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Abstract

Fetal liver tissue collected from a nonhuman primate (NHP) baboon model of maternal
nutrient reduction (MNR) at four gestational time points (90, 120, 140, and 165 days gestation
[dG], term in the baboon is ~185 dG) was used to quantify MNR effects on the fetal liver tran-
scriptome. 28 transcripts demonstrated different expression patterns betweenMNR and control
livers during the second half of gestation, a developmental period when the fetus undergoes
rapid weight gain and fat accumulation. Differentially expressed transcripts were enriched
for fatty acid oxidation and RNA splicing-related pathways. Increased RNA splicing activity
in MNR was reflected in greater abundances of transcript splice variant isoforms in the
MNR group. It can be hypothesized that the increase in splice variants is deployed in an effort
to adapt to the poor in utero environment and ensure near-normal development and energy
metabolism. This study is the first to study developmental programming across four critical
gestational stages during primate fetal liver development and reveals a potentially novel cellular
response mechanism mediating fetal programming in response to MNR.

Introduction

The fetal origins of health and disease hypothesis suggests that poor maternal nutrition during
pregnancy can alter the trajectory of fetal development and adversely impact later-life health.1

However, most cases involve the more subtle effects of moderate fetal nutrient reduction that
often remain latent until adulthood.2 A maternal diet lacking appropriate amounts of nutrients
and calories is a major contributor to adverse pregnancy outcomes and the development of
intrauterine growth restriction (IUGR). Due to the challenge of studying the molecular mech-
anisms underlying the development of IUGR and other fetal changes in pregnant women, we
have developed a well-characterized baboon nonhuman primate (NHP) model of maternal
nutrient reduction (MNR) to determine the molecular changes involved in fetal tissues includ-
ing the developing fetal liver.3 We hypothesize that there are significant and potentially long-
lasting changes to the cellular machinery (e.g., transcriptional and epigenetic mechanisms) that
are induced in utero by poor maternal nutrition.

In this study, we examined liver transcriptional changes across four different gestational time
points, covering the second half of primate fetal development. The liver is an important organ to
study because the liver plays two critical roles in the fetus as a vascular connection between the
developing placental vessels to the heart and the location where blood stem cells reside prior to
the development of the bone marrow. At birth, the liver is responsible for cholesterol synthesis
and transport, glycogen synthesis and storage, detoxification, and metabolism. Our untargeted
characterization of transcriptional changes in MNR of fetal livers strongly suggests that the
nutrient restriction (NR) impacts energy and nutrient utilization by altering the expression
of genes involved in fatty acid beta-oxidation. Our results also suggest the fetal liver is utilizing
a novel mechanism to adapt to the nutrient-poor environment by increasing abundance of alter-
native splice isoforms.

Method

Animal care and maintenance

All procedures were approved by the Texas Biomedical Research Institute (TBRI) Institutional
Animal Care and Use Committee and conducted in facilities approved by the Association for
Assessment and Accreditation of Laboratory Animal Care. The study was carried out in com-
pliance with the ARRIVE guidelines. Procedures were performed by a Southwest National
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Primate Research Center veterinarian at TBRI. Baboons were
housed in social groups to permit normal physical and social inter-
action. Details of housing structure and environmental enrichment
provided have been published elsewhere.4 Social group structure,
pregnancy timing, feeding system adaptation, and food intake
monitoring with the individual feeding system have been described
previously.4 Standard monkey chow biscuits were provided
(Purina Monkey Diet 5038). To ensure homogeneity of females
assigned to either the control group or nutrient reduction group
we considered a number of morphometric measurements made
prior to pregnancy, including weight, length, and BMI.
Nonpregnant female baboons were fed ad libitum until 30 dG
when they were assigned at random to control (CON) or MNR
groups. Control dams continued to feed ad libitum andMNR dams
were fed 70% of feed consumed by controls at the same stage of
gestation on a weight adjusted basis.Water was continuously avail-
able in individual feeding cages and with lixits at multiple locations
in the group housing.

Caesarean sections (CSs) were performed under isoflurane
anesthesia (2%, 2 l × min−1) to obtain the fetus and placenta at
90, 120, 140, and 165 dG (Fig. 1).5 Techniques used and postop-
erative maintenance have been previously described in detail.4

Analgesia was provided with buprenorphine hydrochloride at
0.015 mg kg−1 day−1 during three postoperative days (Buprenex®
Injectable, Reckitt Benckiser Health care (UK) Ltd, Hull, UK).
At each of the 90 and 165 dG time points, eight control samples
and eight MNR samples were collected. At each of the 120 and
140 dG time points, six control samples and sixMNR samples were
collected. Each group had an equal number of males and females.
Fetal morphometrics were obtained at the time of CS.

RNA isolation

Fetal livers were collected at necropsy and the three lobes sepa-
rated. One half of each lobe was immediately snap frozen in liquid
nitrogen and then stored at −80°C until used for RNA extractions.
Total RNA was isolated from each tissue using TRIzol Reagent
(Invitrogen, Carlsbad, CA) as described (PMID: 23637735).
RNA quantity and quality were assessed spectrophotometrically
using a NanoDrop™ 8000 (Thermo Fisher Scientific,
Wilmington, DE). RNA integrity was also confirmed by electro-
phoresis in a denaturing agarose gel, and extracts were stored
at −80°C until use.

Sequencing

RNA samples were used to generate cDNA libraries using
Illumina’s mRNA-Seq Sample Preparation Kit according to the
manufacturer’s protocol. In brief, mRNA was purified from each
RNA sample using poly-A selection, chemically fragmented into
small pieces, and copied into first strand cDNA using random

hexamer priming. Second strand cDNA synthesis was carried
out using DNA Polymerase I and RNase H. Each cDNA library
was then hybridized to an individual lane of a flow cell for cluster
generation using the Illumina Paired-End Cluster Generation Kit
v4 and Cluster Station and subsequently sequenced using the
Illumina v4 Sequencing Kit and GAIIx Sequencer using a 101-cycle
paired-end sequencing run.

Data analysis

After removing low quality bases (Phred score<30) from fastq
files, trimmed reads were aligned using STAR6 to the olive baboon
reference (Panu_3.0, GCF_000264685.3). Aligned reads were
quantified using an expectation-maximization algorithm7 with
the Panu_3.0 annotation file (release 103 from NCBI) in Partek
Flow (St. Louis, Missouri). Only paired-end reads with 100% of
read length overlapping with transcripts were counted. Junction
reads were counted if the skipped sequences matched introns of
the transcripts.

Raw read counts were filtered to remove transcripts that had a
maximum read count across all samples<15. This was done to
remove lowly expressed genes in order to stabilize the estimation
of the mean–variance relationship with variance modeling at the
observational level (“voom”) (Fig. S1).8 Differential expression
analysis was computed with limma-voom which allows for more
complex models than other differential expression analysis tools.
A single model was fit on the normalized read counts. Gene expres-
sion was modeled as the outcome and sex, time, time-squared, and
MNR status were modeled as predictors. The interactions between
time and MNR status and time-squared and MNR status were also
included in the full model. Contrasts for the MNR term as well as
the two interaction terms were computed for each gene and output
separately. For each of the three primary contrasts of interest a
Benjamini–Hochberg false discovery rate (FDR) was applied to
the unadjusted p-value to account for multiple comparisons.9

After correction for multiple comparisons, transcripts from the
same gene symbol were removed, and only the most significant
transcript was retained to reduce redundancy in the pathway
analysis. Transcripts meeting an unadjusted p-value<0.001
(FDR <0.15) were retained for downstream pathway analysis with
transcripts meeting an FDR<0.1 being prioritized for biological
interpretation (Table S1).

The gene symbol for each transcript was provided to STRING
to obtain all of the known protein–protein interactions among the
list of significantly differentially expressed genes.10 Default settings
were used when searching for protein–protein interactions.
MCODE was applied to the results to identify densely connected
regions among the network of protein–protein interactions, and
Cytoscape was used to visualize the resulting networks.11 Gene
Ontology was used to identify the biological function of each
MCODE cluster that had an MCODE score>4, contained more

Fig. 1. Experimental design. Fetal Liver Tissue was collected by
cesarean section (CS) at 90 days gestation (dG), 120, 140, and 165
dG. Maternal nutrient restriction (NR) was introduced at 30 dG.
Full term is 185 days.
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than six nodes, and included at least one gene that had an FDR
adjusted p-value<0.1.12,13

Since some of the significantly differentially expressed genes
were identified in connection to “RNA splicing” pathways, we
summed up the number of unique transcripts for each gene in each
sample to discover if any genes were being spliced differently
between conditions. For each individual time point, Poisson
regression was then computed on the number of unique transcripts
for each gene, where transcript number was modeled as the out-
come and MNR status was modeled as predictor, adjusting for
sex as a covariate. Because the majority of the differentially
expressed genes from the quadratic analysis demonstrated the larg-
est differences at 120 and 140 dG, an inverse variance-based meta-
analysis was computed for each gene across 120 and 140 dG.14 The
resulting p-values were adjusted with a Benjamini–Hochberg FDR
to account for multiple comparisons.9

Results

70,853 transcripts were identified with at least one read across all
baboon liver samples studied. Transcripts that did not have amaxi-
mum read count more than 15 across all samples were removed to
ensure an accurate modeling of the mean–variance relationship
(Fig. S1). After filtering, 14,078 transcripts remained for hypothesis
testing. Post hoc, less significant transcripts with duplicated gene
symbols were also removed leaving data on 8754 expressed genes.
12 genes met an FDR<0.1 for the MNR contrast (Table S1), no
genes met an FDR<0.1 for the linear interaction between MNR
status and time, and 28 genes met an FDR<0.1 for the quadratic
interaction betweenMNR status and time-squared (Table S1). The
majority of significant changes were from the contrast of the quad-
ratic interaction term, and nearly all of the genes identified by the
MNR contrast were also identified by the quadratic interaction
(Fig. 2; Table S1). This indicates that instead of expression
differences continuing to increase over time between the two
groups, the majority of transcripts deviate most at the middle time
points before returning to similar relative expression values
between groups (Fig. 2). This is important because it suggests that
120 and 140 dG may be critical developmental windows where the
expression of these genes differs markedly in the MNR fetal livers
before their relative expression matches the expression level in the
controls at 165 dG.

In order to complete network analysis we included an addi-
tional 56 genes that met an unadjusted p-value<0.001
(FDR <0.15) along with the 28 genes already meeting an
FDR<0.1 (Fig. 2). This was done to provide additional supporting
evidence to the handful of genes meeting the more stringent FDR
criterion. We recognize that by expanding this gene list we are
introducing potential false positives, but since false positives are
expected to be random, we anticipate that most of the false posi-
tives not cluster during pathway analysis. Because of the high
amount of overlap between the results of the two contrasts with
significant genes, pathway analysis revealed identical networks
whether or not the genes from the MNR contrast were included
in the analysis.

Network analysis revealed two key networks that had MCODE
scores>4, consisted of more than six nodes, and included at least
one gene that met an FDR<0.1. One network was significantly
enriched for the fatty acid beta-oxidation pathway, and the other
network consisted of genes involved in the regulation of RNA
splicing (Fig. 3). The genes in these pathways were all

downregulated in the MNR animals during the 120 and 140 dG
window, with TP53BP1 being the only exception where expression
was upregulated (Fig. 3). These results suggest two main pathways
that are significantly affected by MNR in the fetal liver during
development.

Given one of the networks identified by our analysis involved
potential changes to RNA splicing and processing machinery,
we attempted to validate this finding by examining if there is a
change in the numbers of splice isoforms expressed for all or a sub-
set of genes. Therefore, we tested for differences in the abundances
of splice variants between the MNR and control groups. For each
gene, we counted the number of unique transcripts in each indi-
vidual sample. Poisson regression, adjusting for sex as a covariate,
was used to identify genes with significantly different numbers of
unique transcripts per gene. Each of the four time points was ana-
lyzed independently to identify genes that had significantly altered
numbers of splice variants between the two groups. A meta-analy-
sis was computed between the results from the 120 and 140 dG
analyses since those were the two time points demonstrating the
most drastic differences in expression of the splicing-related genes.
At 90 dG we identified nine genes (CADPS, CUNH22orf15,
RALGPS1, LOC101004909, ABCC8, RBFOX3, SNAP91,
LOC103886823, TNNT3) with differential numbers of unique
transcripts between groups (FDR<0.05) (Fig. S2). Five of the genes
showed more splice variants in the MNR group, while four showed
more in the control group. At 120 dG we identified five differen-
tially spliced genes (MYT1L, ENOX1, LOC103886823, EBF3,
LRRC7), and all of them increased in the MNR group (Fig. S3).
Again, at 140 dG we identified five differentially spliced genes
(ABLIM1, PTPRT, ENOX1, LY6H, LOC103880245) and all of
them increased in the MNR group (Fig. S4). At 165 dG, only
PTPRTwas identified as significantly differentially spliced between
groups (Fig. S5). For themeta-analysis across both 120 and 140 dG,
we identified four genes (ENOX1, LY6H, EBF3, and ABLIM2) with
differential numbers of unique transcripts and all of them showed
more splice variants in the MNR group. The meta-analysis also
demonstrated a general increase in the number of splice variants
in the MNR groups for a majority of genes (p = 4.7 × 10−13)
(Fig. 4). The shift is more apparent for those results that meet
an unadjusted p-value<0.05 (Fig. 4, lower panel).

In all, we discovered several genes that are differentially
expressed during the development of the fetal liver between
MNR and control. These genes all demonstrate an interesting pat-
tern where, compared to controls, their relative abundance
decreases in the MNR animals at 120 and 140 dG but returns to
similar amounts pre-term (165 dG). These genes are involved in
two main pathways – fatty acid beta-oxidation and the regulation
of RNA splicing. In addition, the downregulated expression pat-
terns of the splicing-related genes are reflected in the globally
increased amounts of RNA splice variants present in theMNR fetal
liver transcripts at 120 and 140 dG compared to the control group.

Discussion

Differences in the metabolism and fetal development were, for a
long time, primarily attributed to genetics. However, compelling
evidence shows that the intrauterine environment and maternal
diet play critical roles in fetal development, with potential effects
on the developing individual throughout life.2 Fetal programming
has been a topic of increasing interest in the last decade, and the
explosion of omics technologies have enabled deep analyses of
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the potential underlying molecular mechanisms.15,16,17 Given the
challenges of studying fetal programming in pregnant women,
we have developed a well-established NHP model of MNR in
which we have evaluated programming effects on the endocrine,15

cardiovascular,5 neurological,18 and hepatic metabolic systems.3

Here we utilize this model to directly analyze the effects of
MNR on the developing fetal liver transcriptome. This is the first
study to characterize developmental programming of the tran-
scriptome across multiple gestational time points in the developing
primate liver. By unraveling how changes to the intrauterine envi-
ronment specifically alter transcriptional machinery in the liver, we

provide further insight into how maternal nutrition can directly
affect the developing fetus and speculate on potential long-term
health consequences as a result of these early functional changes
in a key organ regulating carbohydrate and lipid metabolism.

Our current study demonstrates that moderate MNR causes
specific transcriptional alterations with much larger impact at
120 dG and 140 dG than 90 dG or 165 dG. We identified no sig-
nificant MNR- or control-related linear associations between tran-
script abundance over the developmental period studied. Instead,
the quadratic interaction between MNR status and time-squared
unveiled 28 genes with transcripts that differed significantly

Fig. 2. Differentially expressed transcripts (FDR < 0.1) for the quadratic interaction between time-squared and MNR status. The change in expression over time is visualized for
each transcript, which is listed with the gene symbol above each figure. Controls are colored green, while MNR animals are colored blue. Transcripts are sorted by significance with
the most significant transcripts at the top left.
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(FDR <0.1) in their expression patterns during the observed gesta-
tional period (Fig. 2). The correlation of transcriptional changes
with time-squared likely indicates that fetal liver transcription in
both controls and MNR fetal livers is tightly regulated throughout
gestation, and transcription only changes between MNR and con-
trols during very specific time windows, not continuously through-
out gestation. These time windows may be critical in establishing
energy metabolism and storage during fetal development for post-
natal survival. The majority of the quadratic interaction results had
positive effect sizes, indicating that in the response to the challenge
of MNR, expression initially decreases during the 90–120 dG win-
dow and then increases during the 140–165 dG window for the
MNR group while the control group shows the opposite pattern
(Fig. 2). These significant differences in expression trajectories over
time reflect key transcriptional differences in the fetal liver during
a period of rapid weight gain and critical energy storage.

The majority of these results show 120 and 140 dG as critical
developmental time points where the differences are the largest
before returning back to similar relative abundances at 165 dG
in both groups (Fig. 2). The return of these genes to similar abun-
dances before delivery may also demonstrate the fetus’ ability to
adapt to environmental challenges andmaintain seemingly normal
development. At the same time, however, the return of these genes
to similar relative abundances could explain why some of the
effects of fetal reprogramming remain latent until later in life
and emphasizes the potential importance of maternal diet during
the 120 and 140 dG window where these particular transcriptional
differences were most pronounced in the fetal liver.

The genes specifically identified as altered between groups fell
into two biological networks (Fig. 3). A primary biological network
dysregulated between groups was fatty acid β-oxidation (MCODE
score= 5.64, nodes = 12, seed = ACSL5, p= 7.6 × 10−11). While it
is difficult to infer the direction of biological effect from RNA-seq
data (because of the lag effect between transcription and biological
function as well as the potential for some genes to inhibit function
or enhance function in different scenarios), it appears that expres-
sion of fatty acid β-oxidation genes is almost completely

downregulated during 120 and 140 dG by MNR. All of these genes
demonstrated decreased relative expression in the MNR group at
120 and 140 dG. This potentially aligns with a switch to a more
carbohydrate-mediated energy metabolism and resource storage,
as suggested by our earlier findings of increased liver glycogen stor-
age in MNR fetal livers.3 This would suggest a transition from a
steady-state energy metabolism reliant on a constant supply of
fatty acids to a more rapidly adjustable use of gluconeogenesis
and glycolysis to maintain the energy needs for the developing
fetus, especially the brain. Varying availability of fatty acids from
the undernourished mother could be the signal to downregulate
the expression of fatty acid β-oxidation related genes in the fetal
liver and trigger a switch to carbohydrate utilization and enhanced
glycogen storage for future use. After birth, fatty acid β-oxidation
plays an essential role in energy metabolism, but for a long time it
was thought that only glucose was the primary energy source in the
fetus. Recently, fatty acid β-oxidation has been discovered to have
an active role during fetal growth – particularly during maternal
undernutrition during late gestation.19–22 In other animal models,
this switch has been demonstrated to lead to severe lipid metabo-
lism disorders and impaired fetal development.23,24,22 Fatty acids,
in particular, are thought to play a large role in the metabolic
reprogramming of the fetus, and the identification of the fatty acid
oxidation pathway here coincides with other findings related to
maternal NR.19–21,25,26

The other main biological network we identified is related to the
control of RNA splicing (MCODE score= 4.71, nodes= 15, seed=
SRSF2, p= 2.7 × 10−10). We found that nearly all of these splicing-
related genes are down-regulated in the MNR samples at 120 and
140 dG. Perturbation of splicing factors can lead to dramatic
differences in splicing, and many of the genes identified in this net-
work are required for carrying out specific splicing activity. Loss of
function mutations or knockouts of these genes have been shown
to lead to a loss in splicing fidelity which results in an increase in
the production of novel (and potentially unwanted or dysfunc-
tional) splice variants created by atypical intron retention or exon
skipping.27–31 Aberrant splicing caused by mutations in splicing

Fig. 3. Protein–protein interaction network of differentially expressed genes significantly (p< 0.001) altered between MNR and control animals over time. Protein interactions
were obtained from STRING’s protein interaction database. MCODE was used to find tightly connected clusters of interactions that are labeled according to function defined in
gene ontology biological processes. Differences in expression values are visualized by the blue-to-red color scale. Red indicates a positive effect size, which means that expression
initially decreases during the 90–120 dG window and then increases during the 140–165 dG window for the MNR group while the control group shows the opposite pattern. Blue
indicates the opposite pattern between the MNR and control group. The size of the node reflects statistical significance, and diamonds represent genes that meet an FDR-adjusted
p-value <0.05.
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factors often lead to uncontrolled cell growth and eventually tumor
adaptability which is why loss of functionmutations in splicing fac-
tors are commonly associated with cancers.27–32 In fact, two of the
key genes identified in the networks here - IDH1 and SRSF2 – are
recurrently mutated and are actually definitive of certain
cancers.27–29,33,31 The other key gene identified, PRKAR1A, when
mutated, leads to overactive protein kinase Awhich has been found
to phosphorylate splicing factors (among many other roles).34–36

Interestingly, PRKAR1A mutations result in Carney complex
which is characterized by an increased risk of several types of
tumors and significant phenotypic heterogeneity.34–36 Similarly,
changes in the expression or function of the other splicing-related
genes identified in our network are often connected to aberrant
splicing and a variety of cancers. These include TRA2B,
MBNL1, CCNL2, RAVER1, the HNRNP family, and
PRPF4B.29,37–41 On a less dramatic scale than loss of function
mutations, we propose that the downregulation of these genes
caused by decreased nutrient availability in the fetal liver may

be the fetus’ way of producing a wider variety of gene isoforms
as a potential mechanism of environmental adaptation.

To further test this, we leveraged our RNA-sequencing data to
examine if these differentially expressed genes lead to modified dif-
ferential splicing patterns in other genes in the fetal liver. We
observed an overall increase in the number of splice variants for
a majority of genes in the MNR samples at 120 and 140 dG
(p= 4.65 × 10−13) (Fig. 3). This implies splicing was generally
increased for most genes in the MNR animals at 120 and 140 dG
(Fig. 3; Figs S3-S4). By altering the expression amounts of the
splicing-related genes, theMNR fetal livers are increasing the num-
ber of splice variants and thereby the potential number of func-
tional protein isoforms. This observation would suggest that
individuals, particularly early in development, respond to chal-
lenges (such as MNR) by increasing the variety of genes that are
expressed, upregulating the production of alternative splice var-
iants and protein isoforms, and expanding their repertoire of
proteins to modify and potentially diversify molecular functions.

Fig. 4. Skewed distribution of differentially spliced genes altered betweenMNR and control animals at 120 and 140 dG. the top histogram displays all meta-analysis Z-scores from
differential splicing analysis, while the bottom histogram displays only results thatmeet a p-value < 0.05. Themeta-analysis Z-score combines effect sizes from differential splicing
analysis done at 120 and 140 dG. The distribution of Z-scores is skewed in favor of positive Z-scores (mean = 0.078, skewness = 1.01, t-test p-value that mean is not equal to
zero = 4.7 × 10-13) indicating that more results demonstrate a positive increase in splice variants in MNR samples.

386 K. D. Zimmerman et al.

https://doi.org/10.1017/S204017442300003X Published online by Cambridge University Press

https://doi.org/10.1017/S204017442300003X
https://doi.org/10.1017/S204017442300003X
https://doi.org/10.1017/S204017442300003X


We speculate this may be a cellular response of cells, organs, and
organisms to stressors that is intended to find novel ways of dealing
long-term with an unfamiliar challenge, similar to strategies
reported for yeast in response to the environment.42 Similar find-
ings have also been reported in other organisms like shrimp and
plants in response to environmental stressors such as nutritional
changes and drought.43–47 When faced with changes in nutrients
during development, including reduced free fatty acids, less glu-
cose, or other more complex metabolic challenges during gesta-
tion, the fetal liver cells are lessening control of the highly
regulated splicing machinery. In some individuals this strategy
may pay off and the systemwill successfully adapt to the challenges
at hand. Increased splicing, particularly if it is permanently incor-
porated into the way the individual responds to these challenges,
could help the individual become more resilient to similar chal-
lenges in the future. However, the adaptation that was helpful dur-
ing development could also lead to unwanted consequences later in
life. A potential long-term switch to the preferential expression of a
different protein isoform, triggered by increased splicing during
this critical fetal developmental window, could have unintended
consequences that confer more harm than benefit in adults.
Each of these proposed scenarios are unconfirmed hypotheses
on how developmental fetal programming may impact long-term
health, but may have considerable implications for why some indi-
viduals are more resilient to health complications later in life than
others and merit further exploration.

The specific splicing factors SRSF2, HNRNPC, and HNRNPH1
have all been previously demonstrated to significantly decrease in
abundance with age across multiple tissues, including liver in both
humans andmice.48,49 This suggests that this observed alteration of
splicing may not only be a response to (nutritional) challenges dur-
ing fetal development, but could also represent a systemic response
to physiological challenges related to aging, and a similar attempt
of cells, tissues, and organs to explore alternative paths to avoid
aging-related complications. This would also suggest that some
of these splicing-related changes we observe in fetal livers may
be part of biological processes that are related to advanced aging
in these MNR offspring. Aging itself is a primary risk factor for
most chronic human diseases like type 2 diabetes, hypertension,
and arteriosclerosis. This would need much more in-depth consid-
eration, but the concept of programming related changes in aging
has become a new and rewarding research field, and the idea of an
infant already demonstrating signs of advanced aging at birth (or
employing molecular mechanisms to counteract aging-related
complications this early in life) because of challenges faced in utero
is proving a unique concept to explore.

Overall, we have discovered numerous transcripts that are dif-
ferentially expressed during the development in the MNR and
control primate fetal liver. These transcripts are primarily involved
in two main pathways – fatty acid β-oxidation and regulation of
RNA splicing – which demonstrate the most drastic differences
at 120 dG and 140 dG. This suggests that between 120 and 140 dG
there is critical developmental window where alterations to fatty
acid β-oxidation and RNA splicing are dependent on the intrauter-
ine environment. The changes to these pathways seem to disappear
immediately pre-term, but may have latent effects later in life.
Lastly, we also demonstrated that the differences in the abundance
of the RNA splicing control genes are reflected in the increased
numbers of RNA splice variants present in the MNR fetal livers
compared to the controls. These findings may have considerable
implications for how the fetus attempts to circumvent challenges
posed to it by maternal undernutrition. More broadly, they raise

novel questions about the biological mechanisms underlying resil-
ience and responses to challenges, be it acute nutritional challenges
during fetal development or common aging-related later-life chal-
lenges. Further investigation of splicing mechanisms as a means of
generating molecular diversity and dealing with adversity are
required, but if found to exist, such mechanisms may shift the
way we understand fetal development, aging, susceptibility, and
resilience to disease.
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