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SPECTRAL CONVERGENCE OF MULTIQUADRIC
INTERPOLATION

by MARTIN BUHMANN and NIRA DYN
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In this paper, we consider interpolants on /i-Z" from the closure of the space spanned by translates of the
function ( | | | | 2 + 1)*/2 (/?>—n and not an even nonnegative integer) along h-Z". We show that these
interpolants approximate a function, whose Fourier transform satisfies certain asymptotic conditions, up to an
error of order hp, on any compact domain in R", where p is only restricted by the smoothness of the function.

1991 Mathematics subject classification: 41A05, 41A25, 41A30, 41A63.

1. Introduction

This paper is concerned with the degree of approximation over a compact domain,
achieved by interpolation on h • Z" from

F, = closure span{0(||- -jh\\):jeZ"}, (1.1)

where | | | | denotes the Euclidean norm, and where the radial function </>(||||) is of
multiquadric type

4>{r) = (r2+\yi\ p>-n, */J*Z + . (1.2)

Here the closure is taken relative to the topology of uniform convergence over compact
domains in n-dimensional real space.

It is shown in Buhmann [4, Sections 3-4], that there exists a unique interpolant to
the data {f(jh):jeZn} of the form

JJ(x)= I fUh)x(h-lx-j), xeW, (1.3)
jeZ"

where the "cardinal function" xe^i satisfies x{j) = 5j0, jeZ", and |x(x)| decays algebrai-
cally (i.e. as a certain negative power of ||x||) at infinity. Moreover, it is known that

, h-+0, (1.4)

for /eCl7n+n(IRn) with bounded derivatives of order f ^ i + n - 2 , [ X | + M - 1 and \~P~\+n,
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320 M. D. BUHMANN AND N. DYN

where ("P~\ denotes the least integer ^ /?; see Buhmann [2, Example 5.2] and also [4] for
the cases when n + P is not an odd integer and Powell [13] for the case when n + P is an
odd integer. Strictly speaking Powell provides a proof of (1.4), when n + P is an odd
integer, only for )8=1, but his proof generalizes easily. In fact, unless n + P is an odd
integer, the boundedness requirement on the (\~p~\+n — 2)-th derivative can be waived
[2, 4]. If n + P is an even integer, the boundedness requirement on the ([~/T|+n—l)-th
derivative can be dropped too [2-4]. It is clear from (1.2) and the fact / e V^ that

jrfh-^sclosure span{&(||- -jh\\):jeZ"},

with

<t>h(r)=(r2 + h2y2. (1.5)

Thus the radial function whose translates along h • Z" are used, changes with h.
In this paper we study the convergence rates in case the radial basis function (1.2) is

fixed for all grids h • Z", h > 0, and we obtain much stronger results.
It follows from the extension of the Strang and Fix conditions to the case of

approximating operators of the form

QJ(x)= I fmWx-j), xeW, (1.6)

jeZ"

with ij/ an algebraically decaying function (see, e.g., Light and Cheney [10]), that

\\f-QJh=o(h'+*), h^o,
can only be obtained with positive a. for a suitable class of differentiable functions / if
n,cclosure span {\p{- —j):j€Z"}, where n, is the space of polynomials over W of total
degree ^/. In fact, result (1.4) is obtainable by first noting that

JhP = P, Vp67i r / n + n_, , (1.7)

and we cannot obtain (1.4) with O(hp+n) replaced by O(hp+n+1) since i t m + B ^ Vh. For
further details, the reader is referred to Dyn [6] and Powell [13].

The results for the interpolation operators

/*/(*)= I f(Jh)XH(x-jh), xeW, (1.8)
jeZ"

where the cardinal function X n 6 ^ satisfies xh(Jh) = dJ0,jeZ1', (xi being the same as x)
are of a different nature, due to the fact the xn is not a scaled version of Xi and that the
spaces {Kn}n>0 are obtained from translating the same radial basis function (1.2). In
particular V,h<=Vh, /eZ. Now let f:W->M be a function which can be modified by
subtracting a polynomial term so as to have a distributional Fourier transform /„,(()
that decays, for a fixed v>2n + P, as |U||~V for large lltll, and satisfies for some <5>0
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SPECTRAL CONVERGENCE OF MULTIQUADRIC INTERPOLATION 321

J |/*W||MI"+'A<oo. (1.9)

It will be shown that we have then, for any p < v — n,

| | / - ' * / | | » . n = sup \f{x)-lhf{x)\ =
xen

Here Q is any compact domain in W. We call this spectral convergence since the
convergence rate is essentially linked to the decay of / ' s Fourier transform at infinity
and hence to / ' s smoothness. Of course we may conclude that the error estimate above
is true for all positive p as soon as f^(t) decays faster than any integral power of ||r|| at
infinity. This convergence of /,,/ to / is partly based on the important property of the
spaces Vh that local approximations to all monomials can be constructed in Vh, with
error of one order higher than the degree of the monomial.

Related results on approximation orders by quasi-interpolation on h-Z", based on
translates along h-Z" of the exponential box-spline B^B^ (h~1-) are obtained by Dyn
and Ron [7], using local approximations to monomials by the underlying space of
exponential-polynomials.

A first observation of arbitrary orders of convergence in the context of radial function
approximation is due to Madych and Nelson [11,12], who show that scattered data
interpolation with any of the radial functions <f> in (1.2) converges as 0{hp), for all
peZ + , on a bounded domain fl, as the data points become dense in a domain
containing Q. This result applies to functions in the reproducing kernel Hilbert space
induced by <f>, which is a space of very smooth functions with exponentially decaying
Fourier transforms. Wu and Schaback [15] also prove this result using a different
approach.

Throughout this paper we use standard multi-index notation. For x, yeU",J|*||2 =
B=i*», <x,y> = l;.ixk-y,, x' = nZ = i 4 k , and for aeZ"+, a! = p = 1 a ) k ! , \a\ = £l=1*k,
Dx

x = Y\l = l(d*k/dxl"). We will also often write r instead of ||xj| as the argument of
radially symmetric functions, i.e. <j)(r) instead of $(||;c||), <j>(r) instead of $(||x||) etc.

2. Main results

We need two preliminary results. The first one is a consequence of results in
Buhmann [4, §3] relating to the existence of cardinal functions of interpolation with
radial basis functions. For its statement, recall that the distributional Fourier transform
of cl>y(r) = (r2 + y2f2, fi> -n and i/?*Z+, is

2n"12

0 ( )

Jones [9, p. 532]. Here, Kv denotes a modified Bessel function [1, p. 374]. We also
introduce the constant
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322 M. D. BUHMANN AND N. DYN

2 if i(n
1 otherwise,

for use in the statement of this theorem and thereafter.

Theorem 1. Let (j>y(r) = (r2 + y2)m for fl>-n and%fii~l+. Then the coefficients

provide a cardinal function

X(x)= S ck<t>y(\[x-k\\),

satisfying x(j) = <5QJ> j e 2", with a Fourier transform

Moreover, for \\x\\ -* oo,

with Ao depending on y but independent of x. D

For the statement of the next theorem, we introduce the notation

Theorem 2. Let (f>(r) = (r2 + \)m for (l> -n and %P$Z + . Then, for every positive h,
the coefficients

provide a cardinal function

I j | | - k h | | ) , xeW,
fceZ"

satisfying ĥ(/jjf) = <5j0,yeZ", with a Fourier transform

Ut) = h"${\\t\\)ah{t), teW. (2.1)

Moreover, for ||x||-»oo,

IZfcWl^^iO + HxH)---"01^, (2.2)

where At depends on h but not on x.

Proof. It is easy to check that the x(x) of Theorem 1 with y = h~l equals Xhi^h). This
yields the theorem. D
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SPECTRAL CONVERGENCE OF MULTIQUADRIC INTERPOLATION 323

We can now state the main result of this paper.

Theorem 3. Let <j>(r)={r2 + \)m for f}> -n and \fl$1+, and let QcR" be a compact
domain. Suppose that f:W-*U satisfies |/(x)| = O((l + ||x||)<o(n+P)"1!) for a positive e.
Suppose that there is a polynomial Pen^a{n+^_l such that the distributional Fourier
transform /„ of f-P is in C(W\{0}) and satisfies (1.9) for some d>0 and |/*(f)|S
'42|| t | |~v/or a fixed v>2n + fi and ||t||^<5, where A2 is a positive constant which does not
depend on t. Then the interpolant (1.8) gives for any p<v — n and for small h

\\f-IJ\U.n£A3h>, (2.3)

where A 3 does not depend on h.

Before proving the theorem, we make several observations. Firstly, we note that (1.8)
is well-defined for every positive spacing h and for every / that satisfies the bound given
in the statement of the theorem, because of the bound (2.2) on %h. We also note that the
conditions on / ' s distributional Fourier transform imply that / is p-times continuously
differentiable for p<v—n. The assumptions on / ' s Fourier transform we make do not
imply that / belongs to the Hilbert space studied in Madych and Nelson, and Wu and
Schaback, because there it is required that P = 0 and

R"

for which our conditions on /„, both at the origin and at infinity are insufficient.
We finally point out that if / is a polynomial of degree less than n + jS, then the error

estimate in the theorem is trivially true, because such polynomials are reproduced by
the interpolation process (this follows from the analysis in Buhmann [4, §5]). If,
however, co=2 and / i s a polynomial of degree at least n + p and less than 2(n + /J), then
the error estimate is nontrivial. Powell [13] showed an error estimate of this type in the
univariate case when /?=1 and / is a quadratic polynomial. In fact, his estimate is
stronger, in that it shows exponential convergence of the interpolant to the function,
whereas our estimate only gives convergence of any integral order.

The proof of Theorem 3 occupies the rest of this section. We first give an outline of
the proof. We remark that, unless stated otherwise, all the constants Ah i = 4,5,...,
which occur in the sequel are positive and independent of h and x as long as x is
confined to the compact set fi and h is positive and, say, less than 1. Dependencies of At

on other variables that are relevant to the analysis will be noted as arguments of At.
The central idea of the proof is to construct for any given positive integer p and

ze/i-Z" a "local approximation" G2: W->R to / such that

\f(x)-Gt(x)\£AAh>, Vx,k\\x-z\\<h<A5, (2.4)

AA and A5 being not only independent of x and h, but also of z. We require Gz to be of
the form
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324 M. D. BUHMANN AND N. DYN

G 2 ( x ) = £ / 4 z 0 ( | l * - z - J % xeW, (2.5)
JeN

with N c Z" a finite subset which does not depend on z and h. We then prove the
identity

Uf l | | - - z ' | | ) ] t o = fl||x-z'||), *eR",V/i>0, (2.6)

whenever z'eh-Z", and we use (2.6) to show that, for any fixed x and for zeh-Z" such
that ||x —z||</i</45,

|. (2.7)

Finally, we show that the second term in (2.7) can be bounded above by a multiple of
hp, the multiplier being the same for all small enough h and for all xeQ. The estimate
(2.3) follows.

In order to find a function (2.5) such that (2.4) is true, we will make use of the
following proposition:

Proposition 4. Let <p(r) = (r2 + iy12 for /?> — n and jfi$~L+. Then, for every given
positive d and every aeZ+, there is a function

Hi(x)= X v°/d<t>(\\x-jd\\), xeW, (2.8)
JeN.

with Nacz Z" a finite subset which is independent of d, such that

d,<x)\\x\\^ + \ Vx:||x||<i47(d,a), (2.9)

and Hi can be chosen such that min,(eK/47(d,a)>0 and ma.xdeKA6(d,oi)<co if K is a
compact interval in U>0.

When employing this result later on in order to form Gz as a linear combination of
the functions Hi, we shall make a suitable choice of d such that it is always an integral
multiple of h (so in particular Hi e Vh as required), and such that it remains confined to
a compact interval in R>0 when /i->0.

Proof. If we take A-,(d,a) positive and small enough, we can expand (2.8) for any
finite subset Nxa Z" and for all ||x||</47(d,a) as follows:

-2<x,;d>
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SPECTRAL CONVERGENCE OF MULTIQUADRIC INTERPOLATION 325

i +

with »?5''' = v5'<'(l + ||jd||2)'"2. Clearly, A7(d,<x) can be chosen to depend continuously on d.
Hence mindeKA1(d,(x)>0 if K is a compact interval. Furthermore, there is a constant
/I8(d,a) such that, for ||x||<y47(d,<x),

HHX)-H"ix) V2

M + l

In order that (2.8) satisfies (2.9), we now require a set of conditions on
the {ti°j'd}jeN, which ensure that

(2.10)

: Z" and on

Vx:||x||</47(d,a),

thus admitting A6{d,<x): = Ag(d,a) + Ag(d,a). Specifically, it suffices to require

(2.11)

(2.12)

where I ' ' ) is a multinomial coefficient. We have to demonstrate that there exist a finite

W
IV.cZ" and coefficients {>/5d}j6Wa such that (2.12) holds. To this end, we note that we
can rewrite conditions (2.12) as

(2.13)
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326 M. D. BUHMANN AND N. DYN

g)'d being »/5><'(l+||./<*||2)~|a|. We can now show that there is a finite set NacZ" and a
solution {(>}'*}jeNu to (2.13) by proving that there is a set NxczZ" such that the vector
{(Jd)a}jeN, is not in the span of the vectors {{(jdy(l + \\jd\\2)M-k}jeNa:2k-\<x\^\y\^k<
|a|} and {{0'</)7}y6A,a:|y| = |a| D U t l^'A- This is equivalent to the claim that there is a
finite set Na cz IP such that, for any sets of coefficients {ay} and {by}, the polynomial

£ £ &7*r(l + | |* | | 2 ) | B |~* (2.14)

is not identically zero on d-Na. First of all, if (2.14) were identically zero on W for some
sets of coefficients {ay} and {b7}, then

x"+ X ayx>=- £ ^ ( l + Hxll2)'"'-*, xelR", (2.15)
l l |

but since |a | — k^l on the right-hand side of (2.15), we may conclude from (2.15) that
l + ||x||2 divides the homogeneous polynomial on the left-hand side of (2.15), a
contradiction. Now, if we choose ATacZ" to be a tensor product of 2|a| + l points in
each of the n coordinate directions, then (2.14), which is a non-trivial polynomial of
coordinate degree less than 2|a| + l, cannot vanish on d-Na for any set of coefficients.
Thus there exists a solution {t]fd}j£Nll to (2.12), and this solution yields (2.11).
Inequalities (2.10) and (2.11) imply (2.9). In order to show that i?f can be chosen such
that ma.xdeKA6(d,a) is bounded if K is a compact interval, we note that A6(d, a) depends
continuously on the coefficients of Hd and we now show that these coefficients can be
chosen to remain bounded if d is confined to K. For each d the coefficients of Hd solve
an underdetermined linear system of equations whose coefficients depend continuously
on d. Let m be the rank of this system for a given d0 e K. We can select a nonsingular
m x m minor which remains nonsingular if d is within a neighbourhood Udo of d0. Fixing
the remaining |JVa| —m variables, we conclude that the solution of the underdetermined
system depends continuously on d as long as d is confined to Udo. Now, if K c U>0 is
compact, the covering \JdeKUd=>K has a finite number of sets Udi, Ud2,...,Udk such
that U*= t Udi => K. Because the above selected solution to the underdetermined system
depends continuously on d for all d in some Udi and because there are finitely many Udl

that cover K, the solution vectors can be chosen to remain bounded if d ranges over K,
and so does A6(d,a). •

Now let

,: = min - , min 47(d,a) ,
L/ l«l<p J

https://doi.org/10.1017/S0013091500018411 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018411
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which is positive by Proposition 4. Further, for every positive h, let us choose KheZ+
such that |fc"x —Kh|<l. Then we let d: = hich in Proposition 4. Thus, for 0<h<A5, the
quantity d is confined to the compact interval [1 - /1 5 , l + 4 5 ] , which is a subset of
[2.!]- Note in particular that d-Z"<=h-Z" by virtue of the choice of d. We now
complete the proof of the existence of (2.5) such that (2.4) is true by letting

G,(x)= £ 8lEHi(x-z), xeW,
\<*\<p

(2.16)

where the quantities d and z are as defined above and where we define recursively

(2.17)

We prove (2.4) by induction on p as follows. Just for the following argument we will
denote the function (2.16) by G[pi, to indicate its dependence on p. Because

it follows from Taylor's Theorem and Proposition 4 that the claim holds for p=l , i.e.
that

where here and in the following argument we write AA(p) instead of AA, again in order
to take notice of its dependence on p. Now suppose that we have

(2.18)\ \ ' , Vx,fc||x-z||<fc<i45.

Then, by the smoothness of both / and G[p] and by definition (2.17),

\a\=p

Expression (2.19) implies

. (2.19)

Glp\x) + £ 5Ux-z)°-f(x)
l« l=p

zeB,(O)
(2.20)
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for all ||x — z||</t</l5, Bj(n) being the ball about the origin containing Q, whose
surface has at least Euclidean distance 1 from fi. Estimate (2.20) admits the definition

A4(p+1)= sup { £ K,\A6(d,a)) + A10(p), (2.21)
zeBi(n) (>I = P J

l/2SiS3/2

and this proves (2.4).

Remark 5. In case ||D"/|U is bounded for |a |gp, it follows from (2.17) that the
bounds on {|^z|: |a|^p} are independent of z, and so is A10(p) in (2.19). Thus (2.4)
holds for all xeU" with appropriate zeh-Z", and not only for xefl, the constant A4

being independent of x and z for xeW, zeh-Z", with ||x—z||</i</45.

Next, we establish (2.6), namely the reproduction of the radial functions spanning Vh

by the interpolation operator Ih.

Proposition 6. Let 0(r) = (r2 + l)m for fi> -n and \$$~l+. Then, for every positive h
and every k e Z",

Proof. Without loss of generality, we take k = 0. Since /),[0(||||)] is a tempered
distribution, we may first prove the claim in the sense of tempered distributions. Now,
let Sm be the set of rapidly decreasing test functions seCa>(R'1) which satisfy Dys(0) = 0
for all |y|<wt. We have for m>/? and seSm

R"
s(x)dx=l I <K\\jh\\Mx-jh)mx)dx

= I<K\\jh\\)SXk(x-jh)s(x)dx, (2.22)
jeZn R"

where the interchange of summation and integration that leads to (2.22) will be justified
later.

We now apply the Poisson Summation Formula [14, p. 251] to the sum (2.22) to
obtain that it is the same as

T^T; E S $(\\y-h-l2nj\\)MyYs(-y)dy=7^— $ I k\\y-h-l2nj\\)Uy)K-y)dy

= 7 ^ 1 J Viv)dy= J 0(||x||)s(x)dx, (2.23)

where »/(j'): = ̂ (||>'||)s(—y). Here, the penultimate equality follows from (2.1) and the last
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equality follows from Parseval's Formula [9, Theorem 7.13, p. 224]. This proves the
claim modulo a polynomial qenM. However, since the asserted equality is true for all
x e h • Z" by the interpolation property, this polynomial has to vanish. We note that the
application of the Poisson Summation Formula, and the interchanges in summation and
integration that preceded and that followed it, are justified if we show that

I \<K\\jh\\)\ I \xAx-jh)s{x)\dx<cQ
jeZ" R"

and
I \\Uy-h-i2nMy)\dy<oo.

jeZ" R"

In fact, both estimates follow from Lemma 4 in Buhmann and Dyn [5], but we prove
them here explicitly for the convenience of the reader.

We establish the first inequality: In order to do this, we will have to introduce
constants Alu Al2, Al3 which may depend on h (but not on x or j), but we shall take
no notice of this, because it is irrelevant to our proof. Using (2.2), we have

^A, J (l + ||x-jfc||)-"-«<"+»|s(x)|dx. (2.24)
R"

Moreover, mimicking an argument Light and Cheney [10] use in their proof of Lemma
4.14, we have, whenever ||x||g^||_/7i||,

1 I I :L 111 — n — fotn + B) f\ TC\

2 \\}n \\) • (2.25)

Conversely, whenever ||x||^||;7i||, then of course
Therefore

(2.26)

The three estimates (2.24)-(2.26) imply that the right-hand side of (2.24) is at most

= AlAl2(l +£||;7i||)--«<"+'>{ J (1 + \\y\\y-<°«+l»dy+ j \s(x)\dx
I R" R"

This expression is, in turn, at most Al3(l +^\\jh\\) " m<"+ '̂, which proves the first claim.
The second series can be seen to converge absolutely by noting that the argument of

the last paragraph can be applied again, to show that the terms in the sum decay
exponentially, due to the exponential decay of both %h and r\ that follows from the
exponential decay of the modified Bessel functions [1, p. 378]. •
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Remark 7. Proposition 6 holds in a more general setting of radial functions.
Specifically, it is possible to show that it is true for Buhmann's class of "admissible"
radial basis functions [4], including, among many others, <f>{r) = rfi, with /?>0, ?P$Z+,
and cj>(r) = r2klogr, fc=l,2,....

Finally, we have to prove that the second term on the right-hand side of (2.7) can be
bounded above by a constant multiple of hp if ||x—z||</i</45.

To this end we observe that

IHU-GJ(X)= £ UUh)-GE(jhy]XlJix-jh) (2.27)
jsZ"

= Hm £ U,Uh)-Gt,tUh)Mx-jh), (2.28)
e-»0+ jeZ"

where /£(x): = e"£||l | |2/(x) and Gz>E(x): = e"£||x||2Gz(x). Expressions (2.28) and (2.27) are
the same because the limit in (2.28) can be taken inside the series by absolute
convergence of the series in (2.27) and (2.28). We apply the Poisson Summation
Formula to (2.28) and obtain that it is the same as

li I J^- '- / l -1 2" t>^-/J-
127r/c)[/£(t)-G0,e(t)]dt, (2.29)

eZ" R"

where we have now chosen z = 0 without loss of generality. The application of the
Poisson Summation Formula is justified because the argument we have used in the
penultimate paragraph of the proof of Proposition 6 (or indeed Lemma 4 in [5]) can be
used to show that for all positive e

J \xh(t-h-l2nk)\ \Ut)-G0Jt)\dtSA14(h,e)(l + \\k\\)-\
R»

The first fact we have to employ in order to apply that argument is the exponential
decay of %h. Secondly, we use the rapid (i.e. faster than any negative power) decay of
Go e which can be established by standard arguments of Fourier analysis, due to the
infinite differentiability of Go e and the integrability of its derivatives. Finally, we use the
estimate |/c(t)|^/415(£)(l + ||r||)~v, which is also due to the differentiability of / , and the
integrability of its derivatives.

We now observe that (2.29) is the same as the following expression.

R-

keZ"\{0}
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= lim - i - J *'<*•<>[/,(*) - G0,e(t)] A (2.30)

f I ' < " l > ( - 2 " t t " 1 < ' * > l ) ( t f c - 1 2 f c ) [ / ( t ) e W ] A (2.31)
£-0+ l/7"V R" *eZ"\{0}

Expression (2.30) is in modulus at most AAhp because it is identical to
lime_0+ [/j(x) — G0>B(x)] = [/(x) — G0(x)] and because of (2.4). Our next goal is to
estimate expression (2.31). To this end, recall definition (2.1) which relates %h(t—h~12nk)
to <?(||f — fc x27r*/c11) and ah(t). For every nonzero k, there is no singularity at t=0 in
$(\\t — h~l2nk\\). Hence, the facts that ah has a (n + |7T|)-th order zero at the origin and
is Cn+m in a neighbourhood of zero if co= 1 (this follows from the asymptotic behaviour
of the modified Bessel function at the origin, see [1, p. 375]) and c2n+2/ ) in a
neighbourhood of zero if <w = 2 (see [3, pp. 3If.] for the case /?=1, which immediately
generalises), and the assumption (1.9) imply that the following integral converges
absolutely and is the same as (2.31):

1 j Z e^'He-^-'^-milt-h-'lnkW)
(£71) an fcez>i\(0}

x oh(t) [ / „« + (2nYP{iDt)5(t) - G0(t)] dt. (2.32)

The modulus of (2.32) is less than

J X foWt-h-ilnklDoMir.iD-GoiQldt (2.33)
R"\«i/h(0) *eZ"\{0}

+ I I k\V-h-l2nk\\)uh(t)\Ut)-GS)\dt (2.34)
Bi/h(0) teZ"\{0)

+ 2P(iD,)\ X e'<*-'>(e-2«*-1<»-*>-l)^||t-/|-127tfc||)ff»(t)j , (2.35)
( J

where BUk(0) denotes the closed ball of radius h~l about the origin. Now assume that h
is at most d~l, where 5 is a constant from the statement of Theorem 3. Then the
integral (2.33) is at most

R"\Bi/h(0) R"\Bi/h(O)
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Here we have in particular used the exponential decay of Go at infinity that follows
from the bound \(j>(r)\^Ai9e~r for large r, which is a consequence of the asymptotic
exponential decay of the modified Bessel functions. Using this bound once again and
using the bound Kv(z)>2v~1r(v)e~zz~v from Ismail [8], we see that (2.34) can be
bounded above by

V o-h-'\\th-2nk\\

f L k Z « \ { O ) e \ ?

This integral converges absolutely, for the same reasons which imply that (2.32)
converges absolutely. It is at most a constant multiple of

max

x i\\t\\"+'\f,(t)-G0(t)\dt<A21 max e""" £ e-*-'ll«»-2«Ml.

This expression can be bounded above by

A21 max
keZ"\{0}

*eZ"\{0)

We finally address expression (2.35). As pointed out earlier, ah has a zero of order
n + |~/?~| at the origin, hence (2.35) vanishes if <u=l (since then P's degree has to be less
than n + P). Otherwise, we employ the fact that not only |$(r)|^/419e~r for large r but
that the same asymptotic behaviour is observed by $'s derivatives, due to the
asymptotic behaviour of derivatives of modified Bessel functions at infinity (as can be
derived from the formulas for the derivatives of Bessel functions Abramowitz and
Stegun give [1, p. 376]). Hence (2.35) can be bounded above by

2̂3 I e-^'U^ZA^e-*--1.
*6Z"\{0>

This shows that the theorem is true. •

Corollary 8. Let f:W-*U satisfy the assumptions of Theorem 3 and assume also that
||D°t/||0O< oo for |a |^p, where p<v — n. Then, for small enough h,

\\f-Ihf\\a,^A25h',

where A25 does not depend on h. •
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