BULL. AUSTRAL. MATH. SOC. VOL. 19 (1978), 437-444.

A complex nonlinear complementarity problem

Sribatsa Nanda and Sudarsan Nanda

In this paper we study the existence and uniqueness of solutions for the following complex nonlinear complementarity problem: find $z \in S$ such that $g(z) \in S^*$ and $\operatorname{re}(g(z), z) = 0$, where S is a closed convex cone in C^n , S^* the polar cone, and gis a continuous function from C^n into itself. We show that the existence of a $z \in S$ with $g(z) \in \operatorname{int} S^*$ implies the existence of a solution to the nonlinear complementarity problem if g is monotone on S and the solution is unique if g is strictly monotone. We also show that the above problem has a unique solution if the mapping g is strongly monotone on S.

1. Preliminaries

Let C^n denote the *n*-dimensional complex space with hermitian norm and the usual inner product. If *S* denotes a closed convex cone in C^n , the polar of *S*, denoted by S^* , is defined by

$$S^* = \{y \in C^n : \operatorname{re}(x, y) \ge 0 \text{ for all } x \in S\}.$$

Given $e \in S^*$ and r > 0 we write

~

$$D_{p}(e) = \{x \in S : re(e, x) \leq r\},\$$

$$D_n^0(e) = \{x \in D_n(e) : re(e, x) < r\}$$

437

and

Received 10 October 1978.

$$S_{r}(e) = \{x \in D_{r}(e) : re(e, x) = r\}$$

Note that $D_{p}(e)$ is the disjoint union of $D_{p}^{0}(e)$ and $S_{p}(e)$. We write $S_{p} = \{x \in S : ||x|| = p\}$.

A mapping $g: C^n + C^n$ is said to be monotone on S if re $(g(x)-g(y), x-y) \ge 0$ for each $(x, y) \in S \times S$, and strictly monotone if strict inequality holds whenever $x \ne y$. The function g is said to be strongly monotone if there is a constant c > 0 such that for each $(x, y) \in S \times S$ we have

$$re(g(x)-g(y), x-y) \ge c||x-y||^2$$
.

Given a continuous function $g: \mathcal{C}^n \to \mathcal{C}^n$, the nonlinear complementarity problem in \mathcal{C}^n consists of finding a z such that

 $z \in S$, $g(z) \in S^*$, and

re(g(z), z) = 0,

where S is a closed convex cone in C^n .

Several authors including Bazaraa, Goode, and Nashed [1], Eaves [2], Habetler and Price [3], and Karamardian [5] have discussed complementarity problems in different contexts. In particular Parida and Sahoo in [6] and [7] have considered this problem in the complex case by taking S to be a polyhedral cone. In this paper we study this problem for any closed convex cone in C^n . We show that if g is monotone on S the existence of a $z \in S$ with $g(z) \in int S^*$ implies the existence of a solution to (1.1) and the solution is unique if g is strictly monotone. We also show that (1.1) has a unique solution if g is strongly monotone on S.

2. Some existence theorems

We start by mentioning a modified version of a lemma of Hartman and Stampacchia [4]. Since the result is known for R^n we only give a brief outline for the sake of completeness (see Eaves [2]).

438

(1.1)

PROPOSITION 2.1. Let $g: C^n \to C^n$ be a continuous map on a nonempty, compact, convex set $K \subset C^n$. Then there is a $z_0 \in K$ such that

$$\operatorname{re}(g(z_0), z-z_0) \ge 0$$

for all $z \in K$.

Proof. For a fixed $u_0 \in K$ consider the function $h : K \rightarrow R$ defined by

$$h(w) = \|w - u_0 + gu_0\|$$

Clearly h is continuous on K. Since K is compact, h attains a minimum, say at w_0 . It is also easily verified that w_0 is unique. The correspondence $u_0 \mapsto w_0$ defines a continuous function of K into itself. Using Brouwer's Theorem, we have a fixed point z_0 which is the required point of the proposition.

LEMMA 2.2. Let S be a closed convex cone of C^n and let $e \in int S^*$. Then the set $D_n(e)$ is compact.

Proof. Let $f: S \rightarrow R$ be the continuous function defined by

f(z) = re(e, z).

Then $D_r(e) = f^{-1}[0, r]$. Thus $D_r(e)$ is closed. Note also that for any k with $0 \le k \le 1$, $kD_r(e) \subset D_r(e)$.

It will now suffice to prove that $D_{p}(e)$ is bounded. Suppose to the contrary that it is not; then we can choose a sequence $\{z_n\}$ of isolated points in $D_{p}(e)$ satisfying

- (i) $||z_n|| \ge 1$ for all n, and
- (ii) $||z_n|| \to \infty$ as $n \to \infty$.

Let $y_n = (z_n/||z_n||)$; then $||y_n|| = 1$ and $y_n \in D_p(e)$ for all n. We therefore have a convergent subsequence $y_{n_k} \neq y$. Since $D_p(e)$ is

closed, $y \in D_{p}(e)$. Moreover,

$$\operatorname{re}(e, y) = \lim_{k \to \infty} \operatorname{re}(e, y_{n_k}) = \lim_{k \to \infty} \operatorname{re}(e, (z_{n_k} / || z_{n_k} ||)) .$$

 But

$$\operatorname{re}\left(e, \left(z_{n_{k}}/||z_{n_{k}}||\right)\right) \leq \left(r/||z_{n_{k}}||\right) \neq 0 \text{ as } k \neq \infty$$

Thus re(e, y) = 0. Since $e \in int S^*$ we conclude that y = 0. This is a contradiction in view of the fact that $\|y_{n_L}\| = 1$ for every k.

LEMMA 2.3. Let $x_0 \in C^n$, $e \in S^*$, and r > 0 be given. If there is a $z_0 \in D_r^0(e)$ such that

(2.1)
$$re(x_0, z-z_0) \ge 0$$

for all $z \in D_n(e)$, then (2.1) holds for all $z \in S$.

Proof. Let $z \in S$. Write $u = \lambda z + (1-\lambda)z_0$, $0 < \lambda < 1$. We can choose λ sufficiently small so that u will lie in $\mathcal{D}_n(e)$. Then

$$0 \leq \operatorname{re}(x_0, u-z_0) = \lambda \operatorname{re}(x_0, z-z_0)$$

The result, therefore, follows.

PROPOSITION 2.4. Let $g: C^n \to C^n$ be a continuous map on a closed convex cone S. Let $e \in int S^*$ and r > 0 be given. If there exists $u \in D_n^0(e)$ such that

 $re(g(z), z-u) \ge 0$

for all $z \in S_{p}(e)$, then there exists $z_{0} \in D_{p}(e)$ such that

(2.2)
$$\operatorname{re}(g(z_0), z-z_0) \ge 0$$

for all $z \in S$.

Proof. $D_r(e)$ is clearly convex; moreover, by Lemma 2.2, it is compact. Therefore, by Proposition 2.1, there is a $z_0 \in D_r(e)$ satisfying

440

(2.2) for all $z \in D_r(e)$. If $z_0 \in D_r^0(e)$ then we can obtain the result by taking $x_0 = g(z_0)$ in Lemma 2.3. Suppose that $z_0 \in S_r(e)$; then by hypothesis there is a $u \in D_r^0(e)$ satisfying

$$re(g(z_0), z_0-u) \ge 0$$

Therefore we have

$$\operatorname{re}(g(z_0), z-u) \geq 0$$

for all $z \in D_{p}(e)$. Now applying Lemma 2.3 with $x_{0} = g(z_{0})$ we get

for all $z \in S$. We also have that

(2.4)
$$re(g(z_0), u-z_0) \ge 0$$
.

The result follows from (2.3) and (2.4).

We are now ready to prove our existence theorems.

THEOREM 2.5. Let $g: C^n \rightarrow C^n$ be a continuous monotone function on a closed convex cone S such that there is a $u \in S$ with $g(u) \in int S^*$; then (1.1) has a solution $z_0 \in S$. Moreover, if g is strictly monotone, then the solution is unique.

Proof. Suppose that there is a $u \in S$ with $g(u) \in int S^*$. Choose r > re(g(u), u) > 0. Now $u \in D_p^0(g(u))$. Since g is monotone on S we have

$$\operatorname{re}(g(z), z-u) \geq \operatorname{re}(g(u), z-u) > 0$$

for all $z \in S_{p}(g(u))$. By Proposition 2.4, there is a $z_{0} \in D_{p}(g(u))$ such that (2.2) holds for all $z \in S$. Thus we have

$$\operatorname{re}(g(z_0), z) \ge \operatorname{re}(g(z_0), z_0)$$

for all $z \in S$. In particular,

$$re(g(z_0), z_0+z_0) \ge re(g(z_0), z_0)$$
,

and consequently,

Sribatsa Nanda and Sudarsan Nanda

(2.5)
$$\operatorname{re}(g(z_0), z_0) \ge 0$$

Note that $0 \in S$, so it follows from (2.2) that

From (2.5) and (2.6) we conclude that z_0 is a solution to (1.1).

Suppose now that g is strictly monotone. If z_0 and w_0 are solutions to (1.1), then

$$\operatorname{re}(g(z_0)-g(w_0), z_0-w_0) = -\operatorname{re}(g(z_0), w_0) - \operatorname{re}(g(w_0), z_0) \leq 0.$$

Since g is strictly monotone, this is impossible unless $z_{\rm Q}=w_{\rm Q}$. Thus the solution is unique.

THEOREM 2.6. Let $g: C^n \rightarrow C^n$ be a continuous strongly monotone function on a pointed closed convex cone S. Then there is a unique solution to (1.1).

Proof. Since g is strongly monotone on S , there is a constant c > 0 such that for any $z \in S$,

$$re(g(z), z) \ge re(g(0), z) + c||z||^2$$

and hence

$$\frac{\operatorname{re}(g(z),z)}{\|z\|} \ge \operatorname{re}\left(g(0), \frac{z}{\|z\|}\right) + c\|z\|$$

The continuous function θ : $S_1 \rightarrow R$ defined by

$$\theta(w) = \operatorname{re}(g(0), w)$$

attains its bounds. Let m be its lower bound. Then for all $z \in S$,

$$\frac{\operatorname{re}(g(z),z)}{\|z\|} \ge m + c\|z\| .$$

Thus if $||z|| > \frac{|m|}{c}$, then $\operatorname{re}(g(z), z) > 0$. Let $d > \frac{|m|}{c}$. Since S is pointed, we can choose a hyperplane H in C^{n} satisfying the following two conditions:

- (i) the distance of H from the origin is d, and
- (ii) H meets all the generators of the cone S .

442

It is then clear that the set $B = H \cap S$ is a non-empty, compact, convex set. Moreover, since $||z|| \ge d$, $\operatorname{re}(g(z), z) > 0$ for every $z \in B$. We can now apply Proposition 2.1 to get a $z_0 \in B$ such that (2.2) holds for all $z \in B$. But every nonzero vector of S is a scalar multiple of a vector in B, so that z_0 satisfies (2.2) for all $z \in S - \{0\}$. Thus

$$\operatorname{re}(g(z_0), z) \ge \operatorname{re}(g(z_0), z_0) > 0$$

for all $z \in S - \{0\}$, showing that $g(z_0) \in \text{int } S^*$. Since g is strongly montone, it is strictly monotone and the result follows from Theorem 2.5.

References

- M.S. Bazaraa, J.J. Goode and M.Z. Nashed, "A nonlinear complementarity problem in mathematical programming in Banach space", Proc. Amer. Math. Soc. 35 (1972), 165-170.
- [2] B.C. Eaves, "On the basic theorem of complementarity", Math. Programming 1 (1971), 68-75.
- [3] G.J. Habetler and A.L. Price, "Existence theory for generalized nonlinear complementarity problems", J. Optimization Theory Appl. 7 (1971), 223-239.
- [4] Philip Hartman and Guido Stampacchia, "On some non-linear elliptic differential-functional equations", Acta Math. 115 (1966), 271-310.
- [5] S. Karamardian, "Generalized complementarity problem", J. Optimization Theory Appl. 8 (1971), 161-168.
- [6] J. Parida and B. Sahoo, "On the complex nonlinear complementary problem", Bull. Austral. Math. Soc. 14 (1976), 129-136.
- [7] J. Parida and B. Sahoo, "Existence theory for the complex nonlinear complementarity problem", Bull. Austral. Math. Soc. 14 (1976), 417-435.

444 Sribatsa Nanda and Sudarsan Nanda

[8] J. Parida and B. Sahoo, "On an application of the complex nonlinear complementarity problem", Bull. Austral. Math. Soc. 15 (1976), 141-148.

Department of Mathematics, Regional Engineering College, Rourkela, Orissa, India.