ON TWO-DIMENSIONAL BERNSTEIN POLYNOMIALS

P. L. BUTZER

1. Introduction. Let the function of two real variables $f(x, y)$ be given over the square

$$
S: 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1 .
$$

Then the Bernstein polynomial in two variables x and y, corresponding to the function $f(x, y)$ is defined as

$$
\begin{equation*}
B_{n_{1} n_{2}}^{f}(x, y)=\sum_{\nu_{1}=0}^{n_{1}} \sum_{\nu_{3}=0}^{n_{2}} f\left(\frac{\nu_{1}}{n_{1}}, \frac{\nu_{2}}{n_{2}}\right) p_{\nu_{1}, n_{1}}(x) p_{\nu_{2}, n_{3}}(y) . \tag{1}
\end{equation*}
$$

where

$$
p_{\nu, n}(u)=\binom{n}{\nu} u^{\nu}(1-u)^{n-\nu} .
$$

Obviously

$$
\sum_{\nu=0}^{n} p_{\nu, n}(u)=1
$$

The main purpose of this paper will be to prove the following result.
Theorem. If the function $f(x, y)$ is bounded in the closed square S, then

$$
\begin{equation*}
\lim _{n_{1}, n_{3} \rightarrow \infty} \frac{\partial^{p}}{\partial x_{0}^{q} \partial y_{0}^{p-q}} B_{n_{1} n_{2}}^{f}\left(x_{0}, y_{0}\right)=\frac{\partial^{p}}{\partial x_{0}^{q} \partial y_{0}^{p-q}} f\left(x_{0}, y_{0}\right) \tag{2}
\end{equation*}
$$

at every point (x_{0}, y_{0}) belonging to the open square $0<x<1,0<y<1$ where the pth total differential of $f(x, y)$ exists, provided n_{1}, n_{2} tend to infinity in such a way that

$$
\begin{equation*}
0<r \leqslant \frac{n_{1}+1}{n_{2}+1} \leqslant s<+\infty . \tag{3}
\end{equation*}
$$

If, moreover, the partial derivatives of $f(x, y)$ of the first p orders exist and are continuous in S, then the relation (2) holds uniformly in S as n_{1}, n_{2} approach infinity in any manner whatsoever. This latter result, which is used in establishing our theorem, was recently proven by Kingsley [1], but we shall deduce it in a more direct manner.
2. Preliminary results. If $\delta \geqslant n_{1}^{-\alpha}, 0<\alpha<\frac{1}{2}$ then for every $k>0$ there is a constant C (depending only on α and k) such that

Received March 5, 1952. This paper forms a portion of the author's thesis, On Bernstein Polynomials, written under the direction of Professor G. Lorentz and accepted for a Ph.D. degree at the University of Toronto in November, 1951. The author gratefully acknowledges the assistance received from the National Research Council, Ottawa.

$$
\begin{equation*}
\sum_{\left|\frac{\nu}{n}-u\right|>\delta} p_{v, n}(u) \leqslant C n^{-k}, \quad 0 \leqslant u \leqslant 1 \tag{4}
\end{equation*}
$$

Furthermore, for a given $\gamma \geqslant 0$ and any $0 \leqslant u \leqslant 1$,

$$
\begin{equation*}
\sum_{\nu=0}^{n}|\nu-n u|^{\gamma} p_{\nu, n}(u) \leqslant C_{1} n^{\frac{1}{2}} \tag{5}
\end{equation*}
$$

where C_{1} is a constant depending only on γ.
For the proofs of these inequalities see [2].
We now recall several facts on differentials. By definition, the p th total differential of $f(x, y)$ exists [3] at the point $\left(x_{0}, y_{0}\right)$ if

$$
\begin{equation*}
f(x, y)=P(x, y)+g(x, y) \tag{6}
\end{equation*}
$$

where $P(x, y)$ represents a polynomial of degree p, and

$$
\begin{equation*}
g(x, y)=\sum_{i=0}^{p} \alpha_{i}(x, y)\left(x-x_{0}\right)^{p-i}\left(y-y_{0}\right)^{i}=\sum_{i=0}^{p} \beta_{i} \tag{7}
\end{equation*}
$$

for the sake of brevity, where the $\alpha_{i}(x, y)$ have zero as a unique double limit as $x \rightarrow x_{0}, y \rightarrow y_{0}$.

We now define

$$
\underset{(x, h)}{\Delta^{0} f(x, y)}=f(x, y), \quad \Delta_{(x, h)}^{1} f(x, y)=f(x+h, y)-f(x, y)
$$

and in general

$$
\begin{equation*}
\underset{(x, h)}{\Delta_{p}^{p}} f(x, y)=\sum_{i=1}^{p}(-1)^{p-i}\binom{p}{i} f(x+i h, y) \tag{8}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\underset{(y, k)}{\Delta^{q} f(x, y)}=\sum_{j=1}^{q}(-1)^{q-j}\binom{q}{j} f(x, y+j k) . \tag{9}
\end{equation*}
$$

From (8) and (9) it follows that

$$
\begin{align*}
\underset{(x, h)}{\Delta^{p}} \underset{(y, k)}{\Delta^{q}} f(x, y) & =\underset{(y, k)}{\Delta^{q}} \underset{(x, h)}{\Delta^{p}} f(x, y) \tag{10}\\
& =\sum_{i=0}^{p} \sum_{j=0}^{q}(-1)^{p+q-i-j}\binom{p}{i}\binom{q}{j} f(x+i h, y+j k) .
\end{align*}
$$

If the partial derivatives of $f(x, y)$ of order $\leqslant p+q$ all exist at $\left(x_{0}, y_{0}\right)$ and are continuous in S, it can be shown that

$$
\begin{equation*}
\underset{\left(x_{0}, h\right)}{\Delta_{\left(y_{0}, k\right)}^{p}} \quad \Delta^{q} f\left(x_{0}, y_{0}\right)=h^{p} k^{q} \frac{\partial^{p+q}}{\partial x_{0}^{q} \partial y_{0}^{p-\bar{q}}} f\left(x_{0}+p \theta_{1} h, y+q \theta_{2} k\right) \tag{11}
\end{equation*}
$$

where $\theta_{i}=\theta_{i}\left(x_{0}, y_{0} ; h, k\right) \quad\left(0<\theta_{i}<1 ; i=1,2\right)$.
Applying (10), by induction we can show for $q=0,1,2, \ldots, p$,

$$
\begin{align*}
& \frac{\partial^{p}}{\partial x^{q} \partial y^{p-q}} B_{n_{1} n_{2}}^{f}(x, y) \tag{12}\\
& =n_{1}\left(n_{1}-1\right)
\end{align*} \quad \ldots\left(n_{1}-q+1\right) n_{2}\left(n_{2}-1\right) \ldots\left(n_{2}-p+q+1\right) .
$$

3. The main theorem. We state Bernstein's Theorem for functions of two variables.

Lemma 1. If $f(x, y)$ is bounded in the square S, then at every point of continuity (x, y),

$$
\lim _{n_{1}, n_{2} \rightarrow \infty} B_{n_{1} n_{2}}^{f}(x, y)=f(x, y)
$$

the result holding uniformly in x and y if $f(x, y)$ is continuous in S.
The proof follows simply by extending the proof of the one-dimensional Bernstein's Theorem to two dimensions.

Lemma 2. If all the partial derivatives of $f(x, y)$ of order $\leqslant p$ exist and are continuous in S, then

$$
\begin{equation*}
\frac{\partial^{p}}{\partial x^{q} \partial y^{p-q}} B_{n_{1} n_{2}}^{f}(x, y) \rightarrow \frac{\partial^{p}}{\partial x^{q} \partial y^{p-q}} f(x, y) \tag{13}
\end{equation*}
$$

uniformly in S as n_{1}, n_{2} approach infinity in any manner whatever.
Proof. Applying the relations (12) and (11) we obtain

$$
\begin{align*}
& \frac{\partial^{p}}{\partial x^{q} \partial y^{p-q}} B_{n_{1} n_{2}}^{f}(x, y) \tag{14}\\
& =n_{1}\left(n_{1}-1\right) \ldots\left(n_{1}-q+1\right) n_{2}\left(n_{2}-1\right) \ldots\left(n_{2}-p+q+1\right) \\
& \quad \cdot\left(\frac{1}{n_{1}}\right)^{q}\left(\frac{1}{n_{2}}\right)^{p-q} \sum_{\nu_{1}=0}^{n_{1}-q} \sum_{\nu_{2}=0}^{n_{2}-p+q} \frac{\partial^{p}}{\partial x^{q} \partial y^{p-q}} f\left(\frac{\nu_{1}}{n_{1}}+q \frac{\theta_{\nu_{1} \nu_{2}}}{n_{1}}, \frac{\nu_{2}}{n_{2}}+(p-q) \frac{\phi_{\nu_{1} \nu_{2}}}{n_{2}}\right) \\
& \quad \cdot p_{\nu_{1}, n_{1}-q}(x) p_{\nu_{2}, n_{2}-p+q}(y),
\end{align*}
$$

where

$$
0<\theta_{\nu_{1} \nu_{2}}<1, \quad 0<\phi_{\nu_{1} \nu_{2}}<1 .
$$

Now, in the relation (14), the product of the factors outside the double sum will approach 1 as n_{1}, n_{2} approach infinity. We denote $\partial^{p} f / \partial x^{q} \partial y^{p-q}$ by $h(x, y)$ and observe that the difference between the double sum in (14) and

$$
B_{n_{1}-q, n_{2}-p+q}^{h}(x, y)
$$

approaches zero uniformly in x and y as $n_{1}, n_{2} \rightarrow \infty$. But by the previous lemma, the last expression approaches

$$
\frac{\partial^{p}}{\partial x^{q} \partial y^{p-q}} f(x, y)
$$

uniformly in x and y. Hence the limit relation (13) follows, proving the lemma.
Lemma 3.

$$
\frac{d^{l}}{d u^{l}}\left[u^{\nu}(1-u)^{n-\nu}\right]=Q(u) u^{\nu-l}(1-u)^{n-\nu-l}
$$

where

$$
Q(u)=\sum_{i, j} n^{i}(\nu-n u)^{j} h_{i, j}^{l}(u), \quad i, j \geqslant 0,2 i+j \leqslant l
$$

and the $h_{i, j}^{l}(u)$ are polynomials in u independent of ν and n.
The proof of this lemma follows by induction, see [2].
We are now in a position to consider the theorem stated in the introduction.
Proof of Theorem. Since the p th total differential of $f(x, y)$ exists at $\left(x_{0}, y_{0}\right)$, we have the representaion (6) with $P(x, y)$ a polynomial of degree p and $g(x, y)$ as defined by (7). We therefore obtain

$$
\frac{\partial^{p}}{\partial x_{0}^{q} \partial y_{0}^{p-q}} B_{n_{1} n_{2}}^{f}\left(x_{0}, y_{0}\right)=\frac{\partial^{p}}{\partial x_{0}^{\partial} \partial y_{0}^{p-q}} B_{n_{2} n_{2}}^{p}\left(x_{0}, y_{0}\right)+\frac{\partial^{p}}{\partial x_{0}^{q} \partial y_{0}^{p-q}} B_{n_{2} n_{2}}^{\rho}\left(x_{0}, y_{0}\right)
$$

and by Lemma 2 we only need to show that the second term on the right-hand side approaches zero. Using the definition of $g(x, y)$ in (7), it is sufficient to show that

$$
\begin{equation*}
\frac{\partial^{p}}{\partial x_{0}^{q} \partial y_{0}^{p-q}} B_{n_{1} n_{s}}^{\beta_{k}}\left(x_{0}, y_{0}\right) \rightarrow 0, \quad k=0,1,2, \ldots, p \tag{15}
\end{equation*}
$$

By Lemma 3, we find that

$$
\begin{aligned}
& \frac{\partial^{p}}{\partial x_{0}^{q} \partial y_{0}^{p-q}} B_{n_{2} n_{s}}^{\beta_{k}}\left(x_{0}, y_{0}\right) \\
& =\sum_{2 i_{1}+j_{1} \leqslant q} h_{i_{1}, j_{2}}^{q}\left(x_{0}\right) \sum_{2 i_{2}+j_{2} \leqslant p-q} h_{i_{2}, j_{2}}^{p-q}\left(y_{0}\right) \sum_{\nu_{1}=0}^{n_{1}} \sum_{\nu_{2}=0}^{n_{2}} \alpha_{k}\left(\frac{\nu_{1}}{n_{1}}, \frac{\nu_{2}}{n_{2}}\right)\left(\frac{\nu_{1}}{n_{1}}-x_{0}\right)^{p-k} \\
& \quad \cdot\left(\frac{\nu_{2}}{n_{2}}-y_{0}\right)^{k} n_{1}^{i_{1}}\left(\nu_{1}-n_{1} x_{0}\right)^{j_{2}} n_{2}^{i_{2}}\left(\nu_{2}-n_{2} y_{0}\right)^{j_{2}}\binom{n_{1}}{\nu_{1}} x_{0}^{\nu_{1}-q}\left(1-x_{0}\right)^{n_{1}-\nu_{1}-q}\binom{n_{2}}{\nu_{2}} \\
& \\
& \quad \cdot y_{0}^{\nu_{0}-p+q}\left(1-y_{0}\right)^{n_{2}-\nu_{2}-p+q}
\end{aligned}
$$

and we can rewrite this in the form
(16) $\frac{\partial^{p}}{\partial x_{0}^{q} \partial y_{0}^{p-q}} B_{n_{1} n_{3}}^{\beta_{k}}\left(x_{0}, y_{0}\right)=\sum_{2 i_{1}+j_{2}<q} h_{i_{1}, j_{2}}^{*}\left(x_{0}\right) \sum_{2 i_{2}+j_{\mathbf{2}} \leqslant p-q} h_{i_{2}, j_{\mathbf{2}}}^{*}\left(y_{0}\right)$

$$
\begin{array}{r}
\cdot \sum_{\nu_{1}=0}^{n_{1}} \sum_{\nu_{2}=0}^{n_{2}} \alpha_{k}\left(\frac{\nu_{1}}{n_{1}}, \frac{\nu_{2}}{n_{2}}\right)\left(\frac{\nu_{1}}{n_{1}}-x_{0}\right)^{p-k}\left(\frac{\nu_{2}}{n_{2}}-y_{0}\right)^{k} n_{1}^{i_{1}}\left(\nu_{1}-n_{1} x_{0}\right)^{j_{1}} \\
\cdot n_{2}^{i_{2}}\left(\nu_{2}-n_{2} y_{0}\right)^{j_{2}} p_{\nu_{1}, n_{1}}\left(x_{0}\right) p_{\nu_{2}, n_{2}}\left(y_{0}\right)
\end{array}
$$

where the $h^{*}{ }_{i_{1}, j_{1}}\left(x_{0}\right)$ are independent of ν_{1} and n_{1} and the $h^{*}{ }_{i_{2}, j_{2}}\left(y_{0}\right)$ are independent of ν_{2} and n_{2}. Hence it is sufficient to show that the inner double sum in (16), which we denote by σ, approaches zero under the restriction (3).

Now for any $\epsilon>0$ there is a δ such that

$$
\begin{equation*}
\left|\alpha_{k}\left(x_{1}, y_{1}\right)\right|<\epsilon, \quad\left|x_{1}-x_{0}\right|<\delta, \quad\left|y_{1}-y_{0}\right|<\delta ; \quad k=0,1,2, \ldots, p \tag{17}
\end{equation*}
$$

(the choice of δ is made more precise later on), and there also exists an M such that $\left|\alpha_{k}\left(x_{1}, y_{1}\right)\right| \leqslant M$ for $0 \leqslant x_{1} \leqslant 1,0 \leqslant y_{1} \leqslant 1$.

In absolute value the part of σ in (16) corresponding to

$$
\left|\frac{\nu_{1}}{n_{1}}-x_{0}\right|<\delta, \quad\left|\frac{\nu_{2}}{n_{2}}-y_{0}\right|<\delta
$$

does not exceed

$$
n_{1}^{i_{1}-p+k} n_{2}^{i_{2}-k} \epsilon \sum_{\nu_{1}=0}^{n_{1}} \sum_{\nu_{2}=0}^{n_{2}}\left|\nu_{1}-n_{1} x_{0}\right|^{p-k+j_{1}}\left|\nu_{2}-n_{2} y_{0}\right|^{k+j_{2}} p_{\nu_{1}, n_{1}}\left(x_{0}\right) p_{\nu_{2}, n_{2}}\left(y_{0}\right)
$$

and by (5), this last expression does not exceed

$$
\begin{aligned}
& C_{2} \epsilon n_{1}^{i_{1}-p+k+\frac{3}{2}\left(p-k+j_{2}\right)} n_{2}^{i_{2}-k+\frac{3}{2}\left(k+j_{2}\right)} \\
\leqslant & C_{2 \epsilon}\left(\sqrt{ } n_{1}\right)^{2 i_{1}+j_{1}-(p-k)}\left(\sqrt{ } n_{2}\right)^{2 i_{2}+j_{2}-k} .
\end{aligned}
$$

As $2 i_{1}+j_{1} \leqslant q, 2 i_{2}+j_{2} \leqslant p-q$, we have $2 i_{1}+2 i_{2}+j_{1}+j_{2}-p \leqslant 0$, and so this last expression does not exceed $C_{3} \in$ for all sufficiently large n_{1}, n_{2} which satisfy (3).

In absolute value the part of σ in (16) corresponding to

$$
\left|\frac{\nu_{1}}{n_{1}}-x_{0}\right|<\delta, \quad\left|\frac{\nu_{2}}{n_{2}}-y_{0}\right| \geqslant \delta
$$

does not exceed

$$
n_{1}^{i_{1}-p+k} n_{2}^{i_{2}-k} M \sum_{\nu_{1}=0}^{n_{1}}\left|\nu_{1}-n_{1} x_{0}\right|^{p-k+j_{1}} p_{\nu_{1} n_{1}}\left(x_{0}\right) \sum_{\left|\frac{\nu_{2}}{n_{2}}-y_{0}\right|>\delta}\left|\nu_{2}-n_{2} y_{0}\right|^{k+j_{2}} p_{\nu_{2}, n_{2}}\left(y_{0}\right) .
$$

Using (3) and the relations $|\nu-n u| \leqslant n$ and

$$
\sum_{\nu_{1}=0}^{n_{1}} p_{\nu_{1}, n_{1}}\left(x_{0}\right)=1,
$$

we conclude that the above expression does not exceed

$$
\begin{equation*}
n_{2}^{i_{1}-p+k} n_{2}^{i_{2}-k} M_{1} n_{2}^{p-k+j_{2}} n_{2}^{k+j_{2}} \sum_{\left|\frac{y_{2}}{2}-y_{0}\right|>\delta} p_{v_{2}, n_{2}}\left(y_{0}\right) . \tag{18}
\end{equation*}
$$

Provided n_{1}, n_{2} are sufficiently large and $0<\alpha<\frac{1}{2}$, the number $\delta=n_{1}{ }^{-\alpha}+$ $n_{2}{ }^{-\alpha}$ satisfies the condition (17). Using the inequality (4) with this δ, we see that the expression (18) does not exceed

$$
n_{2}^{i_{1}-p+k} n_{2}^{i_{1}-k} M_{1} n_{2}^{p-k+j_{2}} n_{2}^{k+j_{2}} C_{4} / n_{2}^{i_{1}+i_{2}+j_{2}+j_{4}+1},
$$

which approaches zero as n_{2} tends to infinity.
A similar conclusion holds for the part of σ corresponding to

$$
\left|\frac{\nu_{1}}{n_{1}}-x_{0}\right| \geqslant \delta, \quad\left|\frac{\nu_{2}}{n_{2}}-y_{0}\right|<\delta .
$$

Finally, the part of σ corresponding to

$$
\left|\frac{\nu_{1}}{n_{1}}-x_{0}\right| \geqslant \delta, \quad\left|\frac{\nu_{2}}{n_{2}}-y_{0}\right| \geqslant \delta
$$

is in absolute value not greater than
$n_{1}^{i_{1}-p+k} n_{2}^{i_{1}-k} M \sum_{\left|\bar{\nu}_{n_{1}}-x_{0}\right|>\delta}\left|\nu_{1}-n_{1} x_{0}\right|^{p-k+j_{1}} p_{\nu_{1}, n_{1}}\left(x_{0}\right) \sum_{\left|\frac{\nu_{2}}{n_{2}}-\nu_{0}\right|>\delta}\left|\nu_{2}-n_{2} y_{0}\right|^{k+j_{2}} p_{\nu_{2}, n_{2}}\left(y_{0}\right)$
and by (4) this does not exceed

$$
n_{1}^{i_{1}-p+k} n_{2}^{i_{2}-k} M C_{5} \frac{n_{1}{ }^{p-k+j_{2}}}{n_{1}{ }^{i_{1}+j_{2}+1}} \frac{n_{2}^{k+j_{2}}}{n_{2}^{i_{2}+j_{2}+1}},
$$

which approaches zero as $n_{1}, n_{2} \rightarrow \infty$. Hence

$$
\frac{\partial^{p}}{\partial x_{0}^{\partial} \partial y_{0}^{p-q}} B_{n_{1} n_{2}}^{\beta_{k}}\left(x_{0}, y_{0}\right)
$$

can be made arbitrarily small by taking n_{1}, n_{2} large enough, satisfying (3). The theorem is now established.

We shall now show that the limit relation (2) also holds at the four corners $(0,0),(0,1),(1,0)$ and $(1,1)$ of the square S. It will be sufficient to discuss the corner (0,0).

Writing

$$
D_{\nu_{1} \nu_{1}}(x, y)=\frac{d^{q}}{d x^{q}} x^{\nu_{1}}(1-x)^{n_{1}-\nu_{1}} \frac{d^{p-q}}{d y^{p-q}} y^{\nu_{2}}(1-y)^{n_{2}-\nu_{2}},
$$

we have $D_{\nu_{1} \nu_{2}}(0,0)=0$ for $\nu_{1} \geqslant q+1$ or $\nu_{2} \geqslant p-q+1$. For $\nu_{1} \leqslant q$ and $\nu_{2} \leqslant p-q$ by Leibniz's theorem, we have
$D_{\nu_{1} \nu_{s}}(0,0)=\binom{q}{\nu_{1}} \frac{d^{\nu_{1}}}{d x^{\nu_{1}}} x^{\nu_{1}} \frac{d^{q-\nu_{1}}}{d x^{q-\overline{\nu_{1}}}}(1-x)^{n_{1}-\nu_{1}}\binom{p-q}{\nu_{2}} \frac{d^{\nu_{2}}}{d y^{\nu_{2}}} y^{\nu_{\nu_{2}}}$ $\left.\cdot \frac{d^{p-q-\nu_{2}}}{d y}{ }^{p-q-\nu_{2}}(1-y)^{n_{2}-\nu_{2}}\right|_{x=y=0}$
$=(-1)^{q-\nu_{1}} \frac{q!}{\left(q-\nu_{1}\right)!}\left(n_{1}-\nu_{1}\right)\left(n_{1}-\nu_{1}-1\right) \ldots\left(n_{1}-q+1\right)$
$\cdot(-1)^{p-q-\nu_{2}} \frac{(p-q)!}{\left(p-q-\nu_{2}\right)!}\left(n_{2}-\nu_{2}\right) \ldots\left(n_{2}-p+q+1\right)$

$$
\begin{equation*}
\simeq C_{6} n_{1}^{q-\nu_{1}} n_{2}^{p-q-\nu_{2}} \tag{19}
\end{equation*}
$$

$$
n_{1}, n_{2} \rightarrow \infty
$$

Again we have to show that the limit relation (15) holds, but now at the point $(0,0)$ instead of $\left(x_{0}, y_{0}\right)$.
We have

$$
\begin{aligned}
& \left.\frac{\partial^{p}}{\partial x^{q} \partial y^{p-q}} B_{n_{1} n_{2}}^{\beta_{k}}(x, y)\right|_{x=y=0} \\
& \quad=\left.\sum_{\nu_{1}=0}^{\sigma} \sum_{\nu_{2}=0}^{p-q} \alpha_{k}\left(\frac{\nu_{1}}{n_{1}}, \frac{\nu_{2}}{n_{2}}\right)\left(\frac{\nu_{1}}{n_{1}}-x\right)^{p-k}\left(\frac{\nu_{2}}{n_{2}}-y\right)^{k}\binom{n_{1}}{\nu_{1}}\binom{n_{2}}{\nu_{2}} D_{\nu_{1} \nu_{2}}(x, y)\right|_{x=y=0}
\end{aligned}
$$

and by (19), this in absolute value is

$$
\simeq C_{7}\left|\sum_{\nu_{1}=0}^{q} \sum_{\nu_{2}=0}^{p-q} \alpha_{k}\left(\frac{\nu_{1}}{n_{1}}, \frac{\nu_{2}}{n_{2}}\right)\left(\frac{1}{n_{1}}\right)^{p-k}\left(\frac{1}{n_{2}}\right)^{k} n_{1}^{\nu_{1}} n_{2}^{\nu} n_{1}^{q-\nu_{1}} n_{2}^{p-q-\nu}\right|
$$

and since n_{1} and n_{2} satisfy the inequality (3), the last expression does not exceed

$$
C_{8} \sum_{\nu_{1}=0}^{q} \sum_{\nu_{2}=0}^{p-q}\left|\alpha_{k}\left(\frac{\nu_{1}}{n_{1}}, \frac{\nu_{2}}{n_{2}}\right)\right|
$$

which approaches zero as $n_{1}, n_{2} \rightarrow \infty$ because $\alpha_{k}(x, y) \rightarrow 0$ as $x \rightarrow 0, y \rightarrow 0$. Hence we have the relation

$$
\left.\left.\frac{\partial^{p}}{\partial x^{q} \partial y^{p-q}} B_{n_{1} n_{\mathbf{2}}}^{f}(x, y)\right|_{x=y=0} \rightarrow \frac{\partial^{p}}{\partial x^{q} \partial y^{p-q}} f(x, y)\right|_{x=y=0}
$$

if the p th total differential of $f(x, y)$ exists at $(0,0)$, provided n_{1} and n_{2} satisfy (3).
We now consider an example to show that the relation (2) does not necessarily hold at a boundary point of S different from one of the four corners. Consider the point $\left(x_{0}, 0\right), 0<x_{0}<1$ and the function

$$
f(x, y)=\epsilon(y)\left|x-x_{0}\right|, \quad 0 \leqslant x \leqslant 1
$$

where $\epsilon(y)$ is defined for $0 \leqslant y \leqslant 1$ and has the properties $\epsilon(y) \rightarrow 0$ and $y^{-\frac{1}{2}} \epsilon(y) \rightarrow+\infty$ as $y \rightarrow 0$. Take $n_{1}=n_{2}=n$. Obviously

$$
\left.\frac{d}{d y} p_{\nu_{2}, n}(y)\right|_{y=0}= \begin{cases}n & \text { for } \nu_{2}=1 \\ 0 & \text { for } \nu_{2}=2,3, \ldots, n\end{cases}
$$

Therefore

$$
\begin{aligned}
\left.\frac{\partial}{\partial y} B_{n n}(x, y)\right|_{\left(x_{0}, 0\right)} & =\left.\sum_{\nu_{1}=0}^{n}\left|\frac{\nu_{1}}{n}-x\right| p_{\nu_{1}, n}(x) \sum_{\nu_{2}=0}^{n} \epsilon\left(\frac{\nu_{2}}{n}\right) \frac{d}{d y} p_{\nu_{2}, n}(y)\right|_{\left(x_{0}, 0\right)} \\
& =\frac{1}{n} \sum_{\nu_{1}=0}^{n}\left|\nu_{1}-n x_{0}\right| p_{\nu_{1}, n}\left(x_{0}\right) \epsilon\left(\frac{1}{n}\right) n \\
& \geqslant C_{9} \vee n \epsilon\left(\frac{1}{n}\right)
\end{aligned}
$$

which approaches $+\infty$ as $n \rightarrow \infty$ because it is known [2] that for every $0<x<1$ there exists a constant $C_{9}>0$ such that

$$
\sum_{\nu=0}^{n}|\nu-n x| p_{\nu, n}(x) \geqslant C_{9} \sqrt{ } n, \quad n \rightarrow \infty
$$

References

1. E. H. Kingsley, Bernstein polynomials for functions of two variables of class $C^{(k)}$, Proc. Amer. Math. Soc., 2 (1951), 64-71.
2. G. G. Lorentz, Bernstein polynomials, to be published by the University of Toronto Press.
3. W. H. Young, The fundamental theorems of the differential calculus (Cambridge Tracts, no. 11, 1910).

University of Toronto

