section of level N/q extends to the level N.

Note that N is cube-free. Thus the remaining case is when ¢?|N. If €(8) and €(z)) are both
prime to g, by the irreducibility of 7,4, e(6,), e(0,v)|[q] and (6, 1))|[¢]* span a three-dimensional
subspace in 7,. Thus we have e(61,v¢1) = e(8,¢1) — 6(¢q)e(8,4¢1) which does not vanish in 7.
Then e(01, 1) — E(01, 1) gives a section on (61, 1)-eigenspace. If ¢|€(6) but ¢{€(¢)), we define
8(01, ¢) = 6(9, "7[)1) - 9((])6(9, ¢1)7 and if quQ:(e) but Q|€(ﬂ))? 6(9, 7111) = 6(0> 7111) - LZJ((])G(Q, 7111% and
the same argument works well. If ¢|€(0) and ¢|€(¢)) but one of the characters is imprimitive at
another prime ¢’, we apply our argument to ¢’ in place of ¢, and we get the section. The case
where N|€(0)€(v)) is covered by Ohta’s result that is explained at the beginning of the proof. O

[q],
|[g]-

Let E be the image of H in Enda (E(V, x1; Aw)) and define Ck = h®ug E = (ha E)/H (the
Eisenstein congruence module). As long as p { ¢(IV) and 0 ramifies at p, pm = DY and (M, Mz)
determine a unique maximal ideal m = m(6,¢; My, M) of H (and E). Since (6,1; My, Ms)

determines (6, 1; My, M) uniquely, we have Ey, = Ay (as (0,1) determines (6,1) by pfp(N)).
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COROLLARY 4.3. If p{6p(N), N is cube-free and § ramifies at p, then we have Chary, (Cm) =
(A(T;0,v)) in Aw for the localization Cg,, of Cg at m = m(6,; My, M), where A(T;6,v) is
defined for 01 mod Mip and 1) mod Ma.

Proof. We have a pairing H x M(N, x1; Aw) given by (h, f) = a(1, f | h). If we define
M(N,x1: Aw) = {f € M(N,x1;Qw) | a(n, f) € Aw for all n > 0}

then, as is well known (see [Hid86a, §2]), this pairing H x MV(N, x1; Aw) is perfect; i.e. as Ay-
modules, Homy,, (H, Ay) = M(N, x1; Aw) and Hom,, (M(N, x1; Aw), Aw) = H by sending
the linear form: > a(n, F)q" — a(n, F) (indexed by n) to the Hecke operator T'(n). However,
by definition, M(N,Xl;AW)/M(N,Xl;AW) — Qw/Aw by f — a(0,f), and the inclusion
f— a(0, f) is I'-equivariant. The group I" acts on the constant term by the character: I' 5 z —
z~1 € W (as by our choice of the action, weight 1 corresponds to the trivial action). This shows
that after inverting 77 = t — 41, the pairing is perfect between M(N, x1;4) and H ®4,, A
over the principal ideal domain A := Aw[1/T"¢(N)]. The Ay -perfectness of the pairing on
h x S(N, x1; Aw) holds in the same way as in the case of H without inverting 7" (or ¢(N)). We
have an integral H-linear map I : e-W[[Cx]][x1] = M(N, x1; Aw) given by I(e(,)) = E(0,v) if
(6,%) is not induced by (w™!,17) and I(e(#,v)) = T'E(0,v) otherwise. Let m = m(8, 1; My, Ma),
regard it as a maximal ideal of H, and assume 6¢~!(p) # 1. By [Oht03, Lemma 1.4.9], the
multiplicity of the Hecke eigenvalues of F(6,1) is equal to 1 even modulo my. Thus after
localization at m,

W[[C’oo]]m[so(lm] = WHTH[

as Hy-modules. Then we have

e(d,v) =: Cg,.

Res0I<e-W[[COO]]m[ ! )D = WITTL/e(N)]

¢(N) T:0,o)WITN[/e(N)]

Puttlng S= S(N7 X15 QW)QM(N7 X15 A) and & = S(N> X15 QW)QM(Na X1; A) in M(Na X15 QW)a
we have the following exact sequence of Hy-modules,

0= En®Sm—> M(N,x1;Aw)m > C — 0 with C = Cg,, as Hy-modules. (4.5)

Defining an A-dual module M* by M* = Homu (M, Qw /A) for any torsion A-module M of
finite type, we have M = M* (non-canonically) as A-modules, by the following lemma applied
to the principal ideal domain A. Noting that Hy ®a,, A (respectively (hy @ En) ®a, A)
is the A-dual of M(N,x1;A)m (respectively Sm @ &n) and again applying the following
lemma to the exact sequence (4.5) tensored A over Ay, we have an Hp-linear isomorphism
(CEn)" = Cr, ®Ay A; so, we get Chary,, (Cg,,) = Chary,, (Cg,) = (A(T;6,v)) in A. Since non-
divisibility 7”4 Chary, (Cg,, ) Chary,, (Cg,, ) is known, we have Chary,, (Cg,, ) = Chary,, (Cg,, ) =
(A(T;6,7)) in Ay as desired if pto(N). O

LEMMA 4.4. Let A be a principal ideal domain with quotient field K. For each A-module M,
we define M* = Homy (M, K/A) and MY = Homy(M, A). For an exact sequence 0 — M —
N — T — 0 of A-free modules M and N of finite rank with A-torsion quotient T, we have a
canonical exact sequence of A-modules 0 — NY — MY — T* — 0 and an isomorphism T* =T
as A-modules.
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Proof. Since A is a principal ideal domain, we have the following facts:

(1) M — M~ is a perfect duality with M = (M*)* canonically for A-modules of finite type;
(2) if an A-module T is torsion of finite type, T'= T* as A-modules non-canonically;
(3) if an A-module T is torsion of finite type, Exty (K/A,T) = T.

By perfect duality, we have an exact sequence 0 - L* — N* — T* — 0 of A-modules. Applying
the covariant functor X — Hom4(K /A, X) to this exact sequence and noting isomorphisms

Homu (K /A, M*) = Hom4 (K /A, Homa(M, K/A)) =2 Homa(M ®4 K/A, K/A) = MY

and ExtY (K/A,T*) = T*, we get the exact sequence 0 — NV — MY — T* — 0. O

5. CM components

We study when a CM component of Spec(h) is a Gorenstein ring. The result is used to determine
the characteristic ideal of the congruence module of the CM component and other non-CM
components. The characteristic ideal is expected to give the level of non-CM components in
the connected component containing the CM component. We first quote the following fact from
[Hid13a, § 3] (or [Hid11b, (CM1-3) in §1]).

PROPOSITION 5.1. Let Spec(J) be a reduced irreducible component of Spec(h) as in the
introduction. Write J for the integral closure of J in its quotient field. The following five conditions
are equivalent:

(CM1) F is a CM family with py = py ® ( /Q) for a quadratic field M with discriminant D;

(CM2) the prime p splits in M, and we have py = Ind@ Uy for a character ¥y : Gal(Q/M) — Jx
with prime-to-p conductor € = €(¥y) unrarmﬁed outside €p; we have D - N(€)|N;

(CM3) for all arithmetic points P of Spec(J) (@p), fp is a binary Hecke eigen theta series of the
norm form of an imaginary quadratic extension M /Q with prime-to-p conductor N (€)D;

(CM4) for some arithmetic point P of Spec(J)(Q,), fp is a binary Hecke eigen theta series of
the norm form of an imaginary quadratic extension M/Q with prime-to-p conductor
N(¢)D;

(CM5) for some arithmetic prime P, pp is an induced representation of a character of Gal(Q/M)
with prime-to-p conductor €, where M is a quadratic extension of Q.

A binary Hecke eigen theta series of the norm form of an imaginary M is called a CM theta
series.

See §10 for a description of the prime-to-p conductor of Galois representations. We write
(&) (respectively C(p)) for the prime-to-p conductor of a Galois character £ (respectively a
two-dimensional Galois representation p). We say a Hecke eigenform f has conductor C(f) if
the automorphic representation generated by f has conductor C(f); so, f itself could be an
old form. Recall that the prime-to-p part C of this conductor C(f) is equal to the prime-to-p
conductor C(py) of the p-adic Galois representation associated to f. We say that J has CM (or
is a CM component) by M if one of the above equivalent conditions is satisfied by an imaginary
quadratic field M. In the rest of this section, we fix a CM component J of h having CM by an
imaginary quadratic field M. For ¥y as in (CM2) and a complex conjugation ¢ € Gal(Q/Q), we
put

@ = (\IJJ mod mﬂ)a @C(U) = J(CO’C_I), E @@ s B (51)
C = C(py) = C(Indf, ¥y) = N(€(¥))D, €=¢€(¥y), c¢=€@ ), ¢=€nt
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for € = €, where N(a) is the norm of a fractional ideal a of M and C(¥y) is the prime-to-p
conductor. Then ¢ = ¢, and ¢ is a factor of ¢ but may not be equal to ¢

Let Spec(h} ) be the minimal closed subscheme of Spec(h) containing all reduced irreducible
components having CM by a fixed imaginary quadratic field M. We take the connected
component Spec(T) of Spec(h) containing Spec(J). Let Spec(Tem) be the union of all reduced
CM components inside Spec(T). Note that Spec(T¢y) could contain components having CM by
different imaginary quadratic fields. We would like to know when T, is a Gorenstein ring or more
strongly a local complete intersection. This can be answered by proving Ty, is isomorphic to the
continuous group algebra W[[Z,]] for an appropriate ray class group Z, of M (see Lemma 5.5).
Such an identification could fail if either Spec(Tey) intersects with Spec(h} ) and Spec(hX)
for different fields K and M or Spec(T¢y) contains a union of two copies of Spec(W[[Z,]]); i.e.
new and old (or old and old) CM components coming from a primitive CM component. Here
the word ‘primitive’ is used in the sense of [Hid86a, p. 252 in §3]. Thus we look for sufficient
conditions to preclude these bad cases in terms of level and the prime-to-p conductor of p. We
start with a result that is simple but crucial for the Gorenstein-ness of the CM local ring given
in Proposition 5.7.

PROPOSITION 5.2. Let A be a p-profinite local integral domain for p > 2. Let M and K be two

distinct quadratic fields in Q. Suppose that we have continuous characters ¢ : Gal(Q/M) — A*
and ¢ : Gal(Q/K) — A* with absolutely irreducible Ind% ¢ over Q(A) such that Ind%[ R

Ind% ¢. Write p° for the character Gal(Q/M) > 7 +— p(or0~!) for 0 € Gal(Q/Q) inducing the
generator of Gal(M/Q). If the representations Ind(]%[ p Ind% ¢ are ordinary at p, then we have:

(1) ¢ and ¢ are both of finite order;

(2) we have ¢7 = (M)gzz; so, p~ given by (%)~ =: 79 is equal to (M),
(3) if p does not ramify in MK /Q, ¢ and ¢ are both unramified at p;
(4) if ¢ ramifies at a prime factor of p, then p splits in M, ¢ is unramified at another prime

factor of p, p ramifies in K and ¢ is unramified at p;
(5) if K is real and Ind% @ is odd, M is imaginary and ¢ ramifies at exactly one real place.

Conversely, if ¢~ has order 2 and M is imaginary, we have two quadratic fields K, K’ distinct
from M with KM = K'M and finite order characters ¢, ¢' such that Ind% o Ind% ¢~ Ind%, ¢

Here the word ‘ordinary’ means that the representation restricted to a decomposition group
at p is isomorphic to an upper triangular representation with an unramified one-dimensional

quotient. In our case, the restriction of, say, Ind(]%[ © to a decomposition group at p is the direct

sum ¢ @ ¢° (for o asin (2)) or 1 & (M—/Q) for the identity character 1. Then ordinarity implies

that ¢ is at least unramified at one prime in M over p.

Proof. Suppose Ind% o = Ind}% ¢. We first prove assertion (2). Let N be the prime-to-p Artin
conductor of Ind% ¢. For any prime [ outside Np inert in K and split in M (such primes have
positive density), we have

0 = Tr(Ind} ¢(Froby)) = Tr(Ind¥, ¢ (Froby)) = ¢(1) + ¢(1°)

for 0 € Gal(Q/Q) inducing a generator of Gal(M/Q). Thus we have ¢~ (Frob;) = —1 if [ is inert
in K and split in M (note here that —1 # 1 because p > 2). For any other primes ¢ outside
Np inert in K and split in M, ¢~ (Frob;) = —1 = ¢~ (Frob,). Since FroblFrob;1 fix MK, by
moving g, Chebotarev density tells us that ¢~ factors through Gal(M K/M). Since Ind(]%[ © is
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absolutely irreducible, we have ¢ # ¢ (i.e. ¢~ # 1). Thus we conclude ¢ = (w)gp”. This
proves (2).

We now deal with assertions (3) and (4). By the remark preceding this proof, we may assume
that ¢ is unramified at one prime factor p? of p. If there is only one prime factor in M over p,
this forces ¢ to be unramified at p. If there are two factors of p in M, either ¢ is also unramified
at p or K ramifies at p by (2). If K ramifies at p, there is only one prime factor in K over p, this
forces ¢ to be unramified at p. Thus if M K/Q is unramified at p, (w)
and ¢ and ¢ are both unramified at p. This proves (3) and (4).

To show (1), first suppose that ¢ ramifies at a prime factor p|p. Thus p ramifies in K and

is unramified at p,

splits in M. Then (M) ramifies at two primes p and p?, and therefore ¢ has to be unramified
at p?. In short, ¢ ramifies at p and is unramified at p. Since p ramifies in K, ordinarity of
Ind(% ¢ forces ¢ to be unramified at p; so, ¢ factors through a finite ray class group Clk (') for
an ideal § prime to p. Thus Ind% p = Ind(% ¢ has finite image; so, ¢ has finite order.

Next suppose that ¢ is unramified at p. Then ¢ factors through the finite ray class group
Cly(f) of M modulo § for the prime-to-p conductor § of ¢. Now Ind% ¢ has finite image, and
we conclude that ¢ is of finite order (this proves (1)).

To prove (5), now assume that M is imaginary and write ¢ € Gal(Q/Q) for complex
conjugation. Since Ind(]%[ ¢ is automatically odd (as M is imaginary), we have Tr(Ind(]% ¢(c)) = 0.
Regard ¢ as an idele character of K. Then

d(—1lso) + ¢(—1o) if K is real,

0= Tr(lnd(]%] o(c)) = Tr(Ind(I% ¢(c)) = {0 otherwise,

where oo is an infinite place of K and oo’ is the other, and 1. is the identity of the co’-component
KX, =R C K. Thus ¢ ramifies at exactly one infinite place of K if K is real. Since Ind% © is
odd, we see that ¢ ramifies at exactly one infinite place of K if K is real. If M and K are both
real, p7/p = (w) is unramified at the two infinite places; so, either ¢ ramifies at the two
infinite places or is unramified at the two infinite places; so, this is impossible (finishing the proof
of (5)).

Suppose now that ¢~ has order 2 and that M is imaginary, to prove the converse. Then the
splitting field of ¢~ is a quadratic extension L/M. Since (¢~)7 = (¢~ )t =, L7 = L; so, L/Q
is an abelian extension of degree 4. This also shows that Ind% o~ is reducible: Ind% YT =ndE
for two characters 7, ¢ : Gal(Q/Q) with /¢ = (M—/Q) Since M is imaginary, for any complex
conjugation ¢, n(c) = ((M/Q)/c)¢(c) = —&(c). Since &(¢) and n(c) are +1, we conclude one of
them is —1, say, n(c) = —1. If one of £ and n has order 4, the other also has order 4. Since
€2 = n? is an even character, its splitting field K C L is a real quadratic field; so, M # K
and L = MK, a contradiction (as Gal(L/Q) has to be cyclic of order 4). Thus L is not a
cyclic extension; so, again it is a composite of two distinct quadratic fields M and K. Thus &
and 7 have order 2. Write p := Ind% @. As is well known, we have Ad(p) = Ind% o~ D (M—/Q)

and Endga)(p) = Ad(p) ©1 = no @ (M—/Q) @ 1 for the trivial representation 1. Therefore
we find p® & = p and p ® n = n. Thus for the fixed field K- of Ker(?) for ? = £, 7, we have
L = MK, = K,K¢ = K¢M, and there exist characters ¢ : Gal(Q/K7) — Q(A)* such that
p = Ind%} n = Ind%5 ¢¢ (e.g. [Hid0O, Lemma 2.15]). Then by (1), ¢ has finite order, and we
take K = K, (respectively K’ = K¢) and ¢ = ¢, (respectively ¢’ = ¢¢). O

COROLLARY 5.3. Suppose p > 2. Let M and K be distinct imaginary quadratic fields in which
p splits. If P € Spec(h} ) N Spec(hX)) is a prime divisor, we have P N Z,[[T]] = (T).
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Proof. Since pp has to be induced from M and K, we have Ind(]%, p = Ind(% ¢. Since p has to
be split both in K and M, ¢ and ¢ are unramified at p by Proposition 5.2(3), and by (Gal),
regarding [y, Q,] € I, C Gal(Q/M), we have t = p([y,Qp]) = 1580, T=0inh/P;ie. T € P. O

Let Tp be the localization of T at a prime divisor P € Spec(T) and write pr, for p, for
a = Ker(T — T%4). Let u(q) for primes g|Np be the image of U(g) in Tp. Similarly, we
write a(l) € J for the image of T(I) or U(l) in J. We have k := det(pr,) : Gal(Q/Q) —
W([T]]. By [Hidlla, Proposition 4.3.1], we have det(pr,)([u,Q]) = xi(u)t°e(w)/108:(0) for
u € Z*. Consider the projection (-) : Im(det(pr,)) = Im(det(pr,)), for the maximal p-profinite
subgroup Im(det(pr,)), of Im(det(pr,)), and put (k) = (-) o K; so, & = x1(k). We define
prP = prp ® \/@ _1, where the square root is supposed to have values in the p-profinite part
Im(det(pr,))p- Note that 1/(k) has values in W[[T]]* and that pr,, has values in GLy(Tp), since
p > 2.

LEMMA 5.4. Let the notation be as above (in particular, P is a prime divisor of T). Suppose p > 2.
Put x®) = X|(z/nz)x for the prime-to-p part of x. Assume that W is a sufficiently large valuation
ring finite flat over Z,. Let T, be the subring of Tp generated by {Tr(pTP(a))}UeGal(@/Q) over

W([T]]p. Then T is generated by {Tr(pT,, (J))}UEGal(@/Q) over W{[T]]p. Further suppose that
the prime-to-p conductor of pr, coincides with the prime-to-p conductor C(pp) of pp. If N =
C(pp), we have:

(1) Tp is reduced, and if C(p) = N, T is reduced;

(2) the total quotient rings Q(Tp) and Q(T's) coincide;

(3) if k(P) has characteristic 0 or ptp(N), Tp = T'’s[u(p)] under absolute irreducibility of pp;
(4) if pp is absolute irreducible, we have Tp = T’ under one of the following conditions:

(a) w(P) has characteristic 0 and u(p)? # x?)(p) mod P;
(b) k(P) has characteristic 0 and T ¢ P;

(c) Xl‘Zg is non-trivial.

Later we compute the congruence module of a CM component of the ring T’ in terms of
anticyclotomic Katz p-adic L-functions. The relation between T and T’ is clarified by this lemma.

Proof. For a continuous representation p : Gal(Q/Q) — GLo(R) with a p-profinite local W-
algebra R, let ¢ be the unique square root character of Gal(Q/Q) with values in 1 + mp of
the projection of det(p) to 1 + mp. Let R; (respectively R;) be the subring of R generated
topologically over W by the value of Tr(p) (respectively Tr(p ® £~1)). The subring R; contains
2det(p(0)) = Tr(p(c))2—Tr(p(c?)). Since p > 2, we have det(p(c)) € Ry, and thus R; contains the
values of £, and hence R; C R;. Furthermore, if R} contains the value of £, we have R; D R; as
Tr(p®&E71) = €71 Tr(p). Since W[T]] contains the value of 1/(k), the subrings of Tp generated
over W[[T]p by {Tr(pr,(0))},cca(@/g) and {Tr(pr,, (0))}recal@ @) are the same. This shows
that T is generated by {Tr(p7,(0))},ccai@/q) over W(T]p.

Since the argument proving (1) is identical for T and T p, we give here the one for Tp. Since
N = C(pp)|C(pr)|N by Lemma 10.2(1) and (4), we conclude C(pp) = C(pr) = N. For any
prime P’ € Spec(Tp), P’ D P, and we have N = C(pp)|C(pp/)|N; so, C(pp) = N. Since the
nilradical of T comes from g¢-old forms for ¢|N (i.e. the nilradical acts faithfully on the space
of g-old forms for ¢q|N; see [Hid86a, Corollary 3.3]), it has to be trivial. Thus we conclude the
assertion (1) for Tp.
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We now look into the subring T’ of Tp generated by {Tr(pTP(a))}UeGal(@/Q) over W{[T]|p
more carefully. Since T’ contains the value Tr(pr,) at the I-Frobenius element for all primes
[{Np, by the Chebotarev density theorem, Tr(pr,) has values in T). Thus, we have a
representation p : Gal(Q/Q) — GL2(Q(T)) with Tr(p) = Tr(pr,) by the theory of pseudo
representation. The projection of this representation to each simple factor of Q(T’) is absolutely
irreducible. Since u(q) = 0 or a unit in each irreducible component of Spec(T) (because of [Miy89,
Theorem 4.6.17]), we have u(g) = 0 or a unit in the entire T. Thus, as for (2), (3) and (4), we
may assume that u(q) € T*. Under this assumption, for an arithmetic P’ € Spec(T), H°(I,,
ppr) = k(P') (cf. [Hid1la, Theorem 4.2.7]). Thus Ho(I,, Q(T™%)) = Q(T™), which implies
Hy(I,,Q(T%)) = Q(T'). Take an element ¢, € Gal(Q/Q) which induces [g, Q] on the maximal
abelian extension ng of Qq. Since u(q) is the eigenvalue of p(¢q) on Ho(ly, Q(T%)) = Q(T%),
we have u(q) € Q(T'). This proves (2).

Hereafter we assume absolute irreducibility of pp. Then we have p with values in GLo(T’),
and we take a T’p—free lattice L(p) C Q(T’»)? stable under p. By definition, Tp is generated
over W/[[T]]p by the image ¢(I) of T'(I) for 1 Np and the image u(q) of U(q) for ¢|Np. Since
t(l) = Tr(pr,(Frob;)) = Tr(p(Frob;)), by Chebotarev density, to show (3) and (4), we need
to see if u(q) is contained in T’,. We may assume that u(q) € Tp; then, under the assumption
N = C(pp), we have Hy(I, pr,) has rank 1 on which ¢, acts by u(q) (e.g. [Hid11a, Theorem 4.2.7
(2 3).

Suppose g # p, and take any arithmetic prime P’ of Spec(T). Then, because of u(q) € T*, the
local p-component of the automorphic representation wp/ generated by fps is either a Steinberg
representation or in the principal series of the form =w(«, ) with § unramified at ¢. In the
Steinberg case, as u(q) # 0 mod P’, x; is unramified at ¢, and the ¢ divides N exactly once.
Then for any other arithmetic point P” of Spec(T), wp~ is Steinberg at ¢ and we have the
identity Cy(ppr) = q. We conclude that either the local component of wp» at p is Steinberg for
all arithmetic P” € Spec(T) (Steinberg case) or in principal series for all arithmetic P” € Spec(T)
(Principal case).

In the Steinberg case, we write pr|p, = (§5) with €/6 = N for the cyclotomic character
Ny Gal(Q,/Qq) — Z); so, we have k = N2 and €/5(py) = q # 1. Let A := p(dy) (k) "% (¢y).
Taking W so that it contains /g, the operator A has two distinct eigenvalues a = \/6_1, b=./q
in W*. Note that a Z b mod P (by the assumption that either x(P) has characteristic 0 or
pf@(N)). In the principal case, since u(q) # 0, we may write pr|p, = (6 g) with unramified
d, and €|, = x1 is non-trivial with conductor €,(x1) dividing N exactly (by Lemma 10.2(2)
combined with [Hid1la, Theorem 4.2.7(3)]). Thus we can find o € I, such that p(c) has two
eigenvalues a = 1,bin W*. Again we may assume a # b mod P by our assumption. Put A := p(o)
in the principal series case. Write p” for p® (m>_1/ 2 in the Steinberg case and for p in the principal
case. Now we argue in the two cases (the Steinberg case and the principal series case) at the
same time. Take a T’p-free p”’-stable T'p-lattice L(p”) C p”. The matrix A acts on L(p”) by two
distinct eigenvalues a,b in W* with a # b mod P. By adding ‘[a]’, we indicate the a-eigenspace
of the operator A; so, L(p")[a] = T = L(p")[b]. Then on the a-eigenspace L(p")[a] = T, ¢q
acts by u(q){k)~/?(¢,) in the Steinberg case and by u(q) in the principal series case, and hence
u(q) € T’. This shows (3).

It remains to prove (4). By (3), we have Tp = T’s[u(p)]. Let T' C T’ be the p-profinite ring
generated by the trace of pr, over W[T]]. Now we have det(pr,)([p,Qp]) = xP(p) € W C T
as det(pr,)(xP))~! factors through Gal(Q[up=]/Q) in which [p,Q,] = 1. Thus we have a :=
Tr(prp(¢p) = u(p) + u(p) " x®P (p) € T C T, and u(p) satisfies X2 — aX + x®P(p) = 0. We
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conclude u(p) € T’ if a® — 4xP) (p) = (u(p) — u(p)~'xP)(p))? is non-zero and a square in T’p. By
[Hid11c], u(p) is transcendental over W, and hence a? — 4x®) (p) # 0 always.

First assume a? — 4x®)(p) # 0 mod P and x(P) has characteristic 0. Since u(p) € Q(T’),
u(p) is in the integral closure ﬁVP of T in Q(T’). Since 'ﬁ"P/']I"P is a torsion T’,-module of finite
type, the support of ']f’P /T’» in Spec(T’) is made up of only finitely many closed points. Thus by
extending scalars, we may assume that 'f]f‘}, /P =K for K = Q(W) for all maximal ideals P’ of ﬁ‘jp
in the support of ﬁ"P/’]T’P. In OEher words, for any prime P C 'ﬁ"P over P, 'f‘jp/]g’ =T,/P' =K,
and in particular, k(P) = k(P). Let a be the image of u(p) — u(p)~'x® (p) in x(P). By our
assumption, « € W C &(P). Then regard o € W C T’ and consider a2 (u(p) — u(p) " 'xP (p))? =
a2(a® — 4xP)(p)) € T', which is in 1 + (P NT’). Since p > 2, 1 + (P N'T') is p-profinite, and
(1+(PNT))? =1+ (PNT). Thus a®> — 4x)(p) is a square in T’s, which implies u(p) € T'p.

Now assume that a? — 4x?)(p) = 0 mod P. If T ¢ P, by (Gal), we find o € I, such that
the eigenvalue of p(o) is 1 and z € W* with z # 1 mod P. Then if W is sufficiently large
containing z mod P in x(P), we can split the p-representation module (T’5)? into the product of
two eigenspaces of p(o). We have eigenspace decomposition L(p) = L(p)[1] @ L(p)[z] under p(o).
Then u(p) acts on L(p)[1] = H°(I,, L(p)) = T’» as a Tp-linear operator (the action of Frob,);
so, u(p) € T'p.

If x1] 7y 18 non-trivial, we can again find o € I, such that the eigenvalue of p(o) is a = 1 and
b e W* with a Z b mod P. Then under the notation introduced in the proof for ¢ # p, we have
L(p)la] =T’ = L(p)[b]. Since u(p) is the eigenvalue of Frob, on L(p’)[a], we get u(p) € T'’. This
finishes the proof of the last assertion (4). O

We will identify in §7 the characteristic ideal of the congruence module between the CM
component Spec(Tc,) C Spec(T) and its complement with the ideal generated by the
anticyclotomic Katz measure in [Kat78, HT93] (interpolating anticyclotomic Hecke L-values).
Since the anticyclotomic Katz measure is a measure on the anticyclotomic class group, we need
to relate class group Z := Cly/(€p™) and its anticyclotomic counter part Cly,(¢'p™) (¢ = €N¢).
This is what we do now. Consider the ray class group Cly;(€p”) modulo €p”, and put

Z =1imCly(€p"), and 3 = lim Cly (¢p"). (5.2)

On 3, complex conjugation ¢ acts as an involution.

Let Z, (respectively 3,) be the Sylow p-part of Z (respectively 3). We have a natural inclusion
(O x 5:);)/53X into 3. Let Z~ = 3/3'"¢ (the maximal quotient on which ¢ acts by —1). We
have the projections

m:3—~>27 and ™ :3—> 7.

The projection 7~ induces an isogeny 3'~¢ = {227¢ | z € 3} — Z~ whose kernel and cokernel
are killed by 2. In particular, assuming p > 2, 7~ induces an isomorphism between the maximal
p-profinite subgroups Z, C Z~ and 311)_‘3 C 3'7¢ namely, we have 7~ : 311,_‘3 =z, ifp>2.
Similarly, = induces 7 : 311,_6 = Zp if p > 2. Assume now p > 2. Thus we have ¢ : Z, = Z by
first lifting z € Z, to z € 3]12_0 and taking its square root and then projecting down to == (z1/2).
The isomorphism ¢ identifies the maximal torsion-free quotients of the two groups Z, and Z,
which we write as I'ys. This ¢ also induces W-algebra isomorphism W([[Z,]] = W{[Z, ]| which

is again written by ¢. Then we have Z = Z®) x Z, with finite group Z (#) of order prime to p.
Identify Z, = Gal(M,/M) (respectively Z(P) = Gal(Mép)/M)) for an abelian extension M,/M
(respectively M ép ) /M) by the Artin symbol.
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LEMMA 5.5. The algebra W[[Z,]] is a local complete intersection and hence Gorenstein over Ayy.

Proof. The natural map I' C Z; — Z induces a W/[[[']]-algebra structure on W[[Z,]]. Identifying
WII']] with Ay by v — t, we regard W([[Z,]] as a Ay-algebra. Writing Z,/T" as a product of
cyclic groups C; x --- x C, with |C;| = g; for a p-power ¢; and picking z; € Z, whose image
generates Cj, we have z?j € I' which we regard as an element [z?j ] of I' ¢ W[[I']] = Aw. Then we
have an isomorphism Aw [T7, ..., T.]/((1+T;)% — [z?j])j for the polynomial ring Aw|[11,...,T}]
and its ideal ((1+T3)% — [z?j])j generated by (1+17})% — [z?j] e Awl[Th,..., T forj=1,2,... r.
This shows that W[[Z,]] is a p-profinite local complete intersection over the regular ring Ay (and
is hence a Gorenstein Ay-algebra; see [Mat86, Theorem 21.3)). O

We regard W[[Z,]] as a Ay-algebra by the isomorphism ¢. Let T be a connected component
of h containing a CM component J with C(py) = N. Recall the character Uy : Gal(Q/M) — J* as
in (CM2) in Proposition 5.1. By class field theory, we may regard Wy as a character Uy : Z — I~
Taking W sufficiently large so that W = In @p, then Wy, () has values in W* C J%. Define
Ur : Gal(Q/M) — W([[Z,]]* by a homomorphism given by WUr(o) = \IJJ(O'|Mép))O'|MP e WIZ,]],
Mg)) € W c W[[Z,]]. Define W7, : Gal(Q/M) — W{[Z,]] by 7 = vo Ur.
By Lemma 5.4 combined with [Hid86a, § 7] (or [Hid93, § 7.6]), there exist algebra homomorphisms
©: T — WI[[Z]] and ©~ : T — W([[Z,]] given by ©(Tr(pr(Frob;)) = Tr(Ind(]%[ U (Frob;)) and
O~ (Tr(py(Froby)) = Tr(Ind% U/ (Froby)) for all primes {1 N (€)p, where pr. = pr ® \/@_1 as in
Lemma 5.4. The above identities uniquely determine these homomorphisms by Lemma 5.4(2).

We check that © (and hence ©7) is a Ay-algebra homomorphism. We summarize in the following
lemma.

where we regard Uy (o]

LEMMA 5.6. Let the notation be as above, and assume p > 2. Then:

(1) © opp = Ind% Ul over Q(T);

(2) v:Zy, = Z, canonically;

(3) if N = C(py) for a CM component J, the following diagram of Ayy-algebras is commutative.

T 2> WI[[Z,)]

|

T——W((Z,])

Proof. The only fact we need to verify is the identity pf = Ind% Ul over Q(T). Let (¥')
be the projection of W7 to the p-profinite part of the image Im(W¥7). Since pT’Gal(@/M) =

Ind¥, Urlga@an = ¥ © ¥, we have K := det(pr) = det(Ind%, wp) = W+ over Gal(Q/M),
where U'*¢(0) = ¥(ococ™!). Thus (k)| Gai@/ar) 18 equal to (Up)te. Since pfp = pr @ \/<K:>_1,
we have ©~ o pr. = Ind%(\I’T<\If’H‘>_(1+C)/2) = Ind%(wr (W) (1=9/2) where i = Up/(¥r) (the

prime-to-p part of ¥r). By the construction of ¢+ and the definition W7, = ¢ o ¥y, we confirm
W=ty - <\pT>(1—c)/2‘ O

Fix a CM irreducible component Spec(J) of Spec(h), and let Spec(T) be the connected
component of Spec(h) containing Spec(J). Let € be the prime-to-p conductor of the associated
character Uy. Regard the character Uy as a Z,-algebra homomorphism of Z,[[Z]] into J. Then
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the algebra homomorphism Wy restricted to Z,[Z (P)] has values in J N @p, which is a discrete
valuation ring finite flat over Z,. By extending scalars, we assume @p NnNJ=w.

PROPOSITION 5.7. Let J be a CM component Spec(J]) C Spec(Tew), and let ¢» = ¥y mod my.
Assume p > 2 and the following two conditions:

(i) ¥ has order > 2, and v is ramified at p (and unramified at p¢) with € = €(¢p );
(i) C(p) = N for p = py mod my = Ind(j% ).

Then we have:

(1) T is a Gorenstein ring, and Ty, is a local complete intersection canonically isomorphic to
W([Z,)] for the maximal p-profinite quotient Z, of Z = lim | Cla(Cp™);

(2) writing pr.., %jnd(]%[ 1 (respectively p = Ind(]%[ 1) for a character ¥ : Gal(Q/M) — W{[Z,]]*
(respectively 1 : Gal(Q/M) — (W/mw)*), the ring Tew with universal character 1 is
isomorphic to the universal deformation ring of 1 over W for characters unramified outside
Cp;

(3) each CM component J of T is canonically isomorphic to W[[['y]] and hence J = J, where
I'ps is the maximal torsion-free quotient of Z.

Proof. If p = Ind(]%[ 1, p determines the pair of characters {¢,7°}. By (i) (and Proposition 5.2),
p is absolutely irreducible and is not isomorphic to any induced representations from any other
quadratic field. Since C(p) = N(€(¥)))D, N = C(p) and N = N(€)D implies €(¢)) = €.

Let (R, v : Gal(Q/M) — R*) be the universal couple with the universal character unramified
outside p¢€ deforming v over W. This couple (R, 1;) is characterized by the following universal
property: for any local pro-artinian W-algebra A with residue field F and any character ¢ :
Gal(Q/M) — A* unramified outside p€ with ¢ mod m4 = ¢ (for the maximal ideal m4 of A),
there exists a unique W-algebra homomorphism ¢ : R — A such that ¢ = 10 {/; Such a pair
(A, ) is called a deformation of ¢ (see [Maz89] for general theory of Galois deformation).

We now show R = W{[Z,)]] by class field theory. To see this, we pick a deformation ¢ :
Gal(Q/M) — A* of 1) unramified outside p¢; thus, A is a local aritinian W-algebra sharing
the residue field F with W and ¢ mod my = ¢ for the maximal ideal m4 of A. Let v be the
Teichmiiller lift of v; so, ¢/ = ¢y ~! has p-power order. For a prime [|€, by class field theory,
the image I[ab of the inertia group I; C Gal(Q/M) in the Galois group of the maximal abelian
extension of M over M is isomorphic to the multiplicative group O of the [-adic integer ring of
M;. Since ¢’ has p-power order and p # [, ¢’ must be trivial on 149 C O/°. Thus the [-conductor
of ¢’ is at most [, and hence ¢ = ¢'1 factors through Z. Thus ¢’ factors through the maximal
p-profinite quotient Z,, and extends to a unique W-algebra homomorphism ¢ = v, : W{[[Z,]] - A
such that ¢|z, = ¢. Since Z,, is the maximal p-profinite quotient of Z, by class field theory, we
have the corresponding subfield M of the ray class field modulo p*°€ such that Gal(ﬁ /M) =Z,
by Artin symbol. Writing the inclusion Z, C W[[Z,]] as v — [y] and identifying Gal(M /M) = Zy,
define a character v : Gal(Q/M) — W([Z,]] by ¢ (o) = ¢(0)[o|57]. Then by our construction
Lop = p; so, (W[[Zp]], 1) satisfies the universal property of (R, ) for deformations ¢ of .

For an ideal a of T, write p, = pr mod a by abusing the symbol slightly. If p, = Ind(]%, )’
for a character v’ : Gal(Q/M) — A* for a local ring A containing T/a, ¥ has values in (T/a)*
(by (i) and Hensel’s lemma). Then we have C(p)|C(pq)|C(pr) = C(py) = C(p) by (ii). Thus
C(p) = C(pq). Write € for the prime-to-p conductor of ¢'. Then N(€\D = C(p,) = C(p) =
N(€)D. One of 9 or ¥/ must be a deformation of ), and one of them ramifies at p. Let 1’
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be the character ramifying at p. Then ramification of ¢’ at p forces ¥ = 1) mod m, as 9 is the
unique choice ramifying at p. Then we find € = €(¢)|¢’; so, € = ¢’. Thus ¢ factors through Z. By
Proposition 5.2, (i) implies that the local ring of T contains CM components of a single imaginary
quadratic field M deforming ). This shows that the reduced part Tgfﬁl of T¢p is the surjective
image of W{[Z,]] for a canonical morphism 7 : W[[Z,]] — T with Ind%(ﬂ 0 ) = prred. Since
N = C(p), T kills any old forms of level N and hence T is reduced (by Lemma 5.4(1)). Thus
Spec(Tem) is reduced, and hence Tey, is the surjective image of W{[Z,]] under .

Pick an irreducible component Spec(J) C Spec(W([[Z,]]). Then we have a continuous
character ¥y : Gal(Q/M) — J* with ¥j = ¥ mod my such that py = Ind(]%[ Uy, From € =
C(¢¥)|€(¥y)|€, we conclude €(¥y) = €. Thus ramification of ¥y is completely determined by 1;
so, we have W[[T|]-algebra homomorphism © : T — J associated to Wy. Since © gives rise to a
CM component, it factors through T, and makes the following diagram commutative.

©

Ten ——J

|

WIZp)] —=1J

Thus W([Z,]] = Tem is non-trivial over all irreducible components of Spec(W[[Z,]]); so, it is
injective, and pr_ = Ind% 1p. This proves the assertion (2).

By Lemma 5.5, Tem = W/[[Z,]] is a complete intersection. Each irreducible component of
Spec(W([Zp]]) is given by Spec(W{[I's]]), and hence any CM component of T is canonically
isomorphic to W[[['5/]]. Since W[[T'a/]] is integrally closed, we have J = J. This proves (3).

Taking inertia group I, = I, Gorenstein-ness of T follows from Theorem 7.1 in the following
section as p is absolutely irreducible and |7, = |7, ® P 1, with ¢ ramified at p and ¢° unramified
at p. This finishes the proof of (1). O

6. p-Adic Hecke L-functions

In this section, we assume that W contains a Witt vector ring W(IF,) for an algebraic closure
F, of Fp; so, F = F, in this section. We recall Katz’s theory in [Kat78] (and [HT93]) of p-adic L-
functions. We fix a prime-to-p conductor ideal ¢ of an imaginary quadratic field M C Q in which
p splits into (p) = pp (p = p© for the generator ¢ of Gal(M/Q)) for p = {a € O | |ip(a)|p < 1}.
We write the embedding M ¢ Q asi: M — Q.

Let A : M /M* — C* be a type Ay Hecke character (of conductor €(\)|€p>°). Then A has
values in Q on the finite part M ooy Of M. For the ray class group 3 modulo €p> of M,
write A : 3 — @; for the p-adic avatar of A\. Let —D be the discriminant of M so that
M = Q[v—D], and put 26 = v/—D. The alternating form (z,y) = Try;/q(zy°/v—D) induces
the principal polarization on the elliptic curve E(9O) defined over W = i, Y(W) with complex
multiplication by © with complex uniformization E(9)(C) = C/O. A choice of Néron differential
on E(9),y produces its complex period and p-adic period (2x,,) € (C* x W*). Katz
constructed in [Kat78] (see also [HT93] where the case € # 1 is treated) a measure ¢ with
values in W on the ray class group 3 modulo €p>° characterized by the formula

._1<f3 ngo) _ (o )T L0
PN apt Im(6)# Q82"

1=AP)A=AE®NE H]Ja-raL)ew (6.1)
gle
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for all Hecke characters A modulo €p>. Here L(s, \) is the primitive complex L-function of A,
and we use the convention that A(£) = 0 for a prime £ (of M) if £ divides the conductor
of A, and if £ is prime to the conductor of A\, A\(£) is the value of the primitive character
associated to A. Here the infinity type of A is ki + k(i — ¢) for integers k and « satisfying either
kE>0and k >20o0r k<1land k >1—k, ¢(\) # 0 is a simple algebraic constant involving the
root number of A\ and the value of its I-factor as specified in [HT93, Theorem 4.1]. Identifying
W[3]] with the measure algebra under convolution product, we may regard ¢ € W{[3]]. Strictly
speaking, the measure ¢ slightly depends on a choice of § in the following decomposition.

DEFINITION 6.1. We decompose € into a product §F.J such that J is a product of inert and
ramified primes over Q and §§. for a product of primes split over Q with § C §¢ and §+35. = 9.

By the interpolation formula (6.1) and the description of ¢(A) in [HT93, Theorem 4.1], the
measure is independent of § up to units in W[[3]].

Fix a CM component J of hé\f[n. Since we work under the assumptions of Proposition 5.7, we
have J = J. Then the associated character ¥y has values in J*. Take its anticyclotomic projection
VU7, and write € for the conductor of U, we may regard W as a character ¥ : Z~ — J*, which
induces W-algebra homomorphism W; : W[[Z~]] — J. We then write L,(V}) € J for the image
under ¥y : W[[Z7]] = J of ¢~ = 7, (). Decompose Z~ = A~ x Iy, for the maximal finite
subgroup A™ and the maximal torsion-free quotient I'y,. Via ¢t : Z, = Z7, we identify I'yy = I'y;.
By this projection ¥} : W[[Z7]] = J, we identify J = WI['};]] = W[[T'y]], and in this sense,
Ly(V¥y) is a branch of the anticyclotomic Katz measure 7, (p) = ¢~ € W[[Z7]]. We have a
(p) (p)

to p. If we fix a character ¥ : Z~ — F*, its Teichmiiller lift v~ : Z— — WX factors through
7% S0 we have a ¢—-projection 7 : WI([Z~]] = WI[[Z,]] sending (2P 2)) € Z= c W[ Z7|]¥

to ¢~ (2P))z, € W[[Z, )] Weput L=(¢ ) =7 o9~ =7, o~ € W[[Z,]] % W/([Z,]]. The

projection of L~ (¢)~) to each irreducible component J of T} = WI[Z,]] gives rise to Ly(¥7) € J.

canonical decomposition Z~ = Z*” x Z, for the maximal finite subgroup Z-" of order prime

7. Congruence modules

Let Spec(T) be a reduced connected component of Spec(h). Write pr : Gal(Q/Q) — GL2(Q(T))
for the Galois representation associated to this component. We quote the following result from
[Hid13a, Theorem 4.1], which is essentially proven in [MW86, Proposition 2 in §9].

THEOREM 7.1. Let B be a prime ideal in Spec(T). If pys is absolutely irreducible and py|r, = (3 %)
with § # 1 for the inertia group I, C Gal(Q/Q) at p, then the localization Ty is a Gorenstein
ring.

Let J be as in the introduction (the ordinary part of the projective limit of the Tate modules
of modular jacobians) on which h acts, and write J(T) = T - J. Then the connected—étale exact
sequence produces the following commutative diagram of exact rows.

J(T)° —= J(T) ———— J(T)*"
|
T —— J(T) —> Homy (J(T), A)
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Here the vertical arrows are isomorphisms of T-modules. This is shown in [Hid86b] under the
condition (R) in the introduction and in [Oht03] without assuming (R). Thus Gorenstein-ness of
Ty implies freeness of J(T)y over Tg. In particular, if (R) is satisfied and p = pn is absolutely
irreducible, Lean(I) = J(T) @1 [ is free of rank 2 as claimed in the introduction (so, in this case,
(Fcan) holds).

Let Spec(J) C Spec(hL) be a CM irreducible component and Spec(T) be the connected
component of Spec(h) with Spec(J) C Spec(T). Assume that Spec(T) is reduced, and write
P = pm; : Gal(Q/Q) — GLx(F) for the mod p representation of the component T. Then p &
Ind(]%[@ for a character ¢ : Gal(Q/M) — F*. Let ¢ be the Teichmiiller lift of ). Write ¢ =
¢(U)) for the prime-to-p conductor of the associated character ¥y : Gal(Q/M) — J*; so we
assume 1 = (U3 mod my). Write Spec(T2 ) = Spec(h2L )N Spec(T); so, Spec(TM ) is the minimal
closed subscheme in Spec(T) containing all components with CM by M. We therefore have the
projection maps

T — T — 1

where all rings involved are Gorenstein rings if p is absolutely irreducible and ¢/ has order > 2
and is ramified at p (see Proposition 5.7). Recall S, which is the set of split prime factors q in
M of N but qf N(€(V¥})). Consider

Ein =[O - 95 @N@ (1 -vy@N@ )} €l and Eyy=1ifS=0.  (7.1)
qes

Note here that E y is the product of Euler factors at q € ¢ of L,(¥;)

Hereafter in this section, we assume that W O W (F,) to have L, (Y )e WI[Z,]] as in §6.

THEOREM 7.2. Let the notation be as above. Suppose W D> W (F,), p > 5, that Spec(T) contains
a non-CM minimal primitive component Spec(I) and that p = Ind(]%[ 1 for an imaginary quadratic

field M in which p splits. Suppose further that ) has order > 2, 1) ramifies at p, and one of the
following conditions holds:

(a) pte(N) and C(p) = N;

(b) E1n € my and pt®(N) for the Euler function ® of M (i.e. ®(N) = N? [T (1= (1/N(q)))
for primes q in M ).

Then TY, is canonically isomorphic to W([[Z,]] for the p-profinite part Z, of the anticyclotomic

ray class group of conductor €(1p )p*. If we write L~ (¢ ) € W (F,)[[Z, ] for the anticyclotomic

Katz measure of modulo p branch character ¢ and Spec(T%,) for the complement of Spec(TM )

in Spec(T), we have TY, @1 Ter, = W([Z,]]/L~ (¥ Y)WI[Z,]].

Remark 7.3. We explain why we need to assume (a) or (b) in the above theorem. Since
C(p)|N, by the existence of the Teichmiiller lift of v and Galois deformation theory explained
in Proposition 5.7(2), TM is non-trivial. Taking a component J of T  the main reason for
assuming (a) or (b) is to guarantee that pJ]Gal(@q /gy is minimal at primes q|N split in M and
that J is primitive. In addition, the condition E; y ¢ my in (b) (which is automatically satisfied
under (a) as F1 y = 1 in that case) is to guarantee that pp|z, is never reducible indecomposable
for any irreducible component Spec(I') of Spec(T), where I, C Gal(Q,/Qq) is the inertia group.

Let us prove this fact. If pp for P € Spec(I') is reducible indecomposable, as is well known
(see Lemma 10.1(4)), pp|q al(@,/Q) is isomorphic to (T’(j)\/ ;’;) for the p-adic cyclotomic character N/
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acting on pyeo (unramified at g). The character 7 restricted to I, is of finite order (see §10). If ) is
ramified at ¢ and 7|7, # 1 mod my, lifting  mod my to a non-trivial character 77 of Gal(Q/Q) with
values in T/mr only ramified at ¢, the semi-simplification of p®@7%~! is unramified; so, py @71
has less conductor than pp for the Teichmiiller lift 77 of 7. By the minimality of I, this cannot
happen; so, we conclude 7|7, = 1 mod my. By local class field theory, we may regard n|;, as a
character of Z. Thus n[;, # 1 but 7|, = 1 implies ¢ = 1 mod p, a contradiction against p { p(N).
Hence 7 is unramified. The g-factor or g-factor of Ey y is congruent to 1 — (nA'/n)(Frob,)g™t =0
modulo my. Since p; = py mod mt, we have F; y = 0 mod my (contradicting Eq n ¢ my). Thus
ppl1, for every prime P € Spec(T) is semi-simple for all primes ¢|N.

Once semi-simplicity of pp|s, is proven for all ¢|N, we can apply results in §10, and the
following conditions for primes ¢|N are equivalent:

(1) rilca@ /q,) is absolutely irreducible;
q
(2) E\Gal(@ /q,) Is absolutely irreducible.

Indeed, by Lemma 10.3(2), under p { ¢(N), (1) < (2) as p = pr mod my. Moreover from the
minimality and primitiveness of pr, by Lemma 10.3(4), under p{®(N), C(p) = C(p1) = N; thus
(b) = (a). If N = C(p), by Lemma 5.4(1), T is reduced. Hence T is reduced under (a) or (b).
Then the following condition is equivalent to (1) (or (2)):

(3) pJ|Gal(@ /Q,) 18 absolutely irreducible.
q

Since N = C(p) | C(py) = N, we conclude N = C(py). Therefore, p and py must be minimal at
prime ¢ splits in M and J is a primitive component. Then by Lemma 7.9 and Remark 7.8 below,
the characteristic power series of the congruence module of T with respect to A : T — J can be
computed exactly as a product of a certain ray class number of M and the Katz p-adic L,(¥y),
which is a key to reach the conclusion of the theorem.

We prepare some notation, four lemmas and a proposition for the proof of the theorem.
The proof of the theorem will be given at the end of this section. For simplicity, we write the

sequence T — T — J as R 4 S5 A and we put A=pof: R— A. Under the assumption
of the theorem (and Remark 7.3), R, S, A are all Gorenstein rings (by Proposition 5.7). Thus
we suppose Gorenstein-ness of R, S and A in this section. We write B = A. Since T is reduced,
the total quotient ring Q(R) of R is a product of fields, and we have Q(R) = Qg @ Q(S5) for
the complementary semi-simple algebra (Qg. Let Rg be the projection of R in (Jg. We have the
following (unique) decomposition:

(1) Spec(R) = Spec(Rs)USpec(SS), union of closed subschemes inducing R — (Rg®S) with
A-torsion module Cy(0, S) := (Rs & S)/R.
Similarly, we have Q(S) = Q4 ® Q(A) and Q(R) = Q'y ® Q(A) as algebra direct sums. Write Sy
(respectively R4) for the projected image of S (respectively R) in Q4 (respectively @'y). Then
we have:

(2) Spec(S) = Spec(Sa)USpec(A), union of closed subschemes inducing S — (S4 @® A) with
A-torsion module Cy(u, A) :== (Sa ® A)/S.

(3) Spec(R) = Spec(R4) U Spec(A); union of closed subschemes inducing R — (R4 & A)
with A-torsion module Cy(\, A) := (Ra & A)/R.

Since T is reduced, S is a reduced algebra, and by Gorenstein-ness, we have

Homp(R,B) = R,Homp(S,B) =S and Homp(A,B)= A as R-modules. (7.2)
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Write 7g : R - Rg and m : R — S for the two projections and (-,)g : R Xx R — B and
(,-)s : S x S — B for the pairing giving the self-duality (7.2). We recall the following lemma
[Hid86¢, Lemma 1.6].

LEMMA 7.4. The S-ideal b := Ker(mg : R — Rg) is principal (and is S-free of rank 1).
By [Hid88, Lemma 6.3] (or [Hid00, §5.3.3]), we get the following isomorphisms of R-modules,

Co(M;A) 2 RAa®p A, Cy(0;S) 2 Rs®rS and Cp(p; A) =S4 ®g A. (7.3)
Recall the following fact first proved in [Hid88, Theorem 6.6].

LEMMA 7.5. We have the following exact sequence of R-modules,
0— Co(u; A) — Co(MA) — Cp(6;S) ®s A — 0.

By (7.3), the three congruence modules Cy(pu; A), Co(A; A),Co(0;S) ®pr A are residue rings
of R; so, cyclic A-modules. Moreover they are the ring A modulo principal ideals. Write their
generators as Acy = ANRC (Ry @A), Ac, = ANS C (Sa® A) and Scg=SNRC (Rs® ).
Thus we have Cy(A\; A) = A/cr A, Co(p; A) = AfcyA and Cy(0;S) @5 A = A/cyA for the image
Cop € A of ¢y € S. By the above lemma, we conclude the following result.

COROLLARY 7.6. We have ¢y - ¢, = ¢y up to units in A.

We have a natural morphism (Z/(€ N Z))* — Cly(€) sending ideal (n) for an integer n
prime to € to its class in Cly/(€), and we write h™ () for the order of cokernel of this map.
Write [(I) for the residual characteristic of [. By a simple computation, we have the following
lemma.

LEMMA 7.7. Write € for €(Vy). Then the ratio
h—(€)
h(M) - Tlye i inert prime(1) + 1) Te i spiit prime with 11 | ¢(L(0) — 1)
is prime to p (if p1 |O*|/2 for the integer ring O of M), where h(M) is the class number of M.

Thus if J is minimal primitive, h~ (&) is equal, up to units in W, to

n/Q =h(r) [+ ),

[|€,1: inert prime

Since py is minimal at primes ¢|N split in M (see Remark 7.3), the g-part €,(¥y) is minimal
among &, (V) for all finite order characters £ of Gal(Q,/Qq); in particular, §. = O (by
Lemma 10.4). Thus no rational prime split in M divides €.

Remark 7.8. The number hi(M/Q) is defined in [Hid09, §1], and hi(M/Q)L,(V¥y) (for the

element L,(V}) € W(F,)[[['y]] giving the Katz p-adic L-function of ¥}) is computed to be
a factor of the characteristic power series ¢ in [Hid09, Corollary 3.8] (or (A) in [Hid09, §1])
assuming p > 5 and:

(1) primitiveness of J (i.e. N = N(€(¥y))D);
(2) local minimality at g of py as long as pJ|Gal(@ /Q,) 18 reducible.
q

The reducibility of pJ]Gal(@ /g, (2) is equivalent to the fact that the automorphic
q

representation generated by fp € Fj is in the principal series at ¢, and in this way, the result is
stated in [Hid09].
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LEMMA 7.9. Let the notation and the assumption be as in Theorem 7.2. Then we have ¢, =
h™(€) = hi(M/Q) up to units in J. Here € is the prime-to-p conductor of ¥y in (CM2).

Proof. As explained in Remark 7.3, we have C(p) = N under the assumptions of Theorem 7.2.
If C(p) = N = C(pg), by Proposition 5.7, without localization, R = T, S = Ty, and A = J are
Gorenstein rings. Since S is isomorphic to the group algebra W{[Z,]] by Proposition 5.7, the
assertion follows from Lemma 1.9 and Lemma 1.11 in [Hid86c]. O

Recall the anticyclotomic Katz p-adic L-function L,(¥}) as in §6. Identifying J with
WI[Tar]], ¥y : Z= — Ty induces a surjective algebra homomorphism W/[[Z,]] — J and L,(¥})

is the image of the measure L™ (¢) ) in Theorem 7.2. We regard L,(¥;) € J.

PROPOSITION 7.10. Under the assumption of Theorem 7.2, we have cy = h™(€)L,(V}) up to
units in J for the prime-to-p conductor € of ¥y in (CM2).

This is where we need the assumption p > 5 in Theorem 7.2.

Proof. The fixed field ]\7/M of Ker(¥™) for ¥ = Uy has Galois group Gal(M/M) = Im(¥).
The maximal torsion-free quotient I'p; of Gal(M /M) is a Z,-free module of rank 1. Fix a
decomposition Gal(M /M) = A x Ty for the maximal finite subgroup A of Gal(M/M). By
Proposition 5.7, the character ¥~ induces an algebra isomorphism ¥, : W/[[['5s]] = J. Then the
maximal p-abelian extension L/ M unramified outside p has Galois group X which is naturally a
W [[Gal(M /M)]]-module (in the standard manner of Iwasawa’s theory). Let ¢~ := ¥~ |5 (which
has values in W*), and put X(¢p7) = X ®yya]p- W which is the maximal quotient of X on
which A acts by ¥~. Thus X (¢7) is naturally a J-module via ¥, and it is known to be a
torsion J-module of finite type. Let F~(1)™) be the Iwasawa power series in J of X (¢7); i.e.
the characteristic power series of X (¢)7) as a torsion J-module of finite type (see [Hid00, p.
291] for the characteristic power series). By the proof of the main conjecture over M by Rubin
[Rub88] or the proof of its anticyclotomic version by Tilouine and Mazur [Til89, MT90], we
know F~(¢7) = Lp(¥}) up to units in J. By [Hid09, Corollary 3.8] (see also Remark 7.8), if
p =5 (and N = N(€)D, which follows from the assumption of Theorem 7.2 as explained in
Remark 7.3), we have h™ (&) L,(¥} )|cx. By [MT90] (and [HT94, Corollary 3.3.7]), we also know
ex | A (€)F~ (7). Combining all of these, we conclude the equality of the proposition. Since
the residual representation p is absolutely irreducible, actually, the above identity is proven in
[Hid09] without using the solution of the main conjecture (and in this way, the anticyclotomic
main conjecture is proven in [Hid09] for general CM fields). O

Proof of Theorem 7.2. As explained in Remark 7.3, we have C' = N (€)D = C(py) = C(p) always
under the assumption of the theorem. Then by Proposition 5.7, T, T, and J are all Gorenstein.
By Corollary 7.6, we find that ¢y = c/c,,. By Proposition 7.10, ¢g = L, (V') up to units in J. Since

L~(¢ ) has image in J given by L,(V¥}) for all irreducible components Spec(J) C Spec(W[[Z,]])
with py & Ind(]%[ Wj. Thus we conclude cg = L™ (¢ ) up to units, proving (1). O

8. Level and p-adic L-functions

Throughout this section we assume the condition (R) and one of the conditions (s) and (v)
above Theorem I in the introduction, although in some cases, the conditions follow from the
specification of p. Also, as before, we take the base valuation ring W sufficiently large so that
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each irreducible component Spec(I) of Spec(h) is geometrically irreducible over the quotient field
QW) of W.

Our proof heavily relies on Lemma 2.9; so, we first verify the assumptions of Lemma 2.9
under (R) and one of (s) and (v). When the condition (s) is satisfied, we replace g in (s) by
j = lim, .0 ¢”" and conjugating G by an element in B(I), we assume that j = (8 CO,) with
¢,¢" € pp—1. If only (v) is satisfied, we take o € D, such that p(o) has distinct two eigenvalues
as in the condition (R), and put j = lim, .o g?" for ¢ = |F|; so, again we have j = (g é),) with
¢,¢" € pg—1 normalizing G and pr(D,). Hereafter, we exclusively use the symbol j to denote the
above element in Im(pr).

LeEMMA 8.1. Let G = Im(pp) NI'y(mg) for an irreducible component Spec(ll) of Spec(h), and write

Gsp for the image of G in SLo(I/B) for each prime divisor 3 € Spec(). Then the k(B)-span sy
of MO(Gsy) = My (Gy) Nsla(I/P) is equal to sly(k(P)) for some n > 0 if and only if Gy contains
an open subgroup of SLy(Ag). Here we recall that Ay = 7Z,, or F,[[T]].

Proof. By (R) and one of (s) and (v), M, (G) NY(I) surjects down to M, (Gg) NU(k(P)) for all
n > 0. Since the proof is the same for any n > 0, we just assume that n = 1. Let P =P NA. Note
that 1 = M1(Gg) NUK(P)) and 1, = M1 (Gy) N I4U(k(P)) are A/P-modules inside sly (I/).
Thus either n = 0 or 1 is A/P-torsion-free of positive rank.

Suppose sy = sla(k(P)). Then 0 # 0 and ny # 0. This implies that [0, 7] # 0 is a non-trivial
torsion-free A/P-module of positive rank, and Ad(j) acts trivially on [w,7,]. Thus M?(Gy)
must contain an open Lie-subalgebra of sla(Ag) (see §2, Corollary 2.3 and Lemma 2.4); so,
Sp = slp(k(P)). Since

(MR (Gp), MY (Gp)] € M (Gp),

MO(Ggp) (and actually M2 (Gg) for each n > 0) span sly(k(5)) over (). Then the intersection
@;3 = SLa(k(P)) N (1 + M(Gsp)) contains an open subgroup of SLy(Ap). The converse is plain
as sla(Ap) contains a basis of sla(k(B)) over £(B). O

Hereafter, suppose that I is a non-CM component of h. Let Spec(T) C Spec(h) be a connected
component containing Spec(I). Let pr : Gal(Q/Q) — GL2(Q(T)) be the associated Galois
representation. We write p = pm, : Gal(Q/Q) — GLg(F) with F = T/mg associated to the
maximal ideal my of T. We would like to relate the global level L = L(I) of py (defined in §3)
with a certain p-adic L-function. By a result of Ribet [Rib85] combined with Proposition 5.1 in
the text, Im(pg) contains an open subgroup of SLa(Z)) up to conjugation. Then by Theorem 2.12,
we can pick a representation p € [pr] with values in GLy(I) such that Im(p) D I'(c) with non-trivial
¢. If p is absolutely irreducible, by Theorem 2.12, the global level L = L(I) described just above
Lemma 3.3 is well defined. If p is reducible, assuming the assumption of Lemma 3.5, we pick p
in the I-isomorphism class made out of Lcan(I) and define L(I) as described after the statement
of Lemma 3.5 before its proof. We start with a version of results in [MW86, § 10] and Fischman
[Fis02).

THEOREM 8.2. Suppose Im(p) contains SLy(F,) for p > 7. Then the global level L = L(I) of py
for every irreducible component Spec(Il) of Spec(T) is equal to 1.

The assertion (1) in Theorem II in the introduction follows from this theorem. By the theory
of pseudo representation, we can find a unique pr with values in GLg(T) up to isomorphism.
Thus we could assume that py has values in GLy(I), though we do not do this.
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Proof. Similarly to the proof of Lemma 3.1, writing g for the image of g € Im(py) in GLQ(E/ ms),
let

K:={g€lm(pr) | det(g) €T}, L={geK|geU(F)} and H={geK|g=1}

for I' = {t* | s € Z,} C A*. By the existence of j, similarly to the proof of Lemma 1.4, from (Gal),
we find 7 € pr(D,) N H such that 7 = (§9). Then by (Det) in §3, the three sets Im(pr)/K,
Im(pr)/L and Im(py)/H are finite sets. Then for 7" = {7 | s € Z}, we have H = 7" x G for
G=HNSLy(I), K =7 x K! for K! = KOSLQ(H) and L =T7'x L! for L! = ]Lﬁ SLo(T) (see the
proof of Lemma 3.1). Similarly, for the image T . (respectively Hy, Kq, Lq, ]La, G, and Ki) of
T’ (respectively H, K, L, L', G and K') in GLg(ﬁ/a) for any T-ideal a, we have H, = 7; X Gq,
Lo=7,x L, and K, = T, x K,. Thus the reduction maps G — Gq, L! — L, and K! > K,
given by g — (g mod a) are all surjective. In particular, by our assumption, K . K contalns
SLa(Fp).

We prove P t L(II) for all prime divisors of A, which shows L(I) = 1. Take a prime divisor

B of T above P. Suppose that K‘ﬁ is a finite group. This is equivalent to assuming ch is finite

since K!'/G = K/H < Im(py)/H is finite. Thus Kq3 is a finite group whose image modulo my
contains SLg(F,). By the classification of finite subgroups of PGLy(K') for a characteristic 0
field K, if p > 7 and k(P) has characteristic 0, there is no finite subgroup of SLa(x(3)) whose
image in SLy(F) contains SLg(F,). This point is also plain if p > 7 as SLy(FF,) with p > 7 does
not have two-dimensional representations over K (see [Sch07, p. 128]). We C(Ellclude that Gy is
infinite if p > 7 and k(P ) has characteristic 0. If x(P) has characteristic p, Ly is still infinite.
To see this, note that IL _ contains U(F)); so, L% contains an element whose reduction modulo

m= .. iS non-zero umpotent Such an element under conjugation by ’qu produces infinitely many

i
eleﬁents Then the open subgroup Gg of L‘B has infinitely many elements. Therefore M (Ggy)
is an infinite Lie algebra. B _

Let 53 be the Lie subalgebra of sly(I/9) generated by MY (Gy) over I/9. Since Gy is
infinite, sy is non-trivial. Since p > 5, the adjoint representation of SLa(F,) on sly(F,) is
absolutely irreducible. Thus the quotient sy/ms- sy = sp @7 F (F = ﬁ/mﬁ) is isomorphic to a
three-dimensional irreducible subspace in sla(F) over F under the adjoint action of K!. By
Nakayama’s lemma, sy has at least rank 3 over I/9; so, the x(B)-span Sy := K(P) - sqp is
equal to sly(k(R)). By Lemma 8.1, Gy contains an open subgroup of SLa(Ag) in SLa(x(3)).
Hence, by Theorem 2.12(2) and Corollary 3.4, we conclude Pt (L(I)). O

Remark 8.3. In the setting of the above theorem, assume p = 5. Again by Schur, the unique
absolutely irreducible two-dimensional representation over Qs of SLa(F5) can be only defined
over the integer ring of the field Q5[v/5]. Since we have A/P = Zs[us] for P = ((t> —1)/T) C A,
we have a subgroup H in SLa(A/P) whose reduction modulo the maximal ideal is isomorphic to
SLa(F5). Therefore G = {x € SLa(A) | z mod P € H} has (G mod m) = SLa(F5) but the level of
Gis P

We now deal with the case where the image of p does not contain SLy(IF,). We start with the
case of dihedral image of p. Let k be a local field. Write O for the maximal compact subring of .
Let p: Gal(Q/Q) — GL2(O) be a continuous Galois representation and put G = Im(p)NLo(mo).
We write s for the k-span of the Lie algebra MY(G) = M1(G) Nsly(G).

LEMMA 8.4. Let the notation be as above. Suppose either that s is a Cartan subalgebra of s((2)
or that Im(p) modulo center is a finite dihedral group. If p is absolutely irreducible, there exists
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a quadratic field M/Q and a character 0 : Gal(Q/M) — £* such that p = Ind% 0 and 6° # 0,
where ¢ € Gal(Q/Q) restricted to M is the generator of Gal(M/Q) and 0°(c) = 0(coc™1).

This follows from Lemma 2.1 if k has characteristic 0. We give here a different proof.

Proof. In any case, the group Im(p) is in the normalizer of a Cartan subalgebra ) () =sif s is a
Cartan subalgebra). By extending scalars x, we may assume that § is a split Cartan subalgebra.
Then, we can find an open normal subgroup H C Gal(Q/Q) such that p|g is isomorphic to the
direct sum of two abelian characters. Set pg = p|mg; then, pgy is completely reducible. Write
PH = (8 g). Since p extends py, g — p(g) = pu(hgh™') = p(h)pu(g)p(h)~! is equivalent to
pg for all h € Gal(Q/Q). Thus Gal(Q/Q) acts on {6,6} by inner conjugation. Indeed,

(% g)=em (g 3) ot (s.1)

Let A C Gal(Q/Q) be the stabilizer of §. Then M = @A is at most a quadratic extension of
Q. If M = Q and W is sufficiently large, the two characters extend to §,6 : Gal(Q/Q) — I*
(e.g. [Hid11a, §5.1.1] or [Hid00, §4.3.5]), and p** = d @6, which cannot happen as p is absolutely
irreducible. Then [Gal(Q/Q) : A] = 2 and by Frobenius reciprocity, p = Ind%é = Ind(]%[ 6 for

the quadratic extension M = @A of Q. We therefore have p|ao = 0 @ 0°, and irreducibility of p
implies 0 # 6°. a

For a character ¢ of Gal(Q/M) with an imaginary quadratic field M, we recall its
anticyclotomic projection ¢~ given by o +— ¢(0)p(coc™!)~!. Let T be a minimal primitive
non-CM component of h with p =2 Ind(]%[ ¢ for an imaginary quadratic field M in which p splits
into pp and a character v : Gal(Q/M) — F, unramified at p. Under the assumption (a) or (b)

in Theorem 7.2, T is non-trivial. Pick one such CM component J of T | and write € for the

prime-to-p conductor of ¥y. Let ¢/ = ¢ N €, and write ¢ for the prime-to-p conductor of ¥ (so,
¢ | ¢). Assuming W D W(F,), we recall the anticyclotomic Katz measure L™ (¢ ) € W([[Z,]]
as in Theorem 7.2. The natural inclusion Z; — O, induces I' — I'yy =T, C Z, , and hence
WI([Z,]] is naturally a Ay-algebra for Ay = W[[T]] = W[[T']]. Since W[[Z,]] is free of finite rank
r over Ay for the index r = (Z, : '), we have a regular representation ® of W[[Z]] into the r xr

matrix algebra M, (Aw ), and for a € W[[Z,]], we define its norm Ny z:1/Aw (o) = det(P()).

Define Li = Nz 11/Aw (L™ (¢ )). This is the element we meant in Theorem II by the product
of anticyclotomic Katz L-functions with a given mod p branch character. We also recall that we
defined in (7.1) an element E; y € J.

THEOREM 8.5. Let the notation be as above; in particular, let I be a minimal primitive non-
CM component with p = Ind%ﬂb for an imaginary quadratic field M as above. Take a large
W D W(F,) so that each irreducible component of Spec(T) is geometrically irreducible. Assume

p > 5, and suppose further that 1) has order > 2, v ramifies at p, and one of the following
conditions holds:

(a) pte(N) and C(p) = N;
(b) pt®(N) for the Euler function ® of M and Ey n ¢ my for Eq n in (7.1).

Then for the product Li, = Ny (iz;1/Aw (L= (3 )), the global level L(I) of a non-CM component
I of T is a factor of (Li_ )2 in Ay If Li_ is a non unit in Ay, for any prime divisor P of Li_,
there exists a non-CM component Spec(I) C Spec(T) such that Py | L(I) for P, = P N A.
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The assumption (a) is the one made in Theorem II (3b) in the introduction, and therefore,
this theorem proves the assertion (3b) of Theorem II (where cube-freeness of N is assumed but
it is not necessary in this residually induced case; see Remark 7.3). An important feature of this
theorem is that only (the p-adic L-function part of) the congruence ideal between CM and a
given non-CM component I shows up as the level of p;. Therefore congruence between non-CM
components and I does not have direct involvement to the level L(I).

Here are a sketch of the proof and a summary of how we use the listed assumptions in the
proof. Since v ramifies at p, by Theorem 7.1, Lean(I) = 12; so, pr realized on Lean(I) has values
in GLy(I). Thus we do not need to take I, and we work with I instead of L. Since C(p) | N,
by Proposition 5.7, TM is non-trivial. The condition that ) has order > 2 ramified at p is
equivalent to the fact that p is not isomorphic to Ind(]%[, @l for any quadratic fields M’ other than
M (Proposition 5.2); thus, we have Ty, = T2 . As seen in Proposition 5.7, we have Tey, = TM =
W{[Z,]] for the p-profinite part of the class group Z = C'Ly(€p™). Note that W([Z,]] = W[[Z]]
canonically by Lemma 5.6. The assumption (a) or (b) is used to identify Ty, (or its localization)
with (possibly a localization of) the group algebra W{[Z,]] = W[[Z,]] that enables us to identify
the congruence power series of J inside Spec(T.y) with the class number A~ (€) and that in
Spec(T) with A~ (&)L, (V) (see the later half of §7). In other words, the congruence between
CM and non-CM components only involves prime factors of L™ (¢ ) (which is basically the
product of L,(¥]) over irreducible components Spec(J) of Spec(Ten)).

To make this fact more precise, write an irreducible component of Spec(Tcm) as Spec(J).
If Z, is pro-cyclic, W[[Z,]] is an integral domain and hence J = W{[Z,]] = Tcwm. Note that
non-pro-cyclicity of Z implies p | A~ (€) (but not necessarily the converse). Thus the congruence
between T., = J and the non-CM component I is given simply by the anticyclotomic Katz
p-adic L-function Ly(¥} ) = L=(¢ ) when Z, is pro-cyclic. The complete-intersection property
of Tem = W([Zp]] proved in Lemma 5.5 will be used to compute the congruence between the
non-CM component I and T, when Z, is not pro-cyclic. Roughly speaking, by Theorem 7.2,
the complete intersection property of W[[Z,]] = Tcm tells us that the congruence between Tep,
and its complement TZ_ is just made of the anticyclotomic Katz p-adic L-function, though the

congruence between J and its complement J* involves h~(€) in addition to (the product of)

the anticyclotomic Katz p-adic L-function L™ (¢ ). As in Remark 7.3:

(1) minimality of I implies minimality of py at primes ¢ in N where pJ|Gal(@ /Q4) is reducible;
q

(2) the condition (b) actually implies (a), and T is reduced by Lemma 5.4(1);

(3) any CM component J of T is primitive.

In the computation of congruence modules (in Theorem 7.2) between J and its complement J+
and between Ty, and TZ, (i.e. determination of Spec(J)NSpec(J+) and Spec(Tem)NSpec(T4,)),
we needed these properties (see Remark 7.8 for the necessity of these properties). Then by
the relation in Corollary 7.6, we computed in Theorem 7.2 the characteristic element of C' :=
Tem @1 T, in Tem = W([Z,]] as the Katz measure without the class number factor. Hence, we
are able to prove, by Galois deformation theory, that any (non-CM) component I in TZ, has
some points P having pp isomorphic to an induced representation from M (i.e. P|L(I)) if and
only if P is in Spec(Tem) N Spec(T4,) (i.e. P is a factor of the Katz p-adic L-function Li,).
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Now, for simplicity, suppose I = A. Then pp = (pr mod P) is isomorphic to an induced
representation Ind(]%[ 6; thus we have that the adjoint square Ad(pp) of pp is isomorphic to a

reducible representation (M—/@) <) Ind% 0~ with Ind(]%[ 0~ absolutely irreducible. In this sketch,
suppose further for simplicity that P is exactly the annihilator Anny, in Ip of the Ip-part
C ®7 Ip of the congruence module C' (in other words, C @1 Ip = Ip/Plp). Then we show that
the P-localized Lie algebra of M{(Im(p;) N T'1(P?)) has three independent generators over Ip;
SO, L(]I)HP ’ PQ]IP.

Recall our simplifying assumption I = A. Writing V = A%D for the space of py and

sl(V) = {x € Endy (V) | Tr(z) = 0},

the Ap-span sp of M{(G) = M1(G)Nsl(V) (for G = Im(py) NT(my)) is a Lie Ap-subalgebra
of s[(V') stable under the adjoint action. Define Galois modules Vp(m) := (sp N P™sl(V))/(sp N
Pt 5((V)) (for m > 1) under the adjoint action. Note that Ip = Ap is a discrete valuation ring.
Choosing a generator w of P and dividing X € sp N P™s[(V) by w™, this Galois module Vp(m)
can also be embedded into sl(V/PV) = sly(k(P)) as a Galois module. Note that sl(V/PV) =
Ad(pp) = (M—/Q) @ Ind% 6~ under the adjoint action of the Galois group. Thus, if non-trivial,
dim,,py Vp(m) is either 1, 2 or 3, and we have three possibilities of the isomorphism class of
the Galois module Vp(1) under the adjoint action of py: (i) Ad(pp), (ii) (M—/Q) or (iii) Ind% (.
Indeed, by definition, Vp(1) has a Galois equivariant embedding into sla(x(P)) = Ad(pp). Since
Ad(pp) = (M—/Q) @ Ind% 0~ as Galois modules, we have only three possibilities as above. In
case (i), plainly Anny, = PAp and PAp = L(A)Ap, and we are done.

Note that G := Im(py) N I'r(my) is p-profinite and does not contain any order 2 element
(complex conjugation). Therefore, we can take a basis of V' so that the image of G in GLo(I/P)
is diagonal with respect to this basis. In other words, taking j = p(o) for o € D, satisfying the
condition (1) of Lemma 2.9, the chosen basis is an eigenbasis with respect to j = p(o). If we are
in case (ii), the image G p2 of G in GL2(A/P?) is diagonal, which implies that py mod P? is an
induced representation from M. By Galois deformation theory, we conclude P?Ip O Annj, =
Plp, a contradiction. In case (iii), Vp(1) has to contain an anti-diagonal element non-trivial
modulo P? (and hence, nilpotent elements non-trivial modulo P?). Thus with respect to our
chosen basis, taking an a-eigenvector, writing three (distinct) eigenvalues of Ad(j) as a,1,a7!,
we have X = (3 %) € (sp N Psl(V)) with u # 0 mod P? and taking a™!-eigenvector, Y = (9 9) €
(spNPsl(V)) with v # 0 mod P?. Then [X, Y] produces an Ad(j)-fixed vector in s pNP?s(V') non-
trivial modulo P3. Thus sp N P?sl(V) has rank 3 over Ip, and hence P?Ip = L(I)Ip, and we are
done. If P™Ip = Anny, with m > 1, then basically replacing P in the above argument by P™ (P>
by P! and Vp(1) by Vp(m)), we get the result. Note that Spec(I/ Anny) = Spec(Tem ) NSpec(I)
for the annihilator Anny of C; so, it is the congruence ideal between Spec(l) and all other CM
components.

We have shown locally, in case (i) the congruence ideal is equal to the level ideal (L(I)), and in
case (iii), the square of the congruence ideal is equal to the level ideal. Case (ii) does not occur.
As suggested by the referee, we note that the cohomological congruence ideal is actually the
square of the congruence ideal of the Hecke algebra (as the étale cohomology group of modular
curves is free of rank 2 over the Hecke algebra under an appropriate Gorenstein condition). We
now give a detailed proof for general I D A.

Proof. As explained above in the sketch, we have T, = ’]I‘é\ffn is non-trivial. Since I is a non-CM
component of T, we have T # T¢,,. Since p is absolutely irreducible, under (R), T is Gorenstein,
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and hence pr realized on L, (T) has values in GLa(T); so, py realized on Lean(I) has values in
GL2(I) and pr|p, C B(I) with (Gal) satisfied (thus (Fcan) is satisfied). Let G = Im(pr) N 'y(my),
and write pgg = (o1 mod B) for a prime P € Spec(I).

Now pick a prime divisor P € Spec(A) and a prime divisor 8 € Spec(I) above P. We consider
the Lie algebra Sy of Gy = (G mod P); i.e. we write sy for the r(B)-span of M?(Gg). There
are the following five possibilities:

(O) sy = 0;
5y is a Cartan subalgebra $;

Sy is a non-zero nilpotent subalgebra;

)
)
)
)

—~~ N

B) 5y is a Borel subalgebra;

(F) sp = sh(s(B)).

If we are in case (F) for all 3| P, by Lemma 3.1 combined with Lemma 8.1, Gy contains an open
subgroup of SLa(Ap) for all B|P, and we have P{L(I) by Theorem 2.12(2) and Corollary 3.4.
If we are in case (N) or (B) for some prime 93, the group Gy := Im(pg) normalizes §g. Since the
normalizer of a (non-trivial) nilpotent or a Borel subalgebra is a Borel subgroup, pgp has values
in a Borel subgroup; so, pyp is reducible, which is impossible by the absolute irreducibility of p.
Thus cases (B) and (N) do not occur for any | P.

In the cases (O) and (C), we first show that pp = Ind%@ for a character 0 : Gal(Q/M) —
(I/B)*. Suppose first that we have some PB|P in case (O). Then the basic closure of Gy is
contained in the center; so, Gy C {£1}. Since p > 2, we have Gy = 1. Therefore under the
notation in the proof of Lemma 8.1, we have Hy = 7'%3 X Gp = 7'%3. Since Im(p) is dihedral
modulo center, taking j € Im(pp) defined just before stating Lemma 8.1, it contains an element
§' of order 2 such that j'jj/~! = (%/ 2) (i.e. conjugation by j’ interchanges the two distinct
eigenvalues of j). This j' can be lifted to an element (still denoted by j') in Im(py) keeping the
property of interchanging the two distinct eigenvalues of j (e.g. [Bro82, §IV.3] or [Zas99, §IV.7]).
Then it interchanges the eigenvalues of elements in 77‘%, so, we have j’?!;gj’_l C ﬁqg = 7:3,
which implies 77’;;3 = 1. Thus we conclude B|T" and Hy = 1. Therefore Im(py) is isomorphically
projected onto Im(p), and hence we must have pp = Ind(]%[ 6 for a character 6 : Gal(Q/M) —
(1/%) .

Now we suppose that we have some B|P in the remaining case (C). Since p is absolutely
irreducible, py is absolutely irreducible. Then, by Lemma 8.4, pp = Ind%& for a quadratic
extension K/Q and a character 6 of Gal(Q/K). Since pg is ordinary and ¢ ramifies at p, (p)
must split in K/Q as (p) = pp°®. Then we may assume that 6 is ramified at p and unramified at
p¢. By Proposition 5.2, K must be M, and ramification at p forces § mod my; = 9. By (Gal), if
P # (T)or v is ramified at p, 6 is ramified over a decomposition group D,, at p, and the other
6°¢ is unramified at the decomposition group.

Hereafter we treat the two cases (O) and (C) at the same time writing pyp = Ind(]%[ 0. By
primitiveness, Ji is a family of N-new forms. Thus we have C(pp) = N = N(€)D for € = &(¥y)
(see Remark 7.3). We may also assume that W and I have the same residue field F. As before, let
Z=lim_ Cly(€p™) and Z, be the maximal p-profinite quotient of Z. By Proposition 5.7(2), there
exist a character 0 : Gal(Q/M) — W{[Z,]]* unramified outside €p and a canonical isomorphism
Tem = W([Z,]] such that pr,, = Ind% 0. Moreover, identifying T, = W{[[Zp]], (Tem, ) is the
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universal couple over W among deformations of # mod my. Thus the character 8 : Gal(Q/M) —
T, satisfies
=0 mod P for aprime P’ € Spec(Tem)- (8.2)

In other words, taking ¢ : Tep, — £(P) such that 10 8 = 6, we have P’ = Ker(¢) for P’ in (8.2).
Since N = N(€)D, the identification Ty = W{[Z,]] gives rise to the algebra homomorphism
T — W{[Z,]] described in Lemma 5.6, which was written as © there.

We write p for pr.,,, py for p’ mod JB’. Then we have the identity of Galois representations

pyp = p{nl = Ind% Oq . This implies
Tr(pgp(Froby)) = Tr(pfqy (Frob;)) for all [ prime to Np. (8.3)

Let T" C T be the A-subalgebra generated by the image of T'(1) for all [ prime to Np. The identity
(8.3) implies P' NT =P N T; i.e. the image of Spec(Tey) and Spec(l) in Spec(T’) intersects at
P NT. We now show that Spec(Il) and Spec(T.y) intersect at the unique prime divisor P = P’

above B N T’ in Spec(T). Since 1) ramifies at p, we may assume that v is unramified at pc.
Then X1|Z; = Y|gx (identifying Z, = O,), which is non-trivial. As remarked in the sketch,
pC

C(pyp) = C(py) = C(p) = N. Since ¢ is ramified at p, x1|7, mod my = 1|, is non-trivial. Thus
the assumptions of Lemma 5.4 are met, and we conclude Ty = Tg;. Thus Spec(Tem) and Spec(I)
intersect at P’ =P in Spec(I) N Spec(Tem ).

By Proposition 5.2(2), that the order of ¢ is greater than 2 implies T2 = T,,,. Write

Spec(T) = Spec(TL.) U Spec(Tew)
for the complementary union of irreducible components Spec(T%,) C Spec(T). Note that
Spec(Ip) N Spec(Tem,p) = Spec(lp @ Tem,p) C Spec(']I‘imP QT Tem,p)-

By Theorem 7.2, identifying Ty with W[[Z,]], we have closed immersions

SpeC(Tcm,&B/L_ (@_)Tcmﬂﬁ) - SpeC(Tim7P QT Tcm,P) D SpeC(HﬁB QT Tcmﬂi&‘)a

and we have, inside Spec(']l%mp ®T Tem,P),

Spec(Iyp @1 Tem,p) C Spec(Tcm,m/L_(ﬁf)Tcmm). (8.4)
Let
b:= AnnTcm,P(Hm &T Tcmyp) - Tcm,P and a:= Annﬂm (]qu T Tcm,p) C ]qu,

where Ann4(X) is the annihilator in the ring A of an A-module X. Put py = (pr,,, mod b) and
pa = (pr mod a). Thus Tr(ps) = Tr(pq), which implies pp = p, (by a result of Carayol-Serre;
e.g. [Hid0O, Proposition 2.13]). Since the right-hand side pp is an induced representation from
M, the image Im(pa)|Gal(@/M) (of the right-hand side) is in the diagonal subgroup of GLa(I/al).

Thus (L(I)) ply C a. By (8.4), a is a factor of Li, Aw, p. This a depends on 3, and aNA is a power

of P. We fix B| P such that a N A is the smallest. We would like to show (an Ap)% C (L(I))p.
Suppose (L(I))p € a. Let sy = Iy - MI(G). We consider the adjoint action of Gal(Q/Q) on

V= (spNa-sly(ly))/(spNa’ - sly(ly))
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for o’ := aPB D (L(I))p. Then the adjoint Gal(Q/Q)-module V is isomorphic to a factor of
Ad(pg) = (M/ ) @ IndQ 6~. Since 1) is non-trivial, = with 6~ = 1~ mod my is non-trivial,
and hence Ind(]%, 0~ is absolutely irreducible. If V' contains the two irreducible factors, we have
dim,, ) V' = 3 and hence by Nakayama’s lemma, we have (sp N a - sla(lp)) = a - sla(Iy); so
(L(I))p = a, a contradiction (against (L(I))p C a). In other words, we have (L(I))p Ca < V
does not contain the two irreducible factors.

If V is made up of (M—/Q), the Lie algebra V' and hence sq /(s Na’-sla(Iyp)) acts trivially on
(I/a’)?; so, the image of G in SLy(I/a’) is in the split diagonal torus. This implies Par | Gar@/nr) =
0’ ©0" with ' = ) mod my. By Frobenius’ reciprocity law (cf. [Hid11a, §5.1.1]), we conclude py &
Ind% ¢'. This is impossible, as a is the minimal Ip-ideal so that p, is an induced representation
from M.

We deal with the remaining case where V' contains only Ind(]%[ 6~ . We pick again the element
j = p(o) and j' as specified at the beginning of the proof. As explained before starting the proof,
we may assume that j° = py(c). By the adjoint action, j acts on & := sp N a - slp(lyp) and on
V. Thus V = Via) @ V[1] ® V]a~!] and & = S[a] ® &[1] @ S[a~!] for the three eigenvalues
a,1,a! of Ad(j). Since the Galois action on V[1] factors through (M—/@), we conclude V[1] = 0.
We also know that j” interchanges V[a] and V[a~!] (and &[a] and &[a~!]) isomorphically. Thus
Via] 2 Via™'] # 0 and Sg[?] surjects down to V[?] for ? =a,1,a™'. Then & contains matrices
X =¥ e6laand Y := (09) € S[a~'] whose images X (respectively Y) in V are non-trivial
in V]a] (respectively V[a=1]);i.e. 0 # X € V[a] and 0 # Y € V[a~!]. This X is in M[a] and Y is in
M{a~'] in the proof of Lemma 2.9. In other words, for the A-module n = {z € I| (} %) € M(G)}
and its opposite n; introduced in the proof of Lemma 2.9, a = Ipn = Ipn;. Then

uv

07X Y] = ( 0 _?w) € (sp Na” - sla(ly))/ (s N *P - sly(Iip)) =: V',

The Lie algebra V' also has non-trivial image of AX and \Y for any generator \ of a. This shows
dim,q) V' = 3, and by Nakayama’s lemma sq N a? - sly(Iy) = a? - sla(Iy). Thus a® = Ipnn, and
uy C (L(I)), where as before we put u=nnNA and uy =n,NA. fT=A, u=n and u; = ny, this
finishes the proof as we described already.

If T2 A, we therefore need to show Igu N Ap = Ipu; N Ap = aN Ap. Recall we have chosen
B so that agNA = Aw,pnNA (i.e. P has been chosen so that ap N A is the highest power of P).
Take e e IpN ]Lg so that eulp N Ap = aNAp. Conjugating G by a = (8 ?), we may assume that
up =ApNnp =apNAp. Since Im(py) surjects down to a dihedral group H := Im(p), in this case
the condition (v) is not satisfied (as Im(p) does not contain non-trivial unipotent elements); s
we are assuming (s) (which is satisfied if ¢y~ |p, has order > 3). Note that D := p(D,) N GLy(F )
is made of diagonal matrices of order prime to p. Taking their Teichmiiller lifts, we can lift D
isomorphically onto DcC GL2(Zp). By our construction, D is in the 1mage of D,. We can also
lift H isomorphically onto a dihedral subgroup HcC Im(pr) so that DcH (e.g. [Bro82, Exercise
1 of §IV.3] or [Zas99, §IV.7]). Then, as explained in the proof of Corollary 3.4, j € GLy(I) in
condition (1) of Lemma 2.9 is chosen in D. Thus we have ¢ € Gal(Q/Q) whose restriction to
M is the complex conjugation such that j' = py(c) € H. Then g'i5' = (%/ 2) if j = (g g,); ie.
the conjugation of j' interchanges the two eigenvalues. By Lemma 1.4, we have 7' = (tg (1)) |
s € Zpy C p1(Dy) C Im(pr), and j'T75'~ T = ={(5,%) | s € Zy} C pr(cDyc™'). We have chosen an
eigenbasis of 12 of Jj to write the matrix form of py. Then to have ¢ with I's(c) inside Im(py),
we change the basis v of the (-eigenspace of j multiplying by an element in I prime to P. Since

652

https://doi.org/10.1112/50010437X14007684 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X14007684

BiG GALOIS REPRESENTATIONS AND p-ADIC L-FUNCTIONS

j" = pi(c) interchanges the two eigenspaces of j, we choose the basis of the other (’-eigenspace to
be given by pi(c)v. Then this 5/ and D generate the dihedral subgroup of H C GLy (Zp) NIm(pr)
lifting H isomorphically, and j' is equal to ({§) € Im(pr) N GLa(A). Hence we may assume
Y = j/ X', which implies (a N Ap)% C (L(I))p-

Note that Chara,, (W[[Z,]]/L™ (¢ )W[[Z,]]) is given by NW[[Z;]]/AW(Li(@ ) = Li,.

Conversely if we start with P|Li,7 by Theorem 7.2, the intersection scheme Spec(T:

cm, P
@t Tem,p) is non-empty containing a prime divisor; so, we can find an irreducible component
Spec(I) of Spec(T4,) such that pp is isomorphic to Ind(]%[)\ for a character A. This implies
P|L(I). O

Here is the result in the residually dihedral case not included in the above theorem.

THEOREM 8.6. If p is absolutely irreducible with p =2 Ind%@ for a quadratic field M and a

character ¢ : Gal(Q/M) — F, with 1) having order > 2, then for any non-CM component I of
T, we have the following.

(1) If M is real and p splits into pp in M, writing 1 + p™'Z, with m > 0 for the kernel of
the natural map I' — Cly;(p*°), then L(I) D (tP" —1)2.

(2) If p does not split in M, then L(I) D (T?).

This theorem settles the case (3a) of Theorem II in the introduction. Note also that 1)
having order > 2 implies |F| > 4.

Proof. Let P be a prime divisor of A, and write 8 for any prime divisor of I above P. Let ¢ be
the prime-to-p conductor of 1. By the same argument as in the proof of Theorem 8.5, if P|L(I),
we have either s = 0 or sy is a Cartan subalgebra or sy = s[(2). If 53 = 5((2) for all ‘B|P, then
PtL(I) by Lemma 8.1, Theorem 2.12 and Corollary 3.4 combined. If 3 # s[(2), by the same
argument as in the proof of Theorem 8.5, ppy = Ind(]%, 0 for a character 6. Then for the prime-to-p
conductor € of §, we may assume that 6 : Z — x(P), where Z = lim Clp(€p*>°). If M is real,

Z is a finite group, and 6([y,Q,]P") = 1, where we identify the inertia groups I, and I, and
[v,Qp] € I,. This implies P|(t*" — 1) by (Gal).

If p is non-split, # has to be unramified at p as 6 or ¢ is unramified at p (note, by (s), that
0~ |p, has to have order > 3). Then 6([y,Qp]) = 1, which implies P|(T") by (Gal). Write Z for
the class group Clys(€) of M.

To show L(I)|(#*" —1)? for some m > 0, we deal with the two cases at the same time. Let Z,,
be the p-part of Z; so, Z = Z, x Z' for Z' of prime-to-p order. Pick a prime ‘B of I for which py
is an induced representation from M. Let a be the minimal ideal of Iy such that p, = (pr mod a)
is an induced representation from M. Then p, = Ind(]%[ A and A can be identified with a character
of Z by class field theory. Thus we have a W-algebra homomorphism W[Z] — Ip/a by the
universality of the group algebra, and this factors through a local ring of W[Z] isomorphic to
W([Z,]. Since 1 is generated topologically by Tr(pr) over Q(W) and ¥~ has order > 3, Iyz/aly is
generated by the values of A\. Thus Iy/a is reduced; so, a is square-free, a N A D (tP" — 1), and
(anAp) D (L(I))p. Then by the same argument as in the proof of Theorem 8.5, we conclude
(LM)p D (an A)2. O

Assume that p is absolutely irreducible and its projective image in PGLy(F) is one of the
following three type of groups: a tetrahedral group, an octahedral group or an icosahedral group.
These groups cannot be a quotient of a Borel subgroup or a unipotent group or a dihedral
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group, if g # sl(2), we have sp = 0. Again under the notation of the proof of Lemma 3.1,
ﬁqg = 77‘:;3 X @qg = 77‘% as @m = 1. Then we have p(o) whose projective image does not commute
with the image of j, and we find j' € Im(pyp) having the same effect on j projecting down to
p(o). Then j’77';3j’_1 =Hy = 7';3, which implies ’77'%3 = 1; so, P|T. Thus we get the following
theorem, which settles case (2) of Theorem II in the introduction.

THEOREM 8.7. Assume that p is absolutely irreducible and its projective image is one of the
following three type of groups: a tetrahedral group, an octahedral group or an icosahedral group.
Then if Spec(I) is an irreducible component of Spec(T), we have T|L(I)|T™ for sufficiently large
n > 0.

It is interesting to determine the minimal integer n depending on I. The following theorem
settles the last remaining case (4) of Theorem II.

THEOREM 8.8. Suppose p > 5, pt ¢(N) and that N is cube-free. Assume that p is reducible
and its semi-simplification is a direct sum of two characters 6 and v with 0 ramified at p and 1)
unramified at p and that 0 /1) has order > 2. Let Spec(I) be an irreducible component of Spec(T).
Then L(I) is a factor of L(6,4) given in Definition 4.1(2). Moreover for any prime divisor P of
L(0,%), if pt p(N), there exists an irreducible non-CM component Spec(I) C Spec(T) such that

P|L(I).

The strategy of proving this theorem is similar to the one we used for Theorem 8.5,
replacing CM components by Eisenstein components in Spec(H). As we computed the ideal
of the intersection Spec(Cg,, ) = Spec(hy) N Spec(Ey) for m := m(6,v; My, My) in Corollary 4.3,
the argument goes through. Note here T = hy,.

Proof. Let the notation be as in the proof of Theorem 8.5. In particular, P is a prime divisor
of Spec(A) and B is a prime divisor of Spec(I) above P. Again there are the following five
possibilities: (O) sp = 0; (C) 5 is a Cartan subalgebra $; (N) Sy is a nilpotent subalgebra; (B)
Sy is a Borel subalgebra; (F) sp = sly(x(8)).

We can forget about the case (F) for all B|P as Pt L(I) in case (F). An induced representation
Ind% A for a quadratic extension M/Q is reducible only when A~ is trivial, and if A~ =1, A
extends to a character A of Gal(Q/Q) and we have Ind(]%[ A= X@X(M—/Q) By the assumption that
0/1 has order > 3, we find that pyp = Ind%[ A is impossible (so, the assumption of Lemma 3.5
is satisfied, and we have (L(I)) well defined). In particular, any component of Spec(T) does
not have CM. Thus if 5y # s[(2) or sp # 0, we have pp = (983 1;;3) with 6y mod mp = 6 and
thp mod mp = 9 with g unramified at p as f ramifies at p. If sy = 0, again we have ﬁm = 7:3,
which is normalized by Im(pg); so, if P17, py is reducible. If PB|T and s = 0, we have Hy = 1

and hence, Im(py) surjects down onto Im(p) with finite kernel K (the possible error term K is
in the diagonal torus, which comes from the difference of det(77'%3) and the p-profinite part of
Im(det(pg))). This implies pg is reducible. Thus B is an Eisenstein ideal.

We now specify the A-adic Eisenstein component with which Spec(I) intersects at . Write

s (Op O
p‘p - 0 wm .
The prime-to-p conductor of py is the product C(0p)€(Yp) of the prime-to-p conductors € ()

and €(t)q). Thus we have €(0yp)E(Yy)|N. By (Gal), we may assume that ¢y is unramified at p.
Thus vy only (possibly) ramifies at prime factors of N prime to p. By class field theory, the image
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of the inertia group I; at [ in the abelianization of the decomposition group D; at [ is isomorphic
to the almost [-profinite group Z;°. Thus ¢, with values in an almost p-profinite subgroup of
x(B)* has to be of finite order. Then by global class field theory, v is of finite order. If x(*B)
has characteristic p, ¥y has values in ?; (so, g = 1), and we have a unique Teichmiiller lift
Y : Gal(Q/Q) — W of g = 1. If k(P) has characteristic 0, we put 1) = 1. We may assume
that v has values in W*, extending scalars if necessary. Now we consider the strict ray class group
Clg(Np™) and Y = lim Clo(Np™) 2 Z; x (Z/NZ)*. By class field theory, for the maximal ray
class field Q[unp<]/Q modulo Np™, we have a canonical isomorphism Gal(Q[unp=]/Q) = Y.
We identify these two groups. Write Y}, for the Sylow p-profinite subgroup of Y; so, ¥ = Y ®) Y,
canonically for the finite group Y of order prime to p. We consider the group algebra WIY,l]
and for u € Y, we write [u,] for the group element in Y}, C W[[Y})]]* represented by the projection
of u in Y),. By the same deformation argument proving Proposition 5.7(2) (and used in the proof
of Theorem 8.5), for the Teichmiiller lift 6y : Gal(Q/Q) — W* of § = 6y mod my, if ptp(N),
(W[Yp)],0) for O([u,Qp]) = bo(u)u,] € W[[Y,]] for v € Y is the universal couple among all
deformations

(A, e: Gal(Q/Q) — AX)

of (F, 0y mod myy) with prime-to-p conductor €(e)|N.

Let Y; be the maximal torsion subgroup of Y,,. We may assume that any character: Y; x
y® - @; actually has values in W* by extending scalars if necessary. The maximal torsion-
free quotient of Y, is canonically isomorphic to I', and we have a non-canonical decomposition
Y =Y, xI' with the p-group Y;. We identify W[[I']] with W[[T]] by v — t = 1+T. Since W{[Y,]] =
WY3][[T']], geometrically irreducible components of Spec(W{[Y,]]) are indexed by characters 6 :
Y; — W so that the component is given by the W-algebra projection 6, : W([Y,]] - W{[T]
sending y € Y; to 6(y) and v to t. We call this component the #-component. Take 6 such that
6, 0 @ mod P = by in I. By (Gal), we have 6, o §(Frob;) = 6(Frob;)(l) for all primes [ outside
Np. Since Oy gives rise to a point P’ of an irreducible component Spec(W[[T]) of the universal
deformation space Spec(W[[Yp]]) so that 6 = 6,00 mod P’ (with P’ = PNW[T]]). Consider the
A-adic Eisenstein series E(6, ). By our construction, pyp is isomorphic to ¢ @ (6, o 8) mod '
Then in a way similar to the CM case, we can find a possibly ‘old’ Eisenstein component I’
with Galois representation ¢ @ (6, o @) which intersects with I at P. Indeed, again by [|C :=
C(1p)C(0p) < 1IN, a mismatch of dim Ho(1, pp) and dim Ho(I;, pr) could occur only when
[|(N/C) and I|€(&) but I1&(n) for {{,n} = {1y, Op}. Writing Z(n) for the set of primes I|(N/C)
with the above divisibility /non-divisibility property, we consider the imprimitive characters 1)’
(respectively ') induced by 1 (respectively 8) modulo M := €(v)) HleE@b) [ (respectively My :=
p - €(0) [L1ez(p)!)- The Eisenstein series E(¢',v") has congruence modulo P with the I-adic
form. Therefore I/(L(I))I is a surjective image of the A-submodule Cg,, @7 I of the Eisenstein
congruence module Cg, (for m = m(f,; My, Ms)) defined just above Corollary 4.3. Therefore

(L(M)p < (L(B,¢))p. Let ap = Anng,(Cg,, @7 I). Then ay is the minimal ideal so that py
is isomorphic to representation into B(Ip/a) and is a factor of L(6,1). If P|(p), we know by
[Hid13a, Theorem 6.2], py is irreducible if p{p(IN); so, there is no reducible prime B|(p). Thus
we may assume that P{(p). Then by Corollary 3.6, cp = (g3 p agp N Aw,p; so, cp|L(0,1).

The existence of T with B|L(I) for P|L(6,1) follows from the definition of Cg. Indeed,
there exist (0,; My, My) with P|A(T;0.¢)) and at least one component Spec(I) containing
P € Spec(Cg,,) for this choice of (0, v; My, Ms). As already remarked, any component of Spec(T)
is not of CM type. O
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Here is a summarizing remark.

Remark 8.9. The proof of Theorems 8.5 and 8.8 is separated into two parts. The first part is
to prove that the congruence ideal between a non-CM component and abelian components (i.e.
either Eisenstein or CM components) is (essentially) equal to the level ideal. This is the principal
work done in this paper. The second part is to identify the level as a factor of an appropriate
p-adic L-function by the help of a proven main conjecture and Galois deformation theory.

9. Mixed cases

Pick a minimal primitive irreducible component Spec(I) of Spec(h). Let Spec(T) be the connected
component of Spec(h) containing Spec(I). We consider an Tlattice £ in Q(I)? stable under py.
Take its reflexive closure E, which remains stable under pp. For any 0 # a € ]I the multiple
aL remains I-reflexive. By [Bou98, VIL 4.2 Proposition 7], the set of associated primes of L)al
is made of prime divisors. Thus, if H/ al = W, [,/ aLl has to be a free W-module, since W is a
discrete valuation ring. Then we must have ranky, £ / al = 2, which implies that, by Nakayama’s
lemma, £ is free of rank 2 over I. Thus if T is a unique factorization domain, the condition (F)
in the introduction holds.

By resolution of singularity (see [Lip78]), we have a complete regular local ring I C
Q(I) containing I. The non-flat locus of 7 in Spec(l) is at most of codimension 2 (so, its
support is the unique closed point m of Spec(l)). Writing E for the set of prime divisors
of I¥™ above the maximal ideal of I (those of exceptional divisors over the singular point

I5™ outside

mp € Spec(I)), the set of prime divisors of I is in bijection to prime divisors of
E as Spec(I)\{my} = Spec(I°*"*)\E. Since I*™ is regular, it is a unique factorization domain
(see [Mat86, Theorem 20.3]). Thus by the above argument, extending scalars W so that
Spec(I*™) (W) # @, the reflexive I¥"-closure L of I Lean (I) € Q(T)? is free of rank 2 over I™ and
is stable under py. We write prsm : Gal(Q/Q) — GLz(I*™) for the Galois representation realized
on L. Though for simplicity, we assume the condition (Fc,,) in this section, the divisibility
conjecture we make should hold for I*™ ignoring primes in E taking pr=m in place of pr without
assuming (Feap ).

Throughout this section we assume (R) and (Fca,) in addition to p > 5 and that N is
cube-free. Then by Theorem I, we have the conductor ¢ of Im(pr) NSLa(A). Here Im(py) is taken
in GL2(Q(I)). In order to determine the global level exactly, we need to know the characteristic
power series of the congruence module between the CM part and the non-CM part and also
the Eisenstein and non Eisenstein parts of Spec(T). A key ingredient of solving this question is
Gorenstein-ness of each part (cf. Theorem 7.2). If different CM components or/and Eisenstein
components are mixed, it is difficult to prove Gorenstein-ness of the CM /Eisenstein part. Writing
p for pm;, let us describe this problem in more detail. By Proposition 5.2, if p = Ind(]% = Ind% )
for two distinct bimaginary quadratic fields, for the unique real quadratic field K’, there exists
a mod p character 5/ of Gal(Q/K’) such that p & Ind¥ K qﬁ We separate our argument into the
following five mixed cases which cover all possible cases (p-splitting imaginary quadratic fields
involved) by Proposition 5.2:

(EIS) p = 6 @+ with both @ and ¢ unramified at p with /6 has order > 2;
(UCM) absolutely irreducible p = Ind% 1 for an imaginary quadratic field M with v unramified
at p and ¢/ has order > 2;
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(SCM) absolutely irreducible p = Ind%@ > Ind%6 &~ Ind%, 5/ for two p-splitting distinct

imaginary quadratic fields M and K; so, ¢~ = (MK/M), O (M) and ¢~ =

( MK/K' ):

9

(HCM) absolutely irreducible p & IndQ = Ind%$ = Ind% & for an imaginary quadratic field

M in which p splits and an imaginary quadratic field K in which p is not split; so,
_ MK/M — MK/K — MK/K'
o7 = (ML), 67 = (M) and ¢f T = (MRS,

(ECM) p=0@ ¢ = Ind%@ for a quadratic field M; so, /0 = (M—/Q)

The five cases are disjoint, and M in case (ECM) is imaginary as /6 is an odd character. Except
for the case (ECM), we have well-defined L(I) (see §3). The difficulty of determining all possible
cases of s # sly in these cases comes from the fact that some primes P with s # slo could be
a prime of congruence between components of U (p)-deprived Hecke algebra h(®) C h generated
by T'(1) (141 Np) and U(q) for ¢ # p over A. In order to determine exact level L(I), we need to
show that the local component T® of h(®) involved is Gorenstein up to finite error (which is not
known and perhaps not expected in general either).

The Katz measure p on 3 actually depends on the choice of p-adic CM type of the imaginary
quadratic field M (i.e. a choice of (M, p) and (M,p)). Our choice is (M, p) for p corresponding to
ip : Q = Q,. If we change (M,p) to (M,Pp), we get another measure, u*. The two measures are
related by a functional equation (e.g. [Hid10, Introduction]). We write (L, _)* for the product of

the Katz p-adic L-function with modulo p branch character ¢~ with respect to (M, p). We may
conjecture the following outcome in the above cases.

CONJECTURE 9.1. For the non-CM component Spec(I) C Spec(T) and a positive integer m > 0:
e in case (EIS), L(I) is a factor of L(6,%) - L(3,0);
e in case (UCM), L(I) is a factor of (LE_ (Lf ) )2;

(
e in case (SCM), L(I) is a factor of (L%, -Li . (L:
(

- )L )T = 1)
e in case (HCM), L(I) is a factor of

poc ¢ oc

(L%_)Q (P —1)2 if 2~ is ramified at p,
(L%_ . (L%_Oc)* -(tP" —1))2  if p~ is unramified at p

for a sufficiently large integer m > 0;

e in case (ECM), further suppose that 6¢ has prime-to-p conductor N. For prime divisor
P € Spec(A) not under the intersection of a CM and an Eisenstein component, we can
define local conductor ¢p as in § 3. For P under the intersection of a CM and an Eisenstein
component, in the isomorphism class of Pi realized on Lcan(Ip) over Ip, we can find p
with maximal possible local conductor ¢p. Then we have (L(I)) = AN[)pcp is a factor of
L@.%)- LO.9) - (L5 - (L))

To explain our reasoning supporting this conjecture, we pick case (SCM). Then Spec(T) could
contain two CM components Spec(TZ ) and Spec(TX ). After inverting T', by Corollary 5.3, the
connected component S of Spec(T[1/T]) containing Spec(I[1/7T]) can have non-trivial intersection
with Spec(TX) for one choice M. There is a possible contribution from a non-CM component
whose specialization at some P|(t?" — 1) is an induced representation Ind% ¢’ for the real
quadratic field K’ ¢ KM. Then our argument proving Theorem 8.5 relative to an irreducible
component J of TM should go through after inverting (t*" — 1) for a sufficiently large m. Thus,
outside an exceptlonal divisor (containing (#*" — 1) and the zero divisor of Fy y for M and
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for K), the conjecture follows. The real challenge would be the analysis at primes inside the
exceptional divisor. All other cases should be similar in the sense that the conjecture is provable
outside an exceptional divisor.

10. Prime-to-p conductor of p-adic Galois representation

We summarize facts on ramification at a prime g # p of p-adic Galois representations we have
used. Let R be a p-profinite local ring. Let M C Q be a finite extension of Q with integer
ring O, and put OF) = [11,(O ®z Z;). For any continuous character ¢ : M*\M; — R*
unramified outside Np, the restriction v : (55(”))X — R* has to be a finite order character, as
1) is ramified only at finitely many primes and R* is an almost p-profinite group. Thus we have
an integral ideal €(¢)) maximal among ideals a prime to p with (1 4+ aO®) N (D®))* < Ker(1)).
We call €() the prime-to-p conductor of 1. By local class field theory, a continuous character:
Gal(Q/M) — R* can be viewed as an idele character 1, and hence the definition of €(1)) applies
also to Galois characters. For o € Gal(Q/Q) acting non-trivially on M leaving it stable, we define
Y7 : Gal(Q/M) — R* by 7 (1) = (o070~ 1). The idele character corresponding to the Galois
character 7 is given by composing ¢ with the action of o on M/ . For a rational prime ¢ # p,
the g-primary part €,(¢)) of €(¢) is called the g-conductor of . Obviously, €,(1) only depends
on 1 restricted to the inertia group at ¢, and therefore, €,(¢)) is well defined for any finite order
character v of the inertia group. If M = Q, we often identify the ideal €,(¢)) = (¢°) with the
positive integer ¢°.

Recall the exact sequence 1 — I)? — I; — 1, é — 0 of the wild inertia group I;” and the tame
inertia group Ié =~ 7(9) which is an abelian group (e.g. [Hid00, §3.2.5]).

LEMMA 10.1. Let p : Gal(Q,/Qq) — GL2(R) be a continuous representation for a reduced
p-profinite noetherian local ring R. Put pp = (p mod P) for P € Spec(R). Suppose q # p.

(1) Unless pyls, is reducible indecomposable for some minimal prime p of R, p|7, has finite
image.

(2) If there exists a prime ideal Py of the p-profinite ring R such that pp, is absolutely

irreducible over 1./, then for all prime ideals P of R, pp = (p mod P) is absolutely irreducible
over 1.
q

(3) Suppose that R is an integral domain. If p\[;u is reducible and p is absolutely irreducible,
then p = Ind% ¢ for a character £ of Gal(Q,/Qq) of a quadratic extension K/Q.

(4) If R is an integral domain and p|, is reducible indecomposable, we have p = (/\6" f]) with
n|1, having finite order, where N is the unramified cyclotomic character acting on fipe.

Proof. We first prove (1). Since R — EBP R/p for finitely many minimal ideals p, replacing R
by R/p, we may assume that R is an integral domain. Since p| rp has finite image (factoring
through GLy(R/mg)) and I, = I} x IV by restricting p to Gal(Q,/K) for a finite extension
K/Q,, we may assume that p|Ga1(@q/K) is reducible to prove (1). Let I = I’ N Gal(Q,/K)
and I} be the image of Ix = I, N Gal(Q,/K) in I}. Then 1 — I}? — Ix — I} — 1 is exact.
Since p(I}¥) cannot contain a non-trivial unipotent element as g # p, p| re =n® ¢ for two finite
order characters factoring through (R/mpg)*. Since I is cyclic, by [Hid00, Corollary 4.37], either
PM = p\Gal(@q/M) = E@ﬁ for extensions gand 7 of £ and 7 to Gal(@q/M) for an extension M /K
with [M : K] < 2 or p(Ix) contains a non-trivial unipotent element of p-power order, which
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is excluded by our assumption; thus pp = E @ 7. Replacing M by its finite extension, we may
assume that & and 7] factor through I, on which an element ¢ € Gal(@q /M) surjecting down to
the Frobenius element over M acts by ¢o¢~! = @ for a g-power ). Defining the inner conjugate
£ by £2(0) = £(pop™!), we have ¥ = j% = 7j. This implies 7 is of finite order; so, plz, has finite
image. This proves (1).

By p-profiniteness of R, the residue field R/mpg is finite for the maximal ideal mp of R.
Since I'p(mp) is p-profinite, ¢ # p implies that p|;» factors through GLy(R/mpg). If po[rw is
absolutely irreducible, then p| 1w is absolutely irreducible for p = p mod mg. Then we have p Pl I
is absolutely irreducible for all P € Spec(R). This proves (2).

We prove (4). Write p|7, = ( ) Then p?|;, = (g u ) = p|, for a Frobenius ¢ € Gal(Q,/Q,).
By indecomposability, we have n® = n? = n over I ; so, n\ 1, is of finite order, and u® = qu, which
shows 7/¢ = N for the cyclotomic character N giving the action of Gal(Q,/Qq) on pye; so, N
is unramified, and we get the desired result.

To prove (3), assume reducibility of p| I Since q # p, ] 1w = £ @n. Then we have

o) (§ W)otort == (5 )

for each o € Gal(Q,/Qq). If €7 = ¢ for all o € Gal(Q,/Q,), absolutely irreducible p commutes
with p(Iy); so, we conclude § = 7. We call this case Z. If {7 = n # &, then its stabilizer is
Gal(Q,/K) for a quadratic extension K/Q,. We call this case D.

In case D, by [Ser77, Proposmon 24 in §8.1] (Whose proof does not require p # 0 in R as
long as p|rw is semi-simple), p = Ind ¢ for a character £ of Gal(Q,/K) extending £ as asserted.

Suppose that we are in case Z. Then p(I) is in the center of p(I). Since If is abelian
and p(I) = p(I) x p(If), p(Iy) is an abelian group. Thus pl;, is reducible. By (4), we have
pl, = £ ©n. Then Gal(@q/(@q) acts on £ and n by inner conjugation. If the stabilizer of £ is a
proper subgroup of Gal(@q /Qq), we find a quadratic extension K/Q, such that p is an induced
representation as asserted. If the stabilizer is the entire group, £ = n and p(I;) is in the center of
Im(p). Since Im(p) = p(Iy) % (p(¢)) for an element ¢ giving the Frobenius automorphism of the
maximal unramified extension of Qg, Im(p) is abelian, contradicting the absolute irreducibility
of p. This finishes the proof of (3). O

Suppose that R is an integral domain. We recall the conductor Cy(p) of a two-dimensional
Galois representation p : Gal(Q,/Q,) = GLa2(R) for a prime ¢ # p (e.g. [Hid11a, Theorem 5.1.9]).
It only depends on the restriction of p to the inertia group I, C Gal(@q /Qq). Regarding p having
values in GL2(Q(R)) for the quotient field Q(R) of R, we define Cy(p) = ¢ as follows. Let Q"
be the maximal unramified extension of Q, and K with integer ring V' be the splitting field of
plr,- We put

I; = {0 € Gal(K/Qy") | o(x) = x mod mifty.

Then we define

=3

z:0

2 dimgp) HO(I;, p)).

’L

If P D P are two primes of R, dim,py H(I;, pp,) = dimy,p,) H°(I;, pp,); 50, Cq(pp,) < Cy(pp,)
for pp, = p mod P;. If R is not an integral domain, we define

Cq(p) = Suppegpec(r) CqlPP)-
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Here are some explicit identifications of Cy(p) (given in [Hid11a, Theorem 5.1.9]) when R is
an integral domain. This covers all cases used in the proof of Theorem 8.5 (as p is an induced
representation in Theorem 8.5). If p|7, is isomorphic to a representation (8 :;) over Q(R), we have

Colp) = q if 1 is unramified and p is indecomposable,
= C,(n)? if n is ramified.

If pp = a® B for two characters a, 8 : Gal(Q,/Q,) — R*, the characters a|7, and 8|7, are of
finite order. We then have Cy(p) = €4(a)€4(B). If p is absolutely irreducible and it has the form

p = Indf}f for an open subgroup H of I, of index 2, writing (¢¢) for the discriminant of the

quadratic extension @5 /@éq, we have C,(p) = ¢°*/, where (¢/) is the norm relative to @f /@;q
of the conductor €,(§) of €.

For an automorphic representation 7w generated by a holomorphic Hecke eigenform f, we
have its p-adic Galois representation py = pr (e.g. [Hidlla, §4.2]). Then Cy(py) coincides with
the g-part of the conductor Cy(m) of 7 in the sense of [Gel75, Theorem 4.24] (see also [Car86]

for Cy(pr) = Cy(m)).

LEMMA 10.2. Suppose that R is a reduced p-profinite local ring. Let p : Gal(Q,/Qq) — GL2(R)
be a continuous representation. Then:

(1) for any prime ideal P of R containing a minimal prime p, we have Cy(pp) < Cq(p);

(2) suppose that R is an integral domain in which p # 0. Then unless pl|;, is reducible
indecomposable, for any point P € Spec(R[1/p]), Cq(pp) is independent of P, in particular,
Cqlpp) = Cy(p);

(3) suppose that Spec(R) = Spec(I) U Spec(J) for two irreducible components Spec(I) and
Spec(J). If Spec(I[1/p]) N Spec(J[1/p]) contain a prime Py and py|;, is not reducible
indecomposable for the two minimal prime ideals p of R, Cy(pp) is independent of
P € Spec(R[1/p]), in particular, Cq(pp) = Cq(p);

(4) if P is a prime ideal of R with k(P) having characteristic 0 and py|;, is not reducible
indecomposable for each minimal prime ideal p of Rp, then Cy(pp/) = Cq(pp) for any
prime ideal P' of the localization Rp.

Proof. The first assertion follows directly from the definition, and the third is the special case of
the second. For assertions (2) and (3), we note that p|7, has finite image under the assumption.
If R is an integral domain and p ¢ P for P € Spec(R), 1 + PR = RN (1+ PRp) is a torsion-
free group; so, pp(1ly) = p(I;). In particular, we have, for any subgroup I C I;, dimgg) HO(I,
p) = dim,py H(I, pp), which implies Cy(p) = Cy(pp), proving (2).

As for (3), writing I = R/p and J = R/q, by (2), Cy4(pp) is constant for all P € Spec(I[1/p])
and Cy(pg) is independent of @ € Spec(J[1/p]). We have Cy(pp) = Cy(py) = Cy(pp,) = Cy(pq) =
CalpQ).

Assertion (4) follows from (3). Note that Rp[1/p| = Rp as x(P) has characteristic 0. For any
two irreducible components Spec() = Spec(Rp/p) and Spec(J) = Spec(Rp/q) of Spec(Rp), we
have P € Spec(I) N Spec(J); so, Cq(py) = Cq(pq) = Cy(pp). For any P’, taking a minimal prime
ideal q contained in P’, we get Cy(ppr) = Cy(pq) = Cq(pp). This finishes the proof. O

We call a representation p : Gal(Q,/Qq) minimal if Cy(p ® x) = Cq(p) for any finite order
character x of Gal(Q,/Qy).
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LEMMA 10.3. Let R be a p-profinite noetherian integral domain and p : Gal(Q,/Q,) — GL2(R)
be a semi-simple representation. Let p = (p mod mpg).

(1) If pl;, = E @7 for two characters € and W of I, then pl1, = & ®n for two characters
& and n. If further p is minimal and one of £ and 7 extends to Ga,l(@q/(@q), one of £ and 7 is
unramified, and p is minimal.

(2) Suppose that p = £ @7 for two characters £ and 7 of Gal(Q,/Qy). If p is absolutely
irreducible, ¢ = 1 mod p. If further p is minimal, p and & are unramified at q (so, p is minimal),
and & /7 has order 2.

(3) Suppose that p = £@7 for two characters € and 7j of Gal(@q/(@q). If p is reducible minimal
isomorphic to £ @ n, one of £ and n is unramified, and p is minimal. If p is unramified but p is
ramified, we again have ¢ = 1 mod p.

(4) Assume that p # 0 in R. Suppose that either p =7 & & or p = Ind%’ ¢ for a quadratic
extension K/Qq. If Cy(p) < Cy4(p) and p is minimal, we have ¢ = 1 mod p, where j = 1 if
PN @E or K is ramified and j = 2 if K is unramified.

Proof. We first prove assertion (1). If p|7, is absolutely irreducible, by Lemma 10.1(3), we have
either (i) p|r» is absolutely irreducible or (ii) p = Ind%{ for a character £ and a ramified
quadratic extension K/Qq. Case (i) does not occur as p|j» factors through p. Suppose that
we are in case (ii) and that p|7, is absolutely irreducible. Then we have 77 = 1 mod mp for
o € I; non-trivial over K, as p|z, is reducible. Then by local class field theory, €179 can be
regarded as a character of O* for the integer ring O of K. By irreducibility of p|z,, gm0 £ 1
with €179 = 1 mod mp. Thus £'~7 has p-power order. Since O is a g-profinite group times F7
(as K is ramified over Q), €177 factors through Fx. Any character of O™ factoring through F
is o-invariant; so, €177z, = 1. Thus Ind(% ¢l1, is reducible, a contradiction. Thus p|7, = & @ n. If
one of £ and 7 extends to Gal(Q,/Q,), the two characters extend to Gal(Q,/Qq) as det(p) is a
character of Gal(Q,/Q,). Then we must have p = £ & for suitable choice of extensions. By the
minimality, one of 7 and £ is unramified; so, one of ¢ and 7 is unramified. This implies that p is
minimal as well. This finishes the proof of (1).

We now prove (2). By (1), p|z, = {&n with & = ¢ mod mp. Since p is absolutely irreducible, by
Lemma 10.1(3), we have p = Ind% ¢ for a character £ of Gal(Q,/K) extending the character & of
I,NGal(Q,/K) for a quadratic extension K/Qq. If K/Qq is ramified, {7 = £ for o € I, non-trivial
on K so, p is reducible, a contradiction. Thus K/Qq is unramified. Take ¢ € Gal(Q,/Qy) giving
rise to g-th power Frobenius modulo g. Then ¢ is non-trivial on K, we have £!7¢ = 1 mod mp
and £/7 = (%) as p = €@ 7. Thus €'7? is a p-power order character. Note that ¢l1, has
finite order. Write {|7, = £,¢ () 50 that §p has p-power order and § (?) has order prime to p. Then
5;_(;5 =¢17¢ and (f(/p))l_q5 =1, since £17¢ has p-power order. Thus £ extends to a finite order
character 2 of Gal(Q,/Qq). Then p®EZ~" has less conductor than p. Since p®EZ~! is absolutely
irreducible, it is ramified; so, &, is non-trivial. Since ¢ acts on I; by the cyclotomic character
(e.g. [Hid0O, p. 123]), we have {;f_l = g_l = 1 which implies ¢ = 1 mod p. By minimality of p,
we conclude Z[;, = P =1, and ¢|1, has order p-power. Thus E|1q =1 and hence, p =16 (m),
which is unramified, and &/7 = (%) has order 2. This finishes the proof of (2).

We prove (3). If p is reducible, by semi-simplicity of p, we have p = £ @ 7. By minimality
of p, one of ¢ and n is unramified, and hence p is minimal. If further p is unramified while p
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is ramified, one of the characters £ and 7 non-trivial on I; become trivial modulo mg; so,
q =1 mod p.

To see (4), we note that under pt (¢ — 1) and minimality of p, p is absolutely irreducible if
and only if p is absolutely irreducible by (2). If p 2 n@® ¢ and p = £ &7 with 7 = (7 mod mp), for
the Teichmiiller lift gofg and 1 of 77, Cy(p) > Cy(p) implies that one of g{-l and 77!, say fg_l,
is non-trivial over I} of p-power order. Then 1 = (€119 = (¢ 117 implies ¢ = 1 mod p.
Now suppose that p = Ind%l ¢ is absolutely irreducible. Then for ¢ = (¢ mod mpg), El“’ # 1 for
o € Gal(Q,/Qq) non-trivial on the quadratic extension K. If K is ramified, again Cy(p) > Cy(p)
implies 1 = (55_1)1_¢ = (fg_l)l_q as we can choose the Frobenius ¢ inducing identity on K. If
K is unramified, by the same argument, ¢> = 1 mod p as the Frobenius over K acts on If] by
o ol

By Lemma 10.1(3), the remaining case is when p[» is irreducible but p is not induced.
Since pljw factors through p which is induced, p(Iy’) is a dihedral group (as p[s» is irreducible).
Since 2 is a factor of the order of the dihedral group p(I;"), we conclude ¢ = 2. Since p(I;) is
dihedral, p|jw = Ind?f for an index 2 subgroup I of I3’. By [Wei74], the image G of Im(p) in
PGL2(R) is isomorphic either to Sy or A4. We have an isomorphism S;/V 2 S3 for the unique
(2,2)-subgroup V. Let L be the extension of Qq such that Gal(L/Q,) = G by p. Then L has
subfield M with Gal(L/M) = V. By [Kut80, §5.1], we have p|q, @, /a) = Ind? ¢ for any of three
quadratic extensions L’ of M in L. Since p # 2, V N G has to inject into G. Thus G has to be
isomorphic to S, or A4, a contradiction, since G is dihedral. Therefore, this case cannot happen,
hence we get (4). O

For a global representation p : Gal(Q/Q) — GLa(R), assuming that p only ramifies at finitely
many places (so, Cq(p|Gal(@q) /Qq)) =1 for almost all g # p), we define its prime-to-p conductor
by C(p) = 1,z Cq(p\Gal(@q) /Qq))' All Galois representations we studied in this paper ramify
only at finitely many primes; so, it has a well-defined conductor. A global Galois representation
p as above is called minimal if C(p) is minimal among C(p ® &) for all finite order Galois
characters &.

LEMMA 10.4. Let R be a p-profinite integral domain and ¥ : Gal(Q/M) — R* be a character
with prime-to-p conductor € for an imaginary quadratic field M. If Ind%[ U is minimal at primes
q split in M, we have §. = O for the decomposition € = F§.J in Definition 6.1.

Proof. If §. # O, we have a rational prime ¢ such that (¢) | §§.. Since §+3F. = O and §F C §F¢, we
can split (¢) = QQ° in M so that Q|F. Then identifying I, with Iqe, we may regard ¥|7,. as a
character of I,. Since the image of I, in Gal((@gb /Qg) for the maximal abelian extension ng /Qq

is isomorphic to Gal(Qq[ue>]/Qq) = Z;, we have a global Galois character £ : Gal(Q/Q) — R*

unramified outside ¢ and &|;, = ¥|;,. Then we have, for ¢g-primary parts,
Co((Indffy W) @671 5 g 2 (3c)g = Cy(Indy; ¥)

contradicting minimality of Ind% v, O
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