
ON SPECTRAL PROPERTIES OF MATRICES 
WITH POSITIVE CHARACTERISTIC VECTORS 

KULENDRA N. MAJINDAR 

1. Introduction and terminology. Unless stated otherwise, all our 
matrices (denoted by capital letters) are square matrices of size n X n and 
composed of real numbers. A1 denotes the transpose of A. The characteristic 
or eigenvectors of matrices are written as column vectors having n coordinates. 
If £ is a vector, £' denotes its transpose. 

A matrix A = (atj) is said to be positive (non-negative) if atj > 0 ( a 0 g: 0) 
for i, j = 1, 2, . . . , n. We write A < B (A ^ B) if and only if B - A is 
positive (non-negative) ; similarly for column vectors. 

Any positive characteristic vector £ (if there be any) of a matrix A will be 
called a Perron vector of A, A£ = co£, co being the characteristic root or eigen
value corresponding to £. If £i, £2, • • • , £& are all the Perron vectors of A with 
corresponding characteristic roots coi, co2, . . . , a?*, then co = max(coi, co2, . . . , 
coyfc) will be called the Perron root of A. 

A matrix A = (az/) is said to be reducible if the set À7 = {1, 2, . . . , n\ can 
be split into two disjoint sets Nlt N2, Nx U N2 = N, N±r\ N2 = Q such that 
dij = 0 whenever i £ Ni, j Ç iV2. Equivalently, 4̂ is reducible if there exists 
a permutation matrix i^ such that 

*A* - [o ^ 
where 5 and P are square submatrices and 0 is a null rectangular matrix. 

By a Frobenius matrix we shall mean a square irreducible matrix composed 
of real numbers, all of whose off-diagonal elements are non-negative. Such 
matrices arise naturally in many applications of matrix theory, e.g., in 
econometry. The following well-known theorem (4, p. 53, Theorem 1), re
proved in § 3 as a particular case, was obtained by Frobenius as an extension 
of a remarkable result of Perron relating to positive matrices. 

THEOREM. A non-negative irreducible matrix has just one positive characteristic 
vector corresponding to a characteristic root which is positive, simple, and the 
moduli of all other characteristic roots do not exceed that root. {In case the matrix 
is positive, these moduli are less than that root.) 

A matrix A will be called polynomial-positive if there is a polynomial 
c0I + C\A + c2A

2 + . . . + cmAm, with ct real, such that c0I + CiA + . . . 
+ cmAm > 0. Here, I denotes the identity matrix and 0 the null matrix. 
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For a matrix A = (atj) we write rt for the sum aa + ai2 + . . . + ain of the 
elements in the ith row of A. Likewise, c3- = a^ + a2j + . . . + an;-. Define the 
row range of A by the difference of max(ri, r2l . . . , rn) and min(ri, r2, . . . , rn) 
(likewise, column range of 4̂ is defined). 

In the following, we use the usual topologies of the real line and Euclidean 
(metric) spaces. 

2. Perron vectors of matrices commuting with positive matrices. 
Let A be a matrix which commutes with a positive matrix P , i.e., AP = PA. 
In the following theorem we show that A has a Perron vector. 

THEOREM 1. If A commutes with a positive matrix P, then A has at least one 
positive characteristic vector. 

Proof. Let 5 be the set of all non-negative column vectors £, £' = (xi, x2l 

. . . , xn) with xt è 0 and X^i = 1- Then S is a closed bounded set. All Perron 
vectors of A belong to S. For each £ of S define p(f) to be the maximum 
possible value of p such that 

(2.1) p(f) ^ 4f. 

Note that p£ = m i n ^ a ^ i + ai2x2 + . . . + ainxn)Xi~l. If xt = 0, interpret 
this quantity as — oo or 0 according as 

anxx + ai2x2 + . . . + ainxn < 0 or ^ 0. 

Let T be the subset (of the extended real number system) consisting of all 
p(£) as £ varies over S. Note that T contains finite numbers, e.g., p(£), where 
£ = (n_1, n - 1 , . . . , 7Z-1) is finite. From (2.1), using the fact that Y,xt = 1, we 
obtain 

(2.2) p(£) ^ ciXi + 2̂̂ 2 + . . . + cnxn ^ max(ci, c2, . . . , cn), 

where ct is the ith column sum of A. Thus, T is bounded above. Denote the 
supremum of T by co, co a finite number. 

Let £i, J2, . . . be a sequence of vectors in 5 such that p(£n) —•» co as n —-> oo. 
As 5 is a closed bounded set, this sequence determines, by the Bolzano-
Weierstrass Theorem, at least one limiting vector £, £ Ç 5. Therefore, from 
the original sequence £i, £2, . • . we can pick a subsequence £mi, £W2, . . . which 
converges to £. Denote £mn by |w. Then 

(2.3) lim £n = £ and lim p(£n) = co, 

(2.4) p(i)in ^ 4». 
Letting n —* oo in (2.4) we easily obtain 

(2.5) co£ ^ Y!£ or A$ - co£ ^ 0, 

where 0 denotes the null vector. 
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W e now show t h a t equal i ty mus t hold in (2.5). If A£ — co£ = 77, where 
V = (Pu P21 • • • > Pn) and a t least one pi ^ 0, then Prj is a positive column 
vector and P77 = FAÇ - coP£ = A(P£) - co(P£). T h u s , cof < ^4f, where f is a 
positive vector in S and f = c~lP%, c denoting the sum of the coordinates of the 
vector P£. Thus , for a sui tably small e > 0, we would have (to + e)f < .4f. 
B u t this would contradict the fact t h a t co is the supremum of S. Hence, 
equal i ty mus t hold in (2.5) and J is a Perron vector of A, A% = co£. Note t h a t 

co = sup min (anXi + at2X2 + . . . + ainxn)Xi~ 
S i 

— max min (aaXi + a 12X2 + . . . + ainxn)xf~ , 
S i 

and, clearly, co is the Perron root of A. Th i s max-min proper ty characterizes 
the Perron root of A. 

COROLLARY 1. If A satisfies the hypothesis of Theorem 1 and if there is a non-
negative vector £ such that the vector A% is non-negative, then the Perron root of A 
is non-negative. 

Since the set T contains a non-negative number , sup T is non-negative, and 
the corollary follows easily. 

T H E O R E M 2. If A SB, A ^ B, and A and B commute with the positive 
matrices P and Q, respectively, then the Perron root of A is less than the Perron 
root of B. 

Proof. By Theorem 1, A and B have Perron roots a. and /3, respectively. 
Let f be a Perron vector of A corresponding to the characterist ic root a, 
A^ = a£. 

Remembering t h a t B — A has a t least one positive element, we infer t h a t 
B% — a£ = (B — A.)£ is a non-negative vector with a t least one positive 
coordinate. Thus , B(Q£) — a(Q£) = Q(B£ — a%) is a positive vector. There
fore there is a positive vector 77 in 5 (here 5 is as in Theorem 1) such t h a t 
Br) > arj. Using the max-min proper ty of Perron roots, we infer t h a t a < j3. 

T H E O R E M 3. If A and A' both have positive characteristic vectors, then all the 
positive characteristic vectors of A correspond to the same characteristic root of A 
(namely, the Perron voot of A); further, the Perron root of A is the Perron root of A'. 

Proof. Le t £1, £2, . • . , £* be all the Perron vectors of A corresponding to the 
characterist ic roots coi, co2, . . . , co*; A%t = c o ^ , i = 1, 2, . . . , k. Suppose t h a t 
co is the Perron root of A' and 77 is a corresponding Perron vector, ^'77 = 0077. 
Then rj'AÇi = co^'l*, i.e., 0577'̂  = œ^^. Since 77'^ > 0, we mus t have t h a t 
co = co*, i = 1, 2, . . . , k. 

T H E O R E M 4. If A commutes with a positive matrix P , then all the Perron 
vectors of A correspond to the Perron root of A and the Perron root of A is the 
Perron root of A'. 

Proof. A' commutes with P'; thus , by Theorem 1, A' has a Perron vector. 
Now apply Theorem 3. 
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It is possible for a matrix A of Theorem 4 to have several Perron vectors. 
See the numerical example in § 4. 

3. Perron vector of polynomial positive matrices. Brauer (1 ; 2) has 
studied power-positive matrices. These are very special types of polynomial-
positive matrices which we study in this section. First we give a very simple 
generalization of a result due to Wielandt (4). 

THEOREM 5. Every Frobenius matrix is polynomial-positive. 

Proof. Let A be a Frobenius matrix. Choose a suitably large constant c such 
that all the diagonal elements of the matrix cl + A are positive. We shall now 
show that (el + A)n~l is a positive matrix. It is sufficient to show that for 
any non-negative vector f, {el + ^4)w_1£ is a positive vector. 

Clearly, if a coordinate of £ is positive, then the corresponding coordinate 
of rj, where rj = (el + A)£ is also positive. We now establish that the number 
of zero coordinates of 77 cannot equal the number of zero coordinates of £ 
(provided it has any). If possible, let these be equal. Without loss of generality 
(by renumbering the coordinates of £ and analogously in 77, if necessary), we 
may suppose that £' = (xi, x2, . . . , xr, 0, 0, . . . , 0), t\ = (3/1, 3/2, . . . , yT, 0, 
0, . . . , 0) with Xi > 0, yt > 0, i = 1, 2, . . . , r, and 

yi 

(3.1) = (ci + A) 

Xi ex 1 Xi\ 

X2 ex 2 X2 

X ex + A 
0 0 0 

0 0 0 

Lo_ _0 . _o J 
Setting 

A 
[An Aul 
LA21 A22J' 

where A12 and A 21 are r X (n — r) and (n — r) X r non-negative matrices, 
respectively, we have, from (3.1), that 

~xr 
X2 

0 with Xi > 0 
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and, therefore, A2i is an in — r) X r null matrix, contradicting the irreduci-
bility of A. Thus, if £ has some zero coordinates, 77 has fewer of them. As 
(ci + A)n-^ = {ci + A) (ci + A) . . . (ci + A)& this vector has no zero 
coordinate (i.e., it is a positive vector). This proves the theorem. 

Holladay and Varga (5) have shown that A2n~2 is positive if A is non-
negative irreducible and if at least one diagonal element of A is positive. 

THEOREM 6. Every polynomial-positive matrix has a positive characteristic 
vector corresponding to its Perron root; there is no other characteristic vector 
corresponding to this root. The Perron root is a simple root of the characteristic 
equation of the matrix. 

Proof. Let A be a polynomial-positive matrix and let P = f(A) be a 
positive matrix, where/(x) = c0 + C\X + c2x

2 + . . . + cmxm, ct real. 
As A commutes with the positive matrix P, by Theorem 1, A has a Perron 

vector (and thus a Perron root co). Let £ be a Perron vector corresponding to 
co, A% = co£. If possible, let there be another (real) characteristic vector £1 
corresponding to co, A£i = co£i. Let £2 = c% + £1, where the constant c has 
been so chosen that £2 has at least one zero coordinate and the rest of the 
coordinates non-negative. Then 

Ah = Ate + h) = co£2. 
Now P£2 = f{A)JQ2 — /(w)£2. Therefore, if a coordinate of £2 is 0, the corres
ponding coordinate of the vector P£2 is also 0. But this is impossible, since 
£2 ^ 0, and therefore P£2 > 0. Thus, A has only one characteristic vector 
corresponding to the Perron root co. 

We now show that co is a simple root of the characteristic equation of A. If 
possible, let it be a multiple root. We shall use Schur's canonical form for 
matrices. We know that there is a unitary matrix U (i.e., with U*U = I) 
such that U*A U is an upper triangular matrix (with all its elements below 
the main diagonal equal to 0). We may assume that the first column vector of 
U is £, the unique Perron vector of A. We may also assume that the second 
column vector, say 71, is such that the first two diagonal elements of U*A U 
are co; this is possible as co has been supposed to be a multiple root. I t is easily 
deduced that 

(3.2) Ai = co£, 

(3.3) ^71 = ei£ + am. 

If 71 = 7 + ij2 and e\ = e + ie2, where i = \/—l, 71 and 72 are real 
vectors, and e\ and e2 real numbers, (3.3) yields 

(3.4) Ay = e£ + œy. 

Note that g ^ 0 , otherwise we would get two linearly independent vectors 
£ and 7 corresponding to the Perron root co. (Linear independence of £ and 7 
follows from the linear independence of £ and 71 in U.) 
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Choose a constant b such t h a t be > 0 and a suitably large constant a such 
t h a t the vector f = a£ + by is positive; furthermore, we may assume t h a t f 
belongs to the set S (of the proof of Theorem 1). Then we have t h a t AC = 
A (a£ + by) = aco£ + &(*£ + coT) = <of + be£ by (3.2) and (3.4). Since be > 0 
and J > 0, we now have t ha t cof < -4f. Hence, co < p(f) for f Ç 5 (in the 
notat ion given in the proof of Theorem 1). B u t co, being the Perron root of A, 
is equal to max5p(^) as shown in Theorem 1. Thus , we have arrived a t a 
contradiction. Consequently, co is a simple root of this characteristic equation 
oîA. 

COROLLARY. If A = (a0-) is a Frobenius matrix, then A has a unique 
Perron vector with a simple Perron root, co. 

Fur thermore , if A is non-negative, then the moduli of other characteristic 
roots of A cannot exceed the Perron root (clearly positive) co. If A is positive, 
these moduli are less than co. 

For, if AC = Xf, X ^ co, f' = (zi, z2, . . . , zn), then f cannot be a Perron 
vector, and thus not all zt are positive. Fur thermore , 

|X| \zt\ = Z ) aijz ^ X) atj\zj\, i = 1, 2, . . . , « . 

Recalling the max-min property for the Perron root, we have t h a t |X| ^ co. 
If dij > 0 and since not all zt are positive, we obtain |X| \zt\ < ^jatj\Zj\, and 
therefore |X| < co. Thus , we have proved the theorem stated in § 1. 

4. Common characteristic vectors of commuting matrices. In this 
section we give a few simple results relating to commuting matrices. 

T H E O R E M 7. If U and V are two matrices (composed of complex numbers) and 
UV = VU and if /x and v are any given characteristic roots of U and V, respec
tively, then there is a common characteristic vector f such that UÇ = /xf and Ff — vÇ. 

Proof. Le t r\ be a characteristic vector of U corresponding to the character
istic root JU; Urj = idrj. 77, Vt), V2T\, . . . , Vmrj, . . . cannot be linearly inde
pendent (in the field of complex numbers) . Suppose t h a t 77, Vrj, V2t], . . . , 
Vm7) are linearly dependent such t h a t 77 + CiVr) + c2V

2rj + . . . + cmVmt\ = 0, 
where the c's are constants and 77, Vrj, V2i), . . . , Vm~lt\ are linearly independent . 
T h u s , f(V)rj = 0, where 

fix) = Co + cix + c2x
2 + . . . + cmxm = (x — v)g(x), say. 

Then (V - v)f = 0, where f = g(F)rç. Note t h a t f 5^ 0 since 77, F77, . . . , 

Fw_177 are linearly independent. Therefore, Ff = ^ , and also Z7f = £/g(T0*7 = 

g(V)Urj = ULg(V)rj = Mf since UVr = FrZ7, r = 1, 2, . . . . 

T H E O R E M 8. If U and V commute and f is a characteristic vector of U 
corresponding to a simple characteristic root /x of U, then f is also a characteristic 
vector of V. 

Proof. T h e proof is very simple. We have t h a t C/f = /xf, and thus U(VÇ) 
= FZ7f = ju(Ff). If Ff ^ pf for any constant v, we would obtain two linearly 
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independent characterist ic vectors of U corresponding to the simple character
istic root id of U; b u t this is impossible. Therefore, Ff = vÇ for some cons tan t 
v. 

Since the Perron root of a positive matr ix is simple, we obtain the following 
corollary. 

COROLLARY. If A is real and AP = PA for some positive matrix P, then the 
Perron vector of P is a Perron vector of A. 

T h e matr ix A of this corollary may have other Perron vectors. Consider the 

matrices 

A = 
4.0 1.0 - 3 . 0 1 1 9 
0.4 2.2 - 0 . 6 , P = 1 1 3 
1.6 - 0 . 8 4.4 5 3 1 

AP = PA, 

A has a Perron vector £, where £' = (1, 1, 1) which is no t a Perron vector of P. 
Clearly, A has two Perron vectors corresponding to the Perron root 2. 

As a companion to Theorem 8, we have the following theorem. 

T H E O R E M 9. If A is real and normal {i.e., A A' = A'A) and X is a real 
characteristic root of A, then there is a real common characteristic vector rj such 
that Ar\ — \y\ and A't) = 8rj. 

Proof. By Theorem 7, there is a common characteris t ic vector 77 of A and A' 
such t h a t At\ = \rj, A'-q = drj. If rj is real, the theorem holds. 

Suppose t h a t rj = rji + irj2, where 771 and 772 are real vectors . T h e n Ar)i = \r)i, 
Arj2 = À7?2, and rj2'A'ri = ôrj^rj, i.e., \r}2V = èrj^v- If X 5^ 5 we mus t have t h a t 
V2V = 0; whence 772^2 = 0, i.e., rj2 = 0; thus rj is real and Arj = X77, Afrj = 8rj. 
If X = 3, then, clearly, one of 771, 772 is no t 0, and therefore we get a common 
characterist ic vector for A and A'. 

5. D e t e r m i n a t i o n of t h e Perron root a n d vec tor of a F r o b e n i u s 
m a t r i x . Brauer (1 ; 3) has given an efficient procedure for obta ining the 
Perron root and vector of a positive mat r ix and of a non-negat ive matr ix , to 
any desired degree of accuracy. Here , we shall use his procedure to obta in the 
Perron root and vector of a Frobenius matr ix , to any degree of accuracy. 

Le t d be the row range (definition in § 1) of a Frobenius matr ix A = (atj) ; 
for non-triviali ty, we take d > 0. Le t r be the smallest row sum in A. W e say 
t h a t a row of a mat r ix belongs to (or is in) the lower class L or U according 
as its rowr sum lies in the interval [r, r + d/4) or [r -f d /4 , r + d/2). Similarly, 
a row belongs to the upper class V or U according as its row sum lies in the 
interval [r + d/2, r + 3d/4c) or [r + 3rf/4, r + d]. Le t 

g = (4r + 4 + 3 i ) / ( 4 r + 4c + 2d) > 1, 

where c is the smallest non-negative number such t h a t au + c ^ 0 for all i. 
Mult ip ly those rows of A which belong to the lower classes L and U and 

divide the corresponding columns by g. This is Brauer ' s procedure. Obviously, 
this is a similarity transformation of A into a similar matr ix Al1 At = D~XAD, 
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where D is a diagonal matrix having some diagonal elements equal to g and 
the rest to one. By the procedure, row sums of rows belonging to the lower 
classes are never diminished while the row sums of rows in the upper classes 
are never increased since g > 1. 

Let Yi and r *(1) be the sums of the elements in the ith rows of A and Au 

respectively. If the ith row of A belongs to a lower class, then the ith row of 
A i cannot belong to the class U since 

rt < r + d/2 
and 
r/l) ^ aH + (r< - au)g = gri - ati{g - 1) < 

c{g - 1) + gir + d/2) = r + 3d/4. 

Thus, the procedure may keep a row of A belonging to U in the same class or 
send it to the class U' (but not to t /orL) . Similarly, a row belonging to L may 
be kept in L or may be sent to U or U' (but not to U). Next, if the ith row 
of A belongs to an upper class, then the ith row of Ai cannot belong to L since 

r, è r + d/2 
and 

r/l) ^ a** + (r, - O r " 1 = a „ ( l - g"1) + r , ^ 1 ^ 
-c(l- g~l) + (r + d/2)g~i > r + d/4. 

Thus, the procedure may keep a row of A belonging to U' in the same class or 
send it to U (but not to L or U). Similarly, a row of A belonging to U may be 
kept in U or sent to U' or U (but not to L). 

If no row of A\ belongs to L or to U, then the row range of Ai is less than or 
equal to 3^/4 and Brauer's procedure has reduced the row range of A by a 
factor at most 3/4. 

If some row of Ai belongs to L and another to [/, we apply Brauer's proce
dure to Ai, using the same g given above. We obtain a similar matrix A2. If 
the row range of A2 is less than or equal to 3d/4, we terminate the procedure; 
if not, using the same g we continue the procedure and obtain similar matrices, 
Au A2, A,, 

We shall now show that Brauer's procedure terminates after a finite number 
of applications, giving us a matrix Ak with row range less than or equal to 3d/4. 

If possible, let the procedure continue ad infinitum. This means that there 
are some (one or more) rows in A, A\, A2} . . . which belong to L and some 
other (one or more) rows which belong to U in all these matrices. For the 
purpose of proving our result we may suppose (if necessary, by initially 
permuting the rows and analogously permuting the columns) that the first t 
rows of A, Alf A2, . . . permanently belong to the lower classes and the last 
u rows of these matrices permanently belong to the upper classes. Besides 
these, there might be some rows which change classes (between L' and Uf 

only) infinitely often; let the number of such rows be v. Thus, u ^ 1, t ^ 1, 
v ^ 0, t + u + v = n. 
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Let the element in the i, j position of Ak be denoted by at/
k\ £ = 1,2, 

3, . . . . Consider the t X (u + v) submatrices situated at the upper right-hand 
corner regions of all these matrices; Brauer's procedure never reduces the 
elements of these submatrices. 

For any j with n — u + 1 S j ^ n, we easily obtain cii/k) = aljg
fc, 

k = 1, 2, . . . . If au 9e 0, then a^ > 0 and ai/*° —-> oo as k—>oo . Since the first 
row sum of each of our matrices is less than r + d/2, we infer that a^ = 0. 
For any j with / + 1 ^ j ^ n — w, a moment's consideration shows that the 
sequence aij} ai/l), cti/2\ . . . contains as an infinite subsequence, the sequence 
aijj aijgi aijg2> • • • î thus, we again infer that #i;- = 0, t-\-ltkjfkn — u. 
Thus, all the elements in the first row of all the submatrices are 0. In a like 
manner we see that atj — 0, 1 S i S t, t + 1 ^ j S n. 

Hence, a / X (n — i) submatrix of A is a null matrix, contradicting the 
irreducibility of A. Consequently, Brauer's procedure must terminate, giving 
us a similar matrix Bi with row range less than or equal to 3^/4. 

If the least row sum of Bi is r(1) and row range is d{l), apply Brauer's proce
dure to Bu using gw = (4r^> + 4c + 3d™)/(4r™ + 4c + 2d™). We obtain 
a similar matrix B2 with row range 3d(1)/4 â (f)2^- Similarly, starting with 
B2 and with a corresponding g(2) we obtain a similar matrix Bè with row 
range less than or equal to (f)3<i, and so on. Hence, it follows tha t there is a 
matrix B(m) (with smallest row sum r{m), greatest row sum r'(m\ say) similar 
to A such that the row range of B™ = r/(w) - r w g 1/ra; 5 « = Dm-lADrn, 
where P m is a diagonal matrix with positive diagonal elements. We easily 
obtain 

(5.1) B<™ = Em-lAEm, 

where Em is a diagonal matrix with diagonal elements x±(m), x2
(m\ . . . , xn

{m\ 
^2iXi(m) = 1, and with row range of B(m) ^ 1/m. The above discussion may 
be summarized in the following theorem. 

THEOREM 10. Given any Frobenius matrix A, any e > 0, there is a matrix B 
similar to A such that the row range of B < e and B = E~lAE, where E is a 
diagonal matrix with positive diagonal elements. B can be obtained by Brauer's 
procedure (as explained above). 

Let £(w) be the vector with coordinates Xi(m\ x2
{m\ . . . , xw

(m), x/m) > 0, 
E i X / m ) = 1. Then from (5.1) it follows (on recalling the fourth paragraph of 
this section) that 

(5.2) r^m) ^ r(m)£(m) ^ A^m) ^ r
,(m)^m) ^ rf^m\ 

(5.3) r'™ - rW g 1/m. 

Consider the bounded monotone increasing sequence r(1), r(2), . . . ; it tends 
to a limit, co, say. As the associated sequence of vectors £(1), £(2), . . . belong to 
the closed bounded set 

5 = {£: £' = (xu x2, . . . , xn), xt > 0 for all f, X>* = 1}, 
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we can pick a subsequence ^mi\ p 2 ) , . . . , converging to a non-negative 
vector f of S. Write ^mk) = &, r ^ = rU), r'<w*> = r w ' . Then l i m ^ & = £ 
and, as lim^0o(r(fc)

/ — r(A;)) = 0, l im^œr^/ = co. From (5.2) we now obtain 

(5.4) ru)fc ^ ^ £ r(,)^,. 

Letting k —> œ , we deduce that 4̂£ = co£. Since 4̂ is a Frobenius matrix, by 
Theorem 5, there is a polynomial in A, f(A), say, such that/(^4) > 0, and 
thus/(w)£ = / ( 4 )£ > 0; whence £ > 0. 

The above gives a constructive proof for the existence of a Perron vector 
and root of a Frobenius matrix. This proof is different from Brauer's proof of 
the analogous result for positive matrices and is more direct. 

6. Bounds for the characteristic roots corresponding to Perron 
vectors. In this section we study some upper and lowTer bounds for the 
characteristic root X, corresponding to a Perron vector of a real matrix 
A = (atj). 

THEOREM 11. If A has a non-negative characteristic vector corresponding to a 
characteristic root X, then c ^ X ̂  c', where c and c' denote the minimum and 
maximum of the column sums of A. 

Proof. Let Xi, x2, . . . , xn (with xt ^ 0, YLxi = 1) be the coordinates of the 
non-negative vector corresponding to the characteristic root X. Then 

\xt = a a xi+ ai2x2 + . . . + ainxn, i = 1, 2, . . . , n. 

Adding these we have that X = CiXi + c2x2 + . . . + cnxn, cf denoting the iih 
column sum of A and the theorem follows easily. 

COROLLARY. If A is polynomial-positive and co is its Perron root, then 
Y ^ co S r', where r and r' are the minimum and maximum of the row sums of A. 

Since A' is polynomial-positive, it has a Perron vector by Theorem 6. Now 
apply Theorem 11 to A'. 

THEOREM 12. If A commutes with a positive matrix P = (pi3) and co and X 
denote the Perron roots of A and P , respectively, then 

Xmaxmin {aidlpif) = to ^ X min max (a^j/pif). 
i 3 i 3 

Proof. Since X is a simple characteristic root of P , the Perron vector £, with 
£' = (#i> x2, . . . , xn)j xt > 0, of P is also a Perron vector of A for its Perron 
root co, by the corollary to Theorem 8. Thus 

cox* = atiXi + al2x2 + . . . + ainxn, i = 1, 2 «, 

\xt = paxi + pi2x2 + . . . + pinXnj i = 1, 2, . . . , n; 

whence 

co/X = (anxi + ai2x2 + . . . + a inxn) / (p nx L + pi2x2 + . . . + pinxn) 

g msLx(an/piu ai2/pi2l . . . , ain/pin). 
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T h u s co/\ ^ min* max ; a 0 / ^> 0 - ; likewise for the left-hand inequali ty. 

T H E O R E M 13. / / all the off-diagonal elements of A are positive and m denotes 
the smallest of them, then the Perron root co of A satisfies the inequality 

co ^ maxz-J{r + ait — m + [(r — au — m)2 + \.m(rt — au)]^}, 

where rt is the ith row sum of A, r = min( r i , r2, . . . , rn)> 

Proof. A' being a Frobenius matr ix has a Perron vector and a Perron root 
which is equal to co, by Theorem 3. By Theorem 11 (applied to Af) we have 
t h a t rt S co, i = 1, 2, . . . , n. 

Let Xi, x2, . . . , xn, Xi > 0, be the coordinates of the Perron vector of A 
corresponding to co. Let xs and xt be the smallest and largest of the x/s. 

W e have t ha t cox̂  = ]T ; a^-x^, i = 1, 2, . . . , n, and therefore 0 = 
aaxi + ai2x2 + . . . + (au — co)xz + au+1xH+i + . . . + ainxn. As xt > 0 and 
atj > 0, i 9^ j , we see t h a t an < co for all i. 

We have t h a t cox5 = J^jaSJXj, i.e., 

co = asiXi/xs + as2x2/xs + . . . + astxt/xs + . . . + amxjxs 

~ ? s &S t \ ds LX t/ X s 

^ r — ast + a3txt/xs, 

and therefore (co — r + ast)/ast ^ xt/xs; whence, (co — r + m)/m è xt/xsi 

i.e., xs/xt ^ m/(co — r + m) and thus 

(6.1) Xi/Xj ^ m/(co — r + m ) , i, j = 1, 2, . . . , n. 

For each i, we have t ha t co = J^jaijXj/xt ^ (r* — ati)m/(o) — r + w) + a n , 
and hence, for all i, 

(6.2) co2 + w(m — r — au) + (rau — rtm) ^ 0. 

T h e smaller root of the equation x2 + x(m — r — ati) + (rau — rtm) = 0 
is 

èl ( r + »*t — m) — [(r — ait — m)2 + 4m{rt — au)f) 

^ h{(r + a H - m) — \{r - a H - ra)2 + 4w( r - au)]*} 

= i î (r + a „ - w) — \r — au + m|} 

= a a — m or r — w 

< co. 

I t therefore follows from (6.2) t h a t co cannot be less than the roots of the 
above equat ion. 

T H E O R E M 14. If all the off-diagonal elements of A are positive and Ak denotes 
the principal submatrix obtained by suppressing its kth row and column, then 

oo(k) S co — commk/(œ — r + m), 

where co and co(A° are the Perron roots of A and Ak, respectively, m is the least 
off-diagonal element of A, r is the least row sum of A, and mk = min^a^(k ^ i). 
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Proof. I t is sufficient to prove the theorem for the submatrix _4i. Since A\ 
is a Frobenius matrix, it has a Perron vector and root co(1). We use the notation 
of Theorem 13. Since ù)Xt = Y,3anxj, i = l, 2, . . . , n, we have, for i = 2, 3, 
....n, that 

&i2%2 I # Î " 3 ^ 3 "T" • • • ~T~ ainXn
 = (cO &il%l/ X i)X i 

_s (co — aam/(o) — r + fn))xt by (6.1) 
__i (co — Wim/(co — r + m))xi. 

Using the max-min property of Perron roots (as applied to Af) we have that 
co(1) ^ co — mim/(co — r + m). 

THEOREM 15. If all the off-diagonal elements of A — (aif) are non-negative 
and X is a characteristic root of A to which there corresponds a positive characteristic 
vector, then 

X ̂  XI aa/n + 2 X (aijajiY/n. 
i<3 

Proof. Let Xi, x2, . . . , xn, with x* > 0 for all i, be the coordinates of the 
Perron vector. Then X Adding these, we obtain 

l\ — 2_j aii i 2~t {CLijXj/Xi + ajiXi/Xj) 

i<3 

= _E aa + _E { [ ( f l ^ A i ) * - (ajiXi/Xj)']2 + 2(aijajiy\ 
i<3 

_ _E au + 2 X (a î)*-

COROLLARY. If A = (aif) is a Frobenius matrix and œ is its Perron root, then 

co ^ X) (<**</«) + 2 X (dijaji^/n. 
i<3 

My thanks are due to the Summer Research Institutes of the Canadian 
Mathematical Congress for financial support of the above research. 
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