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Generalized Yang–Mills theory on
a Riemann surface

16.1 Introduction

Pure gauge theory in two dimensions is locally trivial and has no propagating
degrees of freedom. This was discussed in the first chapter of this part of the
book and now in the last chapter we will describe the global properties of gauge
theories in two dimensions. For the latter to be non-trivial we will either take
the underlying manifold to be a compact Riemann surface or introduce Wilson
loops external sources. We will show that in those cases the gauge theory has a
rich structure and in fact is almost a topological field theory, which is a theory
with no propagating degrees of freedom (see also Section 4.7). Moreover, it will
be shown that the theory has an interpretation in terms of a string theory.

It is easy to realize that in two dimensions the pure YM theory is in fact the
simplest member of a wide class of renormalizable theories that incorporate only
gauge fields. These will be referred to as the generalized gauge theories gYM.
In Chapter 15 we introduced an alternative formulation of the YM theory using
the action1

S = −
∫

d2zTr[iFB + g2B2 ]. (16.1)

Now it is easy to realize that the B2 term can be generalized to an arbitrary
invariant function Φ(B). This will constitute the family of gYM.2 The partition
function of the generalized theories on Riemann surfaces and the computation
of Wilson loops for these theories will also be described in this chapter.

Pure YM2 theory defined on an arbitrary Riemann surface is known to be
exactly solvable. In one approach the theory was regularized on the lattice and,
using a heat kernel action, explicit expressions for the partition function and
loop averages were derived.3 Identical results were derived also in a continuum
path-integral approach.

In the following sections we briefly review the former derivation of the partition
function and determine in a similar way the results for the partition function and

1 In fact in (16.1) we have used a slightly different formulation which is however equivalent to
the one used in Chapter 15.

2 The notion of the generalized QCD theory in two dimensions was introduced and analyzed
in [82].

3 A lattice version of two-dimensional Yang–Mills theory was shown to be exactly solvable by
Migdal in [161]. Correlators of Wilson lines on this formulation were computed in [139].
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292 Generalized Yang–Mills theory on a Riemann surface

Wilson loops in the gYM 2 case. Since this chapter is based on non-trivial two-
dimensional topology which has not been dealt with intensively in this book,
to fully understand its content the reader will need to consult the references to
this chapter. The reader who is not interested in the topological aspects of two-
dimensional gauge dynamics may skip this chapter and proceed directly to the
third part of the book.

This chapter is based mainly on [115], [118], [119] and [105].

16.2 The partition function of the YM2 theory

The partition function for the ordinary Y M2 theory defined on a compact Rie-
mann surfaceM of genus H and area A is,

Z(N,H, λA) =
∫

[DAμ ]exp
[
− 1

4g2

∫
Σ

d2x
√

det Gμν trFμν Fμν

]
, (16.2)

where the gauge group G is taken to be either SU(N) or U(N), g is the gauge
coupling constant, λ = g2N , Gμν is the metric onM, and tr stands for the trace
in the fundamental representation.4

As was emphasized in Chapter 8 the pure YM theory defined on a flat
Minkowski space-time with trivial topology is empty since one can gauge
away the gauge fields. However this does not hold if the underlying manifold
M is topologically non-trivial. If M contains a non-trivial cycle γ such that
tr[P e

∮
γ

Aμ dxμ

] 	= 1, where P stands for path-ordering, one cannot gauge Aμ away
along γ. Thus, the partition function depends on the topology ofM and in fact
only on the topology and its area. This follows from the fact that the theory is
invariant under area preserving diffeomorphism. The field strength can be written
in the form Fμν = εμν F and hence the action takes the form,

S = − 1
4g2

∫
Σ

d2x
√

det Gμν F 2 . (16.3)

Apart from the area form d2x
√

det Gμν this action is independent of the metric
and is therefore invariant under area preserving diffeomorphism.

The lattice partition function defined on an arbitrary triangulation of the
surface, as described in Fig. 16.1, is given by,

ZM =
∫ ∏

l

dUl

∏
�

Z�[U�], (16.4)

where
∏

l denotes a product over all links, U� is the holonomy around a plaquette
U� =

∏
l∈� Ul , and Z� is a plaquette action. For the latter one uses a heat kernel

4 The partition function on any Riemann surface of the discretized theory was written down
in [184]. An identical result was found also in the continuum formulation [228].
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16.2 The partition function of the YM 2 theory 293

U1

U2 U3

Fig. 16.1. A triangulation of the Riemann surface M. A group matrix is placed
on each link.

action rather than the Wilson action (which is Z�[U�] = e−
1

g 2 tr(U +U †)), i.e.

Z�[U ] =
∑
R

dRχR (U)e−tc2 (R) , (16.5)

where the summation is over the irreducible representations R of the group;
dR , χR (U) and c2(R) denote the dimension, character of U and the second
Casimir operator of R, respectively, and t = g2a2 with a2 being the plaquette
area. The character, which was also discussed in Section 3.5 in relation to the
ALA algebras, is defined here as χR (U) ≡ trR [U ]. The holonomy U (its subscript
� is omitted from here on) behaves as U ≈ 1− iaF when a is small. Note that
the region of validity of (16.5) is not only a→ 0 with F fixed, but actually also
a→ 0 with F going to infinity as a−1/2 because this is the region for which the
exponential − 1

4t a
2 Tr F 2 is of order unity.

We will briefly review the derivation that singles out (16.5) as a conve-
nient choice among the different lattice theories which belong to the same
universality class. Let us look for a function Ψ(U, t) that will replace the contin-
uum e−

1
4 t a2 Tr F 2

.
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294 Generalized Yang–Mills theory on a Riemann surface

The requirements which we impose on Ψ are:

1. As t goes to zero (and, therefore, for finite g also a goes to zero) we want the
holonomy to be close to 1,

Ψ(U, 0) = δ(U − 1). (16.6)

2. For any V ∈ G we have,

Ψ(V −1UV, t) = Ψ(U, t). (16.7)

In other words Ψ is a class function.
3. Ψ satisfies the heat kernel equation,⎧⎨⎩ ∂

∂t
−
∑
a,b

gab∂
a∂b

⎫⎬⎭Ψ(U, t) = 0, (16.8)

where gab is the inverse of the Cartan metric,

gab = tr(ta tb), (16.9)

which was defined and discussed in Section 3.2.1.

To see that (16.5) is an approximate solution to the heat-kernel equation we
note that any class function is a linear combination of characters. The differ-
entiation of a character in the direction of a Lie algebra element ta is given
by,

∂a1 ∂a2 · · · ∂ak χR (U) =
ik

k!
χR (Ut(a1 ta2 · · · tak )) + O(U − 1). (16.10)

The notation χR (Uta1 ta2 · · · tak ) stands for the trace of the multiplication of the
matrices which represent U and ta1 , . . . , tak in the representation R. The brackets
(· · ·) imply symmetrization with respect to the indices. The term O(U − 1) means
that the corrections are of the order of U − 1 ∼ aF ∼ t1/2 . Since,∑

a,b

gab∂
a∂bχR (U) ≈ −1

2
χR (U

∑
a,b

gabt
(a tb)) = −c2(R)χR (U), (16.11)

we see that (16.5) is the correct answer up to terms of the order of O(t3/2) which
drop in the continuum limit. Using (16.5) as the starting point, we finally find
the following form of the partition function,

Z(N,H, λA) =
∑
R

d2−2H
R e−

λ A c 2 (R )
2 N . (16.12)

To get from (16.5) to (16.12) we take the following steps. First we make use of
the additivity property of the heat-kernel action. Consider two triangles glued
along U1 as depicted in Fig. 16.2.
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U1

U2

U3 U4

U5

Fig. 16.2. Integrating over U1 on a link which is common to the two triangles.

U1

U2

V2

U 2
+ U 1

+

V 2
+

V 1
+

V1

Fig. 16.3. Opening up of a genus-two surface.

Using the orthogonality of characters,∫
dUχR1 (V U)χR2 (U

†W ) = δR1 ,R2

χR1 (V W )
dimR1

, (16.13)

we find,∫
dU1Z�1 (U2U3U1)Z�2 (U

†
1 U4U5) = Z�1 +�2 (U2U3U4U5). (16.14)

This relation can be used to argue that the lattice representation is exact and
independent of the triangulation since using this we can add as many trian-
gles as desired, thus reaching the continuum limit. We can also use this rela-
tion to reduce the number of triangles to the minimum needed to capture
the topology of M. Describing a genus H manifold in term of a 4H-polygon
with identified sides as described in Fig. 16.2 for a genus-two Reimann surface
a1b1a

−1
1 b−1

1 . . . aH bH a−1
H b−1

H . The partition function on such a manifold can be
written as,

ZM =
∑
R

dRe−
λ A c 2 (R )

2 N

∫ ∏
DUlDVlχR [U1V1U

†
1 V †

1 . . . UH VH U†
H V †

1 ]. (16.15)
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296 Generalized Yang–Mills theory on a Riemann surface

We can simplify this expression using again the orthogonality of the characters
and the relation, ∫

DUχR [AUBU†] =
1

dimR
χR [A]χR [B], (16.16)

to arrive at (16.12).

16.3 The partition function of gYM2 theories

Pure YM 2 theory is in fact a special representative of a wide class of 2D gauge
theories which are invariant under area preserving diffeomorphisms. These gener-
alized YM 2 theories are described by the following generalized partition function,

Z(G,H,A,Φ) =
∫

[DAμ ][DB] exp[
∫

Σ
d2x
√

det Gμν tr(iBF − Φ(B))], (16.17)

where F = Fμν εμν with εij being the antisymmetric tensor ε12 = −ε21 = 1. B is
an auxiliary Lie-algebra-valued pseudo-scalar field.5

We wish to generalize the substitution (16.5) for the plaquette action (16.17),

Z�[U ] =
∫
DBetr{iaBF −tΦ(B )} ?→ Ψ(U, t). (16.18)

Here B is a Hermitian matrix and Φ is an invariant function (invariant under
B → U−1BU for U ∈ G). The quadratic case Φ(X) = g2tr(X2) obviously corre-
sponds to the YM 2 theory. We will take Φ to be of the form,

Φ(X) =
∑
{ki }

a{ki }
∏

i

tr(Xi)ki , (16.19)

(e.g. tr(X3)2 + tr(X6)) For SU(N) (U(N)), tr(Xi) can be expressed for i ≥ N

(i > N) in terms of tr(Xi) for smaller i. Thus the summands in (16.19) are
not independent. This does not affect the following discussion. Moreover, in the
large N limit that we will discuss in the following section, the terms do become
independent.

We define the general structure constants dabc...k to be,

dabc...k
def= gaa′gbb′gcc′ · · · gkk ′tr(ta

′
tb

′
tc

′ · · · tk ′
). (16.20)

For every partition r1 + r2 + · · ·+ rj , we define the Casimir,

C{r1 +r2 +···+rj }
def=

1
(r1 + r2 + · · ·+ rj )!

d
a

( 1 )
1 ...a

( 1 )
r 1

d
a

( 2 )
1 ...a

( 2 )
r 2
· · · d

a
( j )
1 ...a

( j )
r j

t(a
( 1 )
1 · · · ta

( 1 )
r 1 ta

( 2 )
1 · · · ta

( j )
r j

)

(16.21)

5 In principle, we could perturb the ordinary Y M2 with operators of the form 1
g 2 k −2 tr(F k ),

without the need for an auxiliary field.
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16.4 Loop averages in the generalized case 297

Note that the index of C{·} will always pertain to a partition. Thus C{p} 	=
C{r1 +r2 +···+rj } even if p = r1 + r2 + · · ·+ rj . The brackets in the t-s mean a
total symmetrization ( (r1 + r2 + · · ·+ rj )! terms).

Cρ can easily be seen to commute with all the group elements and so, by
Schur’s lemma, is a constant matrix in every irreducible representation.

We claim that the correct lattice generalization of (16.5) is,∑
R

dRχR (U)e−tΛ(R) , (16.22)

where,

Λ(R) =
∑
{ki }

a{ki }C{k1 ·1+k2 ·2+k3 ·3+···}(R). (16.23)

This results from the requirements that Ψ(U, t) must satisfy:

1. Ψ(U, 0) = δ(U − 1).
2. Ψ is a class-function.
3. Ψ satisfies the equation,⎧⎨⎩ ∂

∂t
−
∑
{kj }

a{kj }
∏

l

(
(ia)−lda1 a2 ...al

∂l

∂Fa1 · · · ∂Fal

)kl

⎫⎬⎭Ψ(U, t) + O(U − 1) = 0

(16.24)

For the U s that are important in the weight for a single plaquette, U − 1 is
of the order of magnitude of aF which, in turn, is of the order of magnitude
of O(t1/ν ) where ν is the maximal degree of Φ. Thus, the corrections to Ψ are
O(a−(1+1/ν )) and drop out in the continuum limit.

The partition function for the generalized Y M2 theory is therefore,

Z(G,ΣH ,Φ) =
∑
R

(dim R)2−2H e−
λ A
2 N Λ(R) , (16.25)

where A is the area of the surface and Λ(R) is defined in (16.23).

16.4 Loop averages in the generalized case

The full solution of the YM 2 theory includes, in addition to the partition func-
tion, closed expressions for the expectation values of products of any arbitrary
number of Wilson loops,

W (R1 , γ1 , . . . Rnγn ) =<

n∏
i=1

TrRi
Pe

i
∮

γ i
Adx

>, (16.26)

where the path-ordered product around the closed curve γi is taken in the rep-
resentation Ri . Using loop equations, one can derive an algorithm to compute
Wilson loops on the plane. This can be further generalized into a prescription for
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n1 = 8

c1 = 6 c2 = 6 c3 = 4 c4 = 2 c5 = 2 c6 = 1 c7 = 1 c8 = 1

n2 = 8

n3 = 3

n4 = 3

n5 = 2

n6 = 2

Fig. 16.4. Wilson loops on a torus.

computing those averages for non-intersecting loops on an arbitrary two man-
ifold. Let us briefly summarize the latter. One cuts the 2D surface along the
Wilson loop contours, see Fig. 16.4, forming several connected “windows”. Each
window contributes a sum over all irreducible representations of the form of
(16.12). In addition, for each pair of neighbouring windows, a Wigner coefficient,

DR1 R2 f =
∫

dUχR1 (U)χR2 (U
†)χf (U), (16.27)

is attached. Altogether, one finds,

W (R1 , γ1 , . . . Rnγn ) =
1
Z

1
Nn

∑
R1

. . . .
∑
Rn

DR1 ...Rn

Nw∏
i=1

d2−2Gi

Ri
e

−λ A i C 2 (R i )
2 N ,

(16.28)

where Nw is the number of windows, 2− 2Gi is the Euler number associated with
the window i and DR1 ...Rn

is the product of the Wigner coefficients for neigh-
boring windows. For the case of intersecting loops a set of differential equations
provides a recursion relation by relating the average of a loop with n intersections
to those of loops with m < n intersections.

Generalizing these results to the gYM 2 is straightforward. The only alteration
that has to be invoked is to replace the e

−λ A C 2 (R )
2 N factors that show up in those

algorithms with similar factors where the second Casimir operator is replaced
by the generalized Casimir operator (16.23). For instance the expectation value
of a simple Wilson loop on the plane is given by,

〈W (R, γ)〉 = e
−λ A γ Λ (R )

2 N , (16.29)

where Aγ is the area enclosed by γ.
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Fig. 16.5. Wilson loops on a torus.

It is interesting to note that for odd Casimir operators the expectation values
of real representations (like the adjoint representation) equal unity due to the
fact that the corresponding Casimirs vanish.

16.5 Stringy YM2 theory

Before dwelling into the stringy description of the generalized YM 2 thoeries,
we first review the proof of the stringy nature of pure YM 2 theory.6 We then
generalize this construction to the generalized YM 2 and present several examples
to demonstrate the nature of the maps that contribute to the gYM 2 and their
weights.

The partition function expressed as a sum over irreducible SU(N) (U(N))
representations (16.12) can be expanded in terms of powers of 1

N . This involves
expanding the dimension and the second Casimir operator of the various rep-
resentations. The representation of U(N) or SU(N) are described by Young
tableau Y (R), see for instance Fig. 16.5, composed of r ≤ N horizontal lines
each with ni boxes so that n1 ≥ n2 ≥ . . . ≥ nr . The U(N) and SU(N) second
Casimir operators of a representation R and its dimension are given by,

C
U (N )
2 (R) = N

r∑
i=1

ni+
r∑

i=1

ni(ni + 1− 2i) = Nn + 2P̂{2}(R)U (N )(R),

C
SU (N )
2 (R) = N

r∑
i=1

ni+
r∑

i=1

ni(ni + 1− 2i)− (
∑r

i=1 ni)2

N
= Nn + 2P̂{2}(R)SU (N ) ,

dR =

∏
i≤j≤N (ni − i− nj + j)∏

i≤j≤N (i− j)
, (16.30)

6 The stringy description of Yang–Mills theory in two-dimensional Riemann surfaces was intro-
duced by D. Gross and W. Taylor in [115], [118] and [119]. The formulation of the two-
dimensional Yang–Mills theory in terms of topological string theories was done in [126] and
[69].
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300 Generalized Yang–Mills theory on a Riemann surface

Mh

MH

Fig. 16.6. A map from Mh to MH .

with n =
∑r

i=1 ni . For every representation R there is a conjugate representa-
tion R̄ whose Young tableau Y (R̄) has its rows and columns interchanged. To
determine the Casimir operator of the conjugate representation we use (16.30)
with 2P̂{2}(R) = −2P̂{2}(R)U (N )(R).

Using the Frobenius relations between representations of the symmetric group
Sn and representations of SU(N) (U(N)), the coefficients of this asymptotic
expansion were written in terms of characters of Sn . The latter can be shown
to correspond to permutations of the sheets covering the target space. The final
result takes the form of,

Z(A, H, N ) ∼
∞∑

n± , i±=0

∑
p±

1 , . . . ,p±
i±∈T 2 ⊂S

n ±

∑
s±1 , t±1 , . . . ,s±

H
,t±

H
∈S

n ±

(
1
N

)(n + +n−)(2H −2)+ (i+ + i−)

(−1)(i+ +i−)

i+!i−!n+!n−!
(λA)(i+ +i−)e−

1
2 (n+ +n−)λAe

1
2 ((n+ )2 +(n−)2 −2n+ n−)λA/N 2

δS
n + ×S

n −

(
p+

1 · · · p+
i+ p−1 · · · p−i−Ω2−2H

n+ ,n−

H∏
j=1

[s+
j , t+j ]

H∏
k=1

[s−k , t−k ]
)

, (16.31)

where [s, t] = sts−1t−1 . Here δ is the delta function on the group algebra of
the product of symmetric groups Sn+ × Sn− , T2 is the class of elements of Sn±

consisting of transpositions, and Ω−1
n+ ,n− are certain elements of the group algebra

of the symmetric group Sn+ × Sn− .
The formula (16.31) nearly factorizes, splitting into a sum over n+ , i+ , · · · and

n−, i−, · · ·. The contributions of the (+) and (−) sums were interpreted as arising
from two “sectors” of a hypothetical worldsheet theory. These sectors correspond
to orientation reversing and preserving maps, respectively. One views the n+ = 0
and n− = 0 terms as leading order terms in a 1/N expansion. At higher orders
the two sectors are coupled via the n+n− term in the exponential and via terms
in Ωn+ n− .

Thus, the conventional Y M2 theory has an interpretation in terms of sums of
covering maps of the target space, see Fig. 16.5. Those maps are weighted by the
factor of N 2−2he−

1
2 nλA where h is the genus of the world-sheet and A is the area

of the target space. The power of N 2−2h is obtained from the Riemann–Hurwitz
formula,

2h− 2 = (n+ + n−)(2H − 2) + (i+ + i−), (16.32)
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where B = i+ + i− is the total branching number. The number of sheets above
each point in target space (the degree of the map) is n and λ = g2N is the
string tension. Maps that have branch points are weighted by a factor of λA.
The dependence on the area A results from the fact that the branch point can
be at any point in the target space.

16.6 Toward the stringy generalized YM2

Note that the stringy description of the YM 2 theory does not attribute any
special weight for maps that have branch points of a degree higher than one, nor
is there a special weight for two (or more) branch points that are at the same
point in the target space. The latter maps are counted with weight zero, at least
for a toroidal target space, since they constitute the boundary of map space.

The main idea behind a stringy behavior of the gYM 2 is to associate nonzero
weights to those boundary maps, once one considers the general Φ(B) case rather
than the B2 theory. In other words, we anticipate that we will have to add for
the tr(B3) theory, for example, maps that have a branch point of degree 2 and
count them, as well, with a weight proportional to A. From the technical point
of view the emergence of the YM 2 description in terms of maps followed from
a large N expansion of the dimensions and the second Casimir operators of
(16.12). Obviously a similar expansion of the former applies also for the gener-
alized models and therefore what remains to be done is to properly treat the
Casimirs appearing in the exponents of (16.25).

In [119], the expansion of the second Casimir operator C2(R) of a represen-
tation R introduced the branch points and the string tension contributions to
the partition function. The C2(R) was expressed in terms of the eigenvalue of
the sum of all the n(n−1)

2 transpositions of n elements (permutations containing
a single cycle of length 2), where n is the number of boxes in R. This is the
outcome of the following formula,

C2(R) = nN + 2P̂{2}(R), (16.33)

where P̂2(R) is the value of the scalar matrix representing the sum of transposi-
tions

∑
i<j≤n (ij) in the representation R of Sn (the matrix commutes with all

permutations and thus is scalar). In the partition function, C2(R) was multiplied
by λA

2N . The resulting term 1
2 nλA arises from the action and is proportional to

the string tension. The term λAP̂{2} arises from the measure and is interpreted
as the contribution of branch points to the weight of a map.

Our task is, therefore, to express the generalized Casimirs Cρ of (16.21) in
terms of P̂ρ′ , the generalizations of P̂{2}(R). This is expressed as,

Cρ(R) =
∑
ρ′

αρ′
ρ Nhρ ′

ρ P̂ρ′(R), (16.34)

https://doi.org/10.1017/9781009401654.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401654.017


302 Generalized Yang–Mills theory on a Riemann surface

where αρ′
ρ are coefficients that are independent of R and the power factors hρ′

ρ ,
are adjusted so that a string picture is achieved.

The P̂{ρ′} factors are associated with ρ′ which is an arbitrary partition of
certain numbers, namely,

ρ′ :
∑

i

ki · i =

k1︷ ︸︸ ︷
1 + 1 + · · ·+ 1 +

k2︷ ︸︸ ︷
2 + 2 + · · ·+ 2+ · · · , (16.35)

P̂{ρ′}(R) is the product of two factors. The first is the sum of all the permutations
in Sn (n is the number of boxes of R) which are in the equivalence class that
is characterized by having ki cycles of length i for i ≥ 2. Just like the case of
P̂{2}(R), the matrix P̂{ρ′}(R) commutes with all permutations and thus is a
scalar. The sum is taken in the representation R of Sn . The second factor is,(

n−
∑

i=2 iki

k1

)
, (16.36)

which can be interpreted later as the number of ways to put k1 marked points
on the remaining sheets that do not participate in the branch points.

16.7 Examples

A complete diagrammatic expansion of the operators was determined in [105].
Using this expansion one can write down the stringy description of the partition
function for any generalized YM theory. We end this chapter with a few examples
of the Casimir factors for various choices of Φ(B) for both U(N) and SU(N)
groups.

1. For λ
N tr(B2) which is the conventional Y M2 theory we get (16.33),

2λ

N
P̂{2} + λP̂{1}. (16.37)

The first term means that we give a factor of 2λA
N for each branch point, and

the second term means that we have a factor of λ for each marked point (i.e.
this is the string tension).

2. For αN−2tr(B3) in U(N) we get,

3αN−2 P̂{3} + 3αN−1 P̂{2} + 3αN−2 P̂{1+1} +
1
2
αP̂{1} +

1
2
αN−2 P̂{1}. (16.38)

The first term is the contribution from branch points of degree 2 (the simple
branch points are of degree 1). The next term is a modification to the weight
of the usual branch points. The third is the weight of two marked points at
the same point (but different sheets), which will translate into n+(n+ − 1)
+ n−(n− − 1) in the weight of a map for which (n+ , n−) are the numbers
of sheets of each orientability. The last two terms are modifications to the
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cosmological constant (or, in our terminology, to the weight of the single
marked point).

Note that, because of the original power of N−2 we do not get the usual
N 2−2h stringy behaviour in the partition function. We can overcome this
problem by interpreting the last term not as the usual marked point, but as
a microscopic handle that is attached to the point. By interpreting certain
marked points as actually being microscopic handles (or higher Riemann sur-
faces) we can always adjust the power of N to be N 2−2h . Similarly, we should
interpret the term 3αN−2 P̂{1+1} as a connecting tube. We will come back to
this interpretation towards the end of this section and investigate it further
in the next subsection.

3. For N−2tr(B3) in SU(N) we obtain the following corrections to (16.38),

− 6
N 3 P̂{2+1} −

12
N 3 P̂{2} +

12
N 4 P̂{1+1+1}

−
(

6
N 2 −

12
N 4

)
P̂{1+1} −

(
3

N 2 −
2

N 4

)
P̂{1}. (16.39)

These terms and the terms in the previous example (16.38) do not mix chi-
ralities (i.e. sheets of opposite orientations). In the full theory (chiral and
anti-chiral sectors) there is the corresponding anti-chiral term:

+
6

N 3 P̂{2̄+1̄} +
12
N 3 P̂{2̄} −

12
N 4 P̂{1̄+1̄+1̄}

+
(

6
N 2 −

12
N 4

)
P̂{1̄+1̄} +

(
3

N 2 −
2

N 4

)
P̂{1̄}. (16.40)

For SU(N) there are additional terms that do mix chiralities. They are,

− 6
N 3 (P̂{2̄+1} − P̂{2+1̄}) +

12
N 4 (P̂{1̄+1̄+1} − P̂{1̄+1̄+1}). (16.41)

The first term is the contribution of maps that have a branch point in one
orientability and a marked point in the other (at the same target space point).
The second term is the contribution of maps with three marked points – two
for one orientability and one for the other.

To illustrate the content of these formulae in terms of representations, we
will calculate the value of the third Casimir 1

6 dabct
(a tbtc) for a totally anti-

symmetric representation of SU(N) with k boxes. The term P̂{3} is translated
into the sum of all the permutations of the k indices of a totally antisymmetric
tensor that are 3-cycles, this gives 1

3 k(k − 1)(k − 2). The term P̂{2} gives the
sum of all the permutations that are 2-cycles, that is − 1

2 k(k − 1) (a minus
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304 Generalized Yang–Mills theory on a Riemann surface

sign comes from antisymmetry). All in all we get,

C{3}(k) ≡ 1
6
dabc t

(a tbtc)

= k(k − 1)(k − 2)− 3
2
k(k − 1) +

3
2
Nk(k − 1)

+
1
2
k +

1
2
N 2k +

3
N

k(k − 1)(k − 2)

− 3k(k − 1) +
6
N

k(k − 1)− 3k +
2

N 2 k(k − 1)(k − 2) +
6

N 2 k(k − 1) +
2k

N 2

=
k

2N 2 (N + 1)(N + 2)(N − k)(N − 2k). (16.42)

4. For N−3tr(B4) in U(N) we get,

4N−3 P̂{4} + 6N−2 P̂{3} + 6N−3 P̂{2+1} +
8
3
N−2 P̂{1+1}

+
(

4
3
N−1 + 6N−3

)
P̂{2} +

(
1
6

+
5
6
N−2

)
P̂{1}.

The terms that have an extra microscopic handle are,

6N−3 P̂{2+1} +
8
3
N−2 P̂{1+1} + 6N−3 P̂{2} +

5
6
N−2 P̂{1}.

5. For N−4(tr(B2))2 in U(N) we get,

24N−4 P̂{3} + 8N−4 P̂{2+2} + 4N−3 P̂{2+1}

+
16
3

N−3 P̂{2} +
(

2 +
8
3
N−4

)
P̂{1+1} +

(
2
3
N−2 +

1
3
N−4

)
P̂{1}. (16.43)

and additional terms,

8N−4 P̂{2+2̄} + 4N−3(P̂{2̄+1} + P̂{2+1̄}) + 2N−2 P̂{1+1̄},

that mix the two chiral sectors.
The meaning of the term 2N−2 P̂{1+1̄} is a factor of N−2e−2αn+ n−A , where

α is the coefficient of the N−4(tr(B2))2 term in the action. n+ is the number
of sheets of positive orientability and n− is the number of sheets of negative
orientability for a given map.

16.8 Summary

In this chapter we studied the generalized two-dimensional Yang–Mills theory
on Riemann surfaces. We reviewed the exact formulae for the partition function
and Wilson loop averages of the conventional YM theory. We then presented
the generalization of these results in the context of the generalized YM theories.
These expressions are based on a replacement of the second Casimir operator
with more general Casimir operators depending on the particular model. There
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is another method to obtain these results [228], i.e. by regarding the general
Yang–Mills actions as perturbations of the topological theory at zero area.

Using the relations between SU(N) representations and representations of the
symmetric groups Sn , we wrote down the generalizations that have to be made
in the Gross–Taylor string rules for 2D Yang–Mills theory, so as to make the
generalized Yang–Mills theory for SU(N) or U(N) a local string theory as well.
The extra terms are special weights for certain maps with branch points of a
degree higher than one.

An obvious extension of the results presented in this chapter is to consider
other gauge groups. The conventional YM 2 theory with gauge groups O(N) or
Sp(N) which were shown to be related to maps from non-orientable world-sheets.

One can further couple the gYM 2 theories to fermionic matter in analogy to
’t Hooft’s analysis presented in Chapter 10. This domain of research is far from
being fully explored. A particularly interesting question is to find out certain
Φ(B)s that lead to a special behaviour of the coupled system. For example,
in the U(1) case, the representations R are labeled by an integer n and for
Φ(B) = −α log(1 + λB2) we get,

Z(U(1), A) =
∑

n

(1 + λn2)−αA

which has a singularity for 2αA = 1.
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