
8

The Minimal Supersymmetric Standard Model

At this point, we have all the ingredients necessary for constructing a supersym-

metric version of the Standard Model, complete with explicit soft SUSY breaking

terms. The simplest such model, known as the Minimal Supersymmetric Standard

Model, or MSSM, is a direct supersymmetrization of the Standard Model (except

for the fact that one needs to introduce two Higgs doublet fields). It is minimal

in the sense that it contains the smallest number of new particle states and new

interactions consistent with phenomenology.

To construct the MSSM, we follow the recipe for the construction of supersym-

metric gauge theories at the end of Chapter 6 and proceed as follows:

1. We choose the gauge symmetry group for the theory to be the Standard Model

gauge group, SU (3)C × SU (2)L × U (1)Y.

2. We select the matter content of the theory, to be realized as left-chiral scalar

superfields, with gauge quantum numbers exactly as in the Standard Model.

The Higgs sector is chosen to consist of two left-chiral scalar superfields with

opposite hypercharge.

3. We choose the form of the superpotential.

4. Finally, we compute the supersymmetric Lagrangian using the master formula

Eq. (6.44), and augment it by all possible soft SUSY breaking terms consistent

with the gauge and Poincaré symmetries as discussed in Chapter 7.

8.1 Constructing the MSSM

As mentioned, we choose the gauge symmetry of the Standard Model: SU (3)C ×
SU (2)L × U (1)Y. The gauge bosons of the SM are promoted to gauge superfields.

In the Wess–Zumino gauge,

Bμ → B̂ � (λ0, Bμ,DB),

WAμ → ŴA � (λA, WAμ,DW A), A = 1, 2, 3, and

gAμ → ĝA � (g̃A, G Aμ,Dg A), A = 1, . . . , 8.
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128 The Minimal Supersymmetric Standard Model

The second step is to stipulate the matter content of the MSSM. The fermion

fields of the SM are promoted to chiral scalar superfields, with one superfield for

each chirality of every SM fermion. Since the superpotential must be a function

of just left-chiral superfields, instead of using the right-handed fermions as the

building blocks, we will, as mentioned in Chapter 1, use their left-handed charge

conjugates. The matter superfields then consist of,

(
νiL

eiL

)

→ L̂ i ≡
(

ν̂i

êi

)

,

(eiR)c → Êc
i ,

(
uiL

diL

)

→ Q̂i ≡
(

ûi

d̂i

)

,

(uiR)c → Û c
i ,

(diR)c → D̂c
i ,

where i = 1, 2, 3 refers to the generation of each field, i.e. û3 contains the

dynamical fields t̃L and ψtL (in addition to the corresponding auxiliary field).1

To be explicit, we write down the superfield expansions which contain the electron

fields:

ê = ẽL(x̂) + i
√

2θ̄ψeL(x̂) + iθ̄ θLFe(x̂) (8.1)

while

Êc = ẽ†R(x̂) + i
√

2θ̄ψEcL(x̂) + iθ̄ θLFEc (x̂). (8.2)

In Eq. (8.2), the scalar component destroys the superpartner of the SU (2) sin-

glet (left-handed) positron, or creates the superpartner of the SU (2) singlet (right-

handed) electron, and so is written as ẽ†R.

The familiar four-component Dirac spinor for the massive electron is built from

the two Majorana spinors ψe and ψEc . Since ψeL and ψEcR have the same electric

charge (see the discussion immediately following Eq. (6.38b) of Chapter 6), we

may write this Dirac field as,

e = PLψe + PRψEc . (8.3)

The other massive matter fermions of the SM are similarly constructed.

1 We do not introduce fields for the right-handed neutrinos. Although such fields are very likely to be present in
nature, they will be part of some extension of the MSSM.
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8.1 Constructing the MSSM 129

Exercise The construction of the massive Dirac spinor in terms of two Majorana
spinors can be most easily seen in the chiral representation for γ matrices, with

γ 5 =
(−1 0

0 1

)

,

(the bold-face entries are 2 × 2 matrices). Check that the Majorana spinors

ψe =

⎛

⎜
⎜
⎝

e1

e2

−e∗
2

e∗
1

⎞

⎟
⎟
⎠

and ψEc =

⎛

⎜
⎜
⎝

e∗
4

−e∗
3

e3

e4

⎞

⎟
⎟
⎠

.

can be combined via Eq. (8.3) into an arbitrary Dirac spinor.

Exercise Check that the kinetic energy terms for the Majorana spinors ψe and ψEc

in our master formula yield the kinetic energy term for the Dirac spinor e; i.e. verify
that (up to a total derivative),

i

2
ψ̄e∂/ ψe + i

2
ψ̄Ec∂/ ψEc = iē∂/ e. (8.4)

The reader will have noticed that in promoting the SM fields to superfields, we

have introduced many new particles, in order to complete the multiplets of super-

symmetry. The existence of these new states is a prediction of supersymmetry, in

exactly the same way the existence of the �− was the prediction of flavor SU (3)

way back in the 1960s, or the existence of the Z0 boson is a prediction of the SM

symmetries. The superpartners of matter fermions are spin zero particles, known

as sfermions. There is a sfermion pair (the spin zero particle and its antiparticle)

for each chiral fermion in the SM, with the same internal quantum numbers as

the fermion. The spin zero partners of quarks are the scalar quarks, or squarks
for short. Likewise, the spin zero partners of the leptons are the scalar leptons or

sleptons. Other s-words such as selectron, smuon, and stau are analogously de-

fined. The subscripts L and R on the scalar fields in (8.1) and (8.2) refer to the

chirality of the corresponding electron. These selectrons are referred to as left-

(right-)selectrons, and sometimes loosely referred to as left-handed (right-handed)

selectrons. It should, of course, be clear that selectrons, being spinless, cannot have

handedness or chirality. Left- and right-squarks, sleptons, smuons, staus are simi-

larly defined. The Higgs and gauge fields have fermionic superpartners respectively

known as higgsinos and gauginos.
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130 The Minimal Supersymmetric Standard Model

Next, we introduce the Higgs multiplets of the theory. The usual Higgs doublet

of the SM is promoted to a doublet of left-chiral superfields:

φ =
(

φ+

φ0

)

→ Ĥu =
(

ĥ+
u

ĥ0
u

)

. (8.5)

It transforms as a doublet 2 under SU (2)L and carries weak hypercharge Y = 1.

The usual Yukawa interactions of its scalar component with matter fermions must

arise via the superpotential, since our list of soft SUSY breaking interactions does

not include interactions of chiral fermions. The VEV of the scalar component of

ĥ0
u gives mass to up-type quarks but, unlike in the SM, cannot give a mass to the

T3 = −1/2 fermions. This is because the Y = −1 field needed to give mass to these

would have to be the scalar component of the right-chiral superfield ĥ0†
u , and so, not

allowed in the superpotential. We contrast this with the situation in the SM where

the charge conjugate field φc = iσ2φ
∗ with weak hypercharge Y = −1 could be

responsible also for the mass of the down-type fermions. We are thus forced to

introduce a second left-chiral scalar doublet superfield,

Ĥd =
(

ĥ−
d

ĥ0
d

)

, (8.6)

which transforms as a 2∗ under SU (2)L and has weak hypercharge Y = −1. The

VEV of ĥ0
d can give mass to the down-type quarks and the charged leptons.

Remarkably, the introduction of this second doublet also solves another problem

that we have unwittingly created. In promoting φ → Ĥu , we have introduced new

fermions, the hypercharge Y = 1 higgsinos ψh+
u

and ψh0
u

into the theory, which

upsets the successful cancellation of triangle anomalies in the SM. However, the

higgsinos in the Y = −1 doublet have just the right quantum numbers to restore

the anomaly cancellation.

The third step in our construction procedure is to choose a superpotential to

describe the interactions between the various chiral superfields. For the MSSM, we

take this to be,

f̂ = μĤ a
u Ĥda +

∑

i, j=1,3

[
(fu)i jεab Q̂a

i Ĥ b
u Û c

j + (fd)i j Q̂a
i Ĥda D̂c

j + (fe)i j L̂a
i Ĥda Êc

j

]
.

(8.7)

The indices a and b are SU (2) doublet indices, and explicitly exhibit the contractions

needed for the invariance of the superpotential under SU (2)L transformations. In

all but the second term, a doublet 2 is contracted with an antidoublet 2∗, and this

contraction is trivial. In the second term, εab is the completely antisymmetric SU (2)

tensor with ε12 = 1. Its presence reflects the fact (familiar from elementary quantum

mechanics) that it is the antisymmetric combination of two doublets that is an SU (2)

singlet. The color indices on the triplet (antitriplet) superfields Q̂ (Û c, D̂c) contract
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8.1 Constructing the MSSM 131

Table 8.1 The matter and Higgs superfield content
of the MSSM along with gauge transformation

properties and weak hypercharge assignments, for
a single generation.

Field SU (3)C SU (2)L U (1)Y

L̂ =
(

ν̂eL

êL

)

1 2 −1

Êc 1 1 2

Q̂ =
(

ûL

d̂L

)

3 2 1
3

Û c 3∗ 1 − 4
3

D̂c 3∗ 1 2
3

Ĥu =
(

ĥ+
u

ĥ0
u

)

1 2 1

Ĥd =
(

ĥ−
d

ĥ0
d

)

1 2∗ −1

trivially, and have been suppressed. Also, it is easily checked that the hypercharge

of each term sums to zero, so the superpotential is invariant under U (1)Y. The

f terms are elements of 3 × 3 Yukawa coupling matrices with indices i, j = 1–3

corresponding to the various generations. In general, the (f)i j as well as μ are

complex numbers.

The reader can easily check that the superpotential in Eq. (8.7) respects baryon

and lepton number conservation, where these are defined in their natural manner:

B = 1/3 (−1/3) for quark (antiquark) superfields, L = 1 (−1) for the lepton (an-

tilepton) superfields, and zero for the Higgs and gauge superfields. The gauge (and

gaugino) interactions on the first three lines of our master formula (6.44) obviously

conserve B and L also.

Within the SM, the requirement of gauge invariance automatically guarantees

baryon and lepton number conservation for all renormalizable interactions. Unfor-

tunately, this is not the case in the MSSM. Because there are scalar fields that carry

baryon or lepton number (the scalar components of quark and lepton superfields),

it is possible to write down renormalizable operators that do not conserve B or L
that are consistent with the SM gauge symmetries as well as supersymmetry. To

see this, we simply note that the additional superpotential interactions, the terms

f̂ L/ =
∑

i, j,k

[
λi jkεab L̂a

i L̂b
j Ê c

k + λ′
i jkεab L̂a

i Q̂b
j D̂c

k

] +
∑

i

μ′
iεab L̂a

i Ĥ b
u , (8.8a)
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132 The Minimal Supersymmetric Standard Model

and

f̂ �B =
∑

i, j,k

λ′′
i jkÛ c

i D̂c
j D̂c

k , (8.8b)

are consistent with SU (3)C × SU (2)L × U (1)Y symmetry, but violate the conser-

vation of lepton and baryon number, respectively. Since the superpotential terms

(8.8a) and (8.8b) are at most cubic in the superfields, they result in renormalizable

interactions that do not conserve L or B.

Obviously, the presence of such terms is dangerous since B- or L-violating

processes are strongly constrained by experiment. For instance, if conservation of

baryon number and lepton number are both violated, protons will decay at extremely

rapid rates. In the spirit of minimality of new interactions, we will insist upon B
and L conservation, and set these terms to zero. The SUSY non-renormalization

theorem then ensures that these will not be radiatively generated.

Before proceeding to construct the Lagrangian for the MSSM, let us digress to

discuss alternative symmetries that can be invoked to justify the absence of these

terms. After all, the conservation of baryon number and lepton number are bro-

ken by non-perturbative effects, and so cannot be exact. The unwanted terms can

also be forbidden by requiring that the superpotential be invariant under a new

type of parity (often referred to as matter parity), where quark and lepton super-

fields are odd, while the gauge and Higgs superfields are even. This requirement

then allows the superpotential terms in (8.7), while forbidding those in (8.8a) and

(8.8b).

Exercise Convince yourself that all the kinetic terms as well as the non-
superpotential interactions in our master formula (6.44) conserve matter parity.
It may be simplest to do so by observing that, except for the term involving the
superpotential, all terms in (6.47) are manifestly invariant under the matter parity
transformation.

The conservation of matter parity works out to be equivalent to the conservation

of R-parity defined (for the component fields) by,

R = (−1)3(B−L)+2s, (8.9)

where s is the spin of the field. Note that because of the (−1)2s dependence, the scalar

and fermion (spinor and vector) components of a chiral scalar (spinor) superfield

have opposite R-parities. If we now take the Grassmann co-ordinate θ to be odd

under R, we see that R-parity transformation of the superfield is just the matter
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8.1 Constructing the MSSM 133

parity transformation discussed above. A look at (6.47) of Chapter 6 shows that

R-parity violation can only come from R-odd B- and L-violating terms in the

superpotential.

Exercise Starting with the definition (8.9) for R-parity, verify that the SM fermions,
gauge bosons, and both Higgs doublets are R-even, while their superpartners are
R-odd. In models with conserved R-parity, this quantum number therefore provides
an unambiguous distinction between “ordinary particles” and superpartners.

It may appear that the assumption of R-parity conservation is equivalent to the

conservation of B and L . This is the case for renormalizable operators in a theory

whose field content is that of the MSSM. For higher dimensional operators, this

need not be the case as is exemplified by the exercise below.

Exercise Verify that the low energy superpotential of an effective low energy theory
could contain the R-parity invariant operators

εab L̂a Ĥ b
u εcd L̂c Ĥ d

u or Û cÛ c D̂c Êc.

Observe that the first of these violates the conservation of lepton number while the
latter violates both lepton and baryon number conservation. These operators could
be responsible for neutrino masses and proton decay, respectively, even if R-parity
is conserved.

Can you construct an R-parity and gauge invariant operator that conserves
L but not B? Such an operator could, for instance, be responsible for neutron
anti-neutron oscillations.

We repeat that our choice of the MSSM superpotential to be that given by (8.7) is

dictated only by constraints of minimality of new interactions. The resulting conser-

vation of R-parity has important phenomenological consequences as we will see.

We should mention, however, that it is possible to construct phenomenologically

viable models in which R-parity is not conserved. Indeed, we will discuss such

models in Chapter 16, but now we proceed with the construction of the MSSM.

Up to this point, we have stipulated the symmetries, field content, and super-

potential of the MSSM. We can now use the master formula (6.44) to write down

the complete globally supersymmetric Lagrangian. The final step is to write down

the various soft SUSY breaking terms for the MSSM.
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134 The Minimal Supersymmetric Standard Model

We may use Eq. (7.37) to write all gauge invariant soft SUSY breaking terms.

They are

Lsoft = −
[

Q̃†
i m2

Qi j
Q̃ j + d̃†

Ri m
2
Di j d̃R j + ũ†

Ri m
2
Ui j ũR j

+ L̃†
i m2

Li j L̃ j + ẽ†Ri m
2
Ei j ẽR j + m2

Hu
|Hu|2 + m2

Hd
|Hd |2

]

−1

2

[
M1λ̄0λ0 + M2λ̄AλA + M3 ¯̃gB g̃B

]

− i

2

[
M ′

1λ̄0γ5λ0 + M ′
2λ̄Aγ5λA + M ′

3
¯̃gBγ5g̃B

]

+
[

(au)i jεab Q̃a
i H b

u ũ†
R j + (ad)i j Q̃a

i Hdad̃†
R j + (ae)i j L̃a

i Hdaẽ†R j + h.c.
]

+
[

(cu)i jεab Q̃a
i H∗b

d ũ†
R j + (cd)i j Q̃a

i H∗
uad̃†

R j + (ce)i j L̃a
i H∗

uaẽ†R j + h.c.
]

+ [
bH a

u Hda + h.c.
]
, (8.10)

where the generation indices i, j , as well as the SU (2) indices a, b, are implicitly

summed over. Hermiticity requires that the scalar mass squared matrices are 3 × 3

Hermitian matrices, each of which can be written in terms of 6 real and 3 imaginary

parameters. The six gaugino mass parameters (Mi , M ′
i ) with i = 1–3 corresponding

to the three factors of the MSSM gauge group, are real. The terms with M ′s violate

C P invariance. The a and c matrices that describe trilinear scalar interactions are

general 3 × 3 complex matrices, just like the Yukawa matrices. The parameters m2
Hu

and m2
Hd

are real, while the b bilinear term is, in general, complex. The trilinear

interactions involving c matrices are frequently not written down because such

terms are strongly suppressed in many models, but there is really no reason to

exclude these within the MSSM framework.

At this point, we have the complete Lagrangian for the MSSM. Of course, it

is written in terms of fields with definite quantum numbers for the gauge group.

Upon spontaneous symmetry breaking, fields with the same color, electric charge,

and spin may mix. The spectrum and couplings of the mass eigenstates have to be

extracted from this Lagrangian.

8.1.1 Parameter space of the MSSM

It is now worthwhile to count the free parameters that enter the MSSM Lagrangian.

Recall that the SM has nineteen free parameters: three gauge couplings g1, g2, and

g3, the parameter θQCD, μ and λ from the Higgs potential, six quark and three lepton

masses, plus three mixing angles, and one C P-violating phase in the Kobayashi–

Maskawa matrix.

In the MSSM, we have in the gauge sector again g1, g2, g3, and θQCD, plus we

have six gaugino masses M1, M2, M3 and M ′
1, M ′

2, and M ′
3. As noted in the exercise
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8.1 Constructing the MSSM 135

below, one of the C P-violating gaugino masses can be removed by performing a

chirality transformation of the gaugino field. By convention, we choose this to be

M ′
3. Thus, we have nine parameters in the gauge sector of the model.

In the Higgs sector, we have the real mass terms m2
Hu

and m2
Hd

, together

with μ from the superpotential and its corresponding soft SUSY breaking term

b. The latter two are complex but one of the phases, usually taken to be the

one associated with b, can be absorbed by redefining the overall phase of one

of the Higgs fields. Thus, in the Higgs sector of the MSSM, we have five real

parameters.

Finally, we turn to the matter fermions and their superpartners. First, there are

five soft SUSY breaking Hermitian mass matrices for the scalar partners of the

quarks and leptons, with six real parameters plus three phases each, for a total

of 45 parameters. Then, we have three 3 × 3 complex Yukawa coupling matrices

(18 × 3 = 54 parameters). There are another 54 terms in three corresponding a-

parameter matrices and the same number in the c matrices. This gives a total of 207

parameters in the flavor sector, but not all of them are physical.

To count the number of unphysical parameters, i.e. those parameters that can

be removed by field redefinitions, we first note that the kinetic terms and gauge

interactions are invariant under a global U (3)5 transformation, one U (3) corre-

sponding to transformations amongst each of the three L̂ i , Êc
i , Q̂i , Û c

i , and D̂c
i . It

is just the superpotential Yukawa terms, and the SUSY breaking a and c terms that

are not invariant under these global chiral transformations, which can thus be used

to remove some of these parameters. Since any U (3) can be parametrized by three

angles and six phases, 5 × (3 + 6) = 45 parameters of the 207 that we obtained

above should be removable. However, two of the phases in U (3)5 correspond to the

conservation of the total B and L: since the corresponding transformations leave

the Lagrangian invariant, they cannot be used to do any useful field redefinitions.

Summing up the gauge, Higgs, and matter sectors, we have a model with a total

of 9 + 5 + 207 − 43 = 178 parameters in the MSSM. As we stated above, the 54

c parameters are usually not included in the MSSM which is then said to contain

124 parameters.

Presumably, once we understand the mechanism underlying SUSY breaking

(including how it is conveyed to the superpartners of the SM particles), it will be

possible to reduce this plethora of parameters to a handful of truly fundamental

parameters. But until then, one of the principal goals of model builders is to arrive

at phenomenologically viable but economic models, based on well-motivated as-

sumptions of physics at high energy scales, each with just a few model parameters.

It is reasonable to expect that once sparticles are discovered, a determination of

their properties will serve to discriminate between these models, thereby pointing

the way to the underlying theory.
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Exercise Show that, for an appropriate choice of φ, the transformations g̃L →
e−iφ g̃L, g̃R → eiφ g̃R (this maintains the Majorana property of g̃) can be used to
eliminate the C P-violating mass parameter M ′

3 of the gluino field. In fact, we
used this procedure in our discussion following Eq. (7.39) of the technical note
in Chapter 7. The phase φ, which then shows up in the g̃qq̃L,R couplings, can be
absorbed by redefinition of the squark fields. We should emphasize that this does
not mean that the M ′

3 term is irrelevant, but only that this term does not give rise to

observable C P-violation. The physical mass of the gluino is mg̃ =
√

M2
3 + M ′2

3 ,
and it is this quantity that appears as the coefficient of the “usual gluino mass
term” after the C P-violating gluino bilinear is rotated away.

Note also that we cannot simultaneously remove M ′
1 or M ′

2 since the phase that
needs to be absorbed into the squark field will now be different. That we choose to
remove the C P-violating mass of the gluino rather than the SU (2) or U (1) gaugino
is, of course, only a convention.

Exercise Using arguments similar to the ones for the MSSM, show that the Yukawa
sector of the SM with n generations (assuming neutrinos are massless) contains
n real parameters in the lepton sector and n(n + 3)/2 real parameters and n(n −
3)/2 + 1 phases in the quark sector.

Note that, unlike the MSSM, the SM with massless neutrinos separately conserves
the lepton number for each generation.

8.1.2 A simplified parameter space

We have just seen that the MSSM contains an intractably large number of parameters

for meaningful phenomenological analyses. While we have no direct knowledge of

these parameters, we can nonetheless make reasonable simplifying assumptions to

facilitate our discussion.

We begin by recalling that our motivation for weak scale supersymmetry was

to stabilize the electroweak symmetry breaking sector of the SM which suffered

from the presence of quadratic divergences. We saw, at least by example, that softly

broken SUSY theories have the virtue that they do not suffer from these: the masses

of the superpartners set the scale for radiative corrections to the Higgs boson mass,

and hence the weak scale. This is the raison d’être for weak scale supersymmetry.

We thus require that the SUSY breaking parameters as well as μ are in the range

of the weak scale, or at least not larger than a few TeV. This is our most important

assumption.
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Next, we note that the scalar matter sector of the MSSM generically would have

large flavor violation in both the squark and slepton sectors if the off-diagonal terms

in the corresponding mass matrices or the a or c matrices are comparable to the

diagonal terms. Moreover, we saw that the scalar sector of the MSSM has many

physical phases that serve as novel sources of C P violation. Even at low energies

(well below the SUSY threshold) SM particles would “feel” these sources of flavor

and C P violation through SUSY particles in loop diagrams. The magnitude of these

effects, of course, depends on the sparticle masses. There are experimental bounds

on lepton flavor violation and on C P violation that stringently restrict the size of

some of the off-diagonal terms as well as phases referred to in Section 8.1.1. For

instance, large off-diagonal contributions to slepton mass matrices would lead to

large decay rates for μ → eγ . Large off-diagonal terms in the squark mass matrices

are greatly restricted by K 0–K
0
, D–D, and B–B mixing, and by processes such as

b → sγ , b → s��̄ or K 0 → μ+μ− decays. Large off-diagonal terms in the trilinear

a and c matrices are similarly restricted. There are also strong constraints on C P-

violating parameters from measurements of the electron and neutron electric dipole

moments.

In the following, we will for simplicity set all SUSY sources of C P violation to

zero. In addition, we will also assume that squark and slepton matrices as well as

the a matrices are diagonal in the same basis that the fermion Yukawa couplings

are diagonal. Following common practice, we will set the c terms to zero. This

is because these terms are frequently small in many models. These simplifying

assumptions may well prove to be incorrect. It could turn out that experiments may

show that nature requires sources of flavor or C P violation beyond those present in

the SM. While there is scant evidence for this at the present time, things could be

different in the future. We should also stress that our predictions for even the simplest

properties (such as mass) of SUSY particles are sensitive to these assumptions. In

the interest of pedagogy, however, we will continue to work within the simplified

framework, and leave it to the reader to make the appropriate modifications in more

complicated frameworks.

Finally, since our main focus is on SUSY particles, we will keep track of only

the third generation Yukawa couplings, and neglect Yukawa interactions of the first

two generations. This is obviously unrealistic, but has little effect for most things

that we will study. In other words, we will approximate the Yukawa matrices in the

superpotential by,

fe ∼
⎛

⎝

0 0 0

0 0 0

0 0 fτ

⎞

⎠ , fu ∼
⎛

⎝

0 0 0

0 0 0

0 0 ft

⎞

⎠ , fd ∼
⎛

⎝

0 0 0

0 0 0

0 0 fb

⎞

⎠ .
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Frequently, the matrices ai j are written as Ai j fi j . Within our approximation, these

will then take the form,

ae ∼
⎛

⎝

0 0 0

0 0 0

0 0 fτ Aτ

⎞

⎠ , au ∼
⎛

⎝

0 0 0

0 0 0

0 0 ft At

⎞

⎠ , ad ∼
⎛

⎝

0 0 0

0 0 0

0 0 fb Ab

⎞

⎠ ,

with Aτ , At , and Ab being real parameters (the A-terms). The bilinear b term is,

likewise, written as b = Bμ, where B is taken to be real. The parametrization

of the a and b terms in terms of the corresponding superpotential interactions is

motivated by gravity-mediated models (to be discussed later). Indeed, within the

MSSM framework, the soft breaking scalar parameters are completely unrelated

to the parameters in the superpotential, i.e. a may be non-zero even if the Yukawa

couplings vanish and, further, c terms need not be small.

From this point onwards, unless explicitly stated, we will assume that we are

working within the simplified parameter space.

8.2 Electroweak symmetry breaking

The theory we have written down so far respects the gauge symmetry SU (3)C ×
SU (2)L × U (1)Y. Our next task is to ensure that the gauge symmetry of the MSSM

can be successfully broken down to observed SU (3)C × U (1)em, so that W and Z
bosons and fermions may receive mass as they do in the SM.

To investigate electroweak symmetry breaking, we must examine the minima of

the scalar potential in the MSSM. The tree-level scalar potential consists of three

parts

VMSSM = VF + VD + Vsoft, (8.13)

where

VF =
∑

i

∣
∣
∣
∣
∣

∂ f̂

∂Ŝi

∣
∣
∣
∣
∣

2

Ŝ=S
, (8.14a)

VD = 1

2

∑

A

[
∑

i

S†
i gtASi

]2

and (8.14b)

Vsoft =
∑

i

m2
φi

|φi |2 − Bμ (Hd Hu + h.c.) + a-terms. (8.14c)

The sum over i is over all scalar fields in the model. Each real component of

each scalar field may be regarded as a separate direction in “field space”. Thus,

the scalar “field space” of the MSSM, with 14 real matter scalars per generation,

plus four complex Higgs scalars, is a 50-dimensional space. We look for parameter
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regions where this scalar potential develops a minimum along “directions” of the

Higgs scalars. If a deeper minimum develops along other scalar field directions,

then the ground state of the theory could develop such that electric charge, color

or lepton number symmetry is broken. In fact, these considerations can be used

to put constraints on the parameters of the theory. We will assume here that such

non-standard minima do not develop.

We can then restrict our attention to the scalar potential involving only the Higgs

scalar fields. We may use the SU (2)L gauge symmetry freedom to rotate the VEV

of Hu to its lower component which we have defined to be neutral. Minimization of

the potential with respect to the other component of Hu then requires that 〈h−
d 〉 = 0

as demonstrated in the following exercise. The MSSM Higgs potential, therefore,

allows only charge-conserving vacua.2

Exercise Verify that for the Higgs fields, VD can be written as,

V Higgs
D = g2 + g′2

8
(A2

u + A2
d) + g2 − g′2

4
AuAd − g2

2
|Aud |2,

where Au = |Hu|2, Ad = |Hd |2, and Aud = Hu Hd. The tree-level Higgs potential
to be minimized is,

V Higgs = (m2
Hu

+ μ2)Au + (m2
Hd

+ μ2)Ad − Bμ(Aud + A†
ud) + V Higgs

D .

We see that for fixed magnitudes of Hu and Hd, i.e. fixed values of Au and Ad , the
minimum of V Higgs is obtained by making |Aud | as large as possible. This means,
of course, that Hd and Hu are aligned, so that 〈h−

d 〉 = 0. Moreover, for real values
of Bμ the second last term in V Higgs is minimized when Aud is real and positive
(negative) if Bμ is positive (negative). Thus as long as the parameters of the Higgs
potential are real, no C P-violating phases are induced by the interactions of Higgs
bosons.

Notice that there is no loss of generality if we choose the VEVs of both fields to
have the same sign as long as the sign of Bμ can always be appropriately chosen.

We then only have to minimize the scalar potential for the “neutral fields” which

now reads,

Vscalar = (m2
Hu

+ μ2)|h0
u|2 + (m2

Hd
+ μ2)|h0

d |2

−Bμ(h0
uh0

d + h.c.) + 1

8
(g2 + g′2)

(|h0
u|2 − |h0

d |2
)2

. (8.15)

2 Of course, we still have to assume that the matter scalars do not develop VEVs.
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To find the minimum of the scalar potential, we set the first derivatives of this

potential with respect to the fields as well as to their conjugates to zero:

∂V

∂h0∗
u

= (m2
Hu

+ μ2)h0
u − Bμh0∗

d + 1

4
(g2 + g′2)h0

u(|h0
u|2 − |h0

d |2)

= 0, (8.16a)

∂V

∂h0∗
d

= (m2
Hd

+ μ2)h0
d − Bμh0∗

u − 1

4
(g2 + g′2)h0

d(|h0
u|2 − |h0

d |2)

= 0. (8.16b)

The point(s) in field space where these equations are satisfied is an extremum of the

(tree-level) potential. One possible solution is 〈h0
u〉 = 〈h0

d〉 = 0, i.e. no electroweak

symmetry breaking. To ensure that this does not occur, the origin must be a local

maximum of the potential. In other words, the determinant of the matrix of second

derivatives should be negative at the origin. Since we are interested in the evaluation

of the second derivatives at the origin of field space just the bilinear terms contribute,

and we must have,

(Bμ)2 > (m2
Hu

+ μ2)(m2
Hd

+ μ2). (8.17a)

We must also check that the scalar potential indeed has a stable minimum, and is not

unbounded from below. For most field values this is not an issue because the positive

definite quartic term dominates the scalar potential for large field values. However,

in the direction of field space where |h0
u| = |h0

d |, the quartic term vanishes. This is

a D-flat direction in field space, and in this direction we must require the scalar

potential to be positive. This leads to

m2
Hu

+ m2
Hd

+ 2μ2 > 2|Bμ|. (8.17b)

If these conditions are met, then the scalar potential should develop a well-

defined local minimum in which electroweak symmetry is spontaneously broken.

We write 〈h0
u〉 ≡ vu and 〈h0

d〉 ≡ vd with the VEVs as real numbers, and define a

parameter,

tan β ≡ vu

vd
(8.18)

that will play an important role in phenomenological studies of the MSSM. It is

simple to see that the potential minimization conditions can be written as:

Bμ = (m2
Hu

+ m2
Hd

+ 2μ2) sin 2β

2
and (8.19a)

μ2 = m2
Hd

− m2
Hu

tan2 β

(tan2 β − 1)
− M2

Z

2
. (8.19b)
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To obtain (8.19b), we have used the relation (to be derived shortly), M2
Z =

(g2+g′2)
2

(v2
u + v2

d). The first of these equations allows one to trade the parameter

Bμ for the more commonly used parameter tan β. Given the soft SUSY breaking

Higgs masses m2
Hu

and m2
Hd

, we use the second to fix the magnitude (but not the

sign) of μ to reproduce the observed value of MZ .

Up to now, we have focussed on the tree-level potential (8.15) for the electroweak

symmetry breaking sector of the MSSM. A characteristic feature of this potential

is that the quartic self-interactions of the Higgs fields are determined solely by the

SU (2) × U (1) gauge couplings. This implies that the Higgs sector of the MSSM

automatically satisfies perturbative unitarity constraints, in sharp contrast to the SM

where the Higgs self-coupling constant is an independent parameter. This important

feature of the MSSM can be traced to the fact that the μ term is the only possible

superpotential term bilinear in the Higgs superfields. Indeed, as we will see, the

structure of the self-couplings in the Higgs sector of the MSSM implies an upper
limit of MZ on the mass of the SM-like Higgs boson! This is a tree-level result, and

radiative corrections modify it in an important way. We will, however, postpone

any further discussion about this until we are ready to examine the spectrum of the

relics of the electroweak symmetry breaking sector of the MSSM.

8.3 Particle masses in the MSSM

8.3.1 Gauge bosons

Once we are assured of the correct pattern of electroweak symmetry breaking, we

can proceed to calculate the masses of the vector bosons. Since the vacuum does not

spontaneously break the U (1)em associated with electromagnetic gauge invariance,

we expect that the photon will remain massless, while the W ± and Z0 will acquire

a mass via the Higgs mechanism. As in the SM, these vector boson mass terms

arise from the kinetic energy terms of the Higgs fields:

L � |Dμ Hu|2 + |Dμ Hd |2, (8.20)

where

Dμ Hu = (∂μ + ig
τA

2
WAμ + i

g′

2
Bμ)Hu and

Dμ Hd = (∂μ + ig(−τ ∗
A

2
)WAμ − i

g′

2
Bμ)Hd .

The vector boson masses are obtained by making the replacement,

〈Hu〉 →
(

0

vu

)

and 〈Hd〉 →
(

0

vd

)

. (8.21)
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Identifying the charged fields,

W ±
μ = 1√

2
(W1μ ∓ iW2μ),

we find,

M2
W = g2

2
(v2

u + v2
d). (8.22a)

As in the SM, the neutral fields W3μ and Bμ mix, and the neutral mass matrix has

to be diagonalized. Diagonalizing this mass matrix yields the fields,

Aμ = (g′W3μ + gBμ)
√

g2 + g′2

Zμ = (−gW3μ + g′ Bμ)
√

g2 + g′2 .

Aμ is massless and identified as the photon field. The other field has a mass,

M2
Z = g2 + g′2

2
(v2

u + v2
d). (8.22b)

Defining the weak mixing angle by tan θW ≡ g′/g, we recover the SM relation

MW = MZ cos θW.

Instead of working with Hu and Hd , we could have equally well worked with

the linear combinations,

φ = sin β Hu + cos β H∗
d ,

φ′ = cos β Hu − sin β H∗
d .

The doublet φ acquires a VEV v ≡
√

v2
u + v2

d 
 174 GeV for its neutral component

and can be identified with the SM Higgs doublet. The field φ′ does not acquire a

VEV and is just an additional scalar field that has nothing to do with symmetry

breaking.

8.3.2 Matter fermions

Matter fermions acquire masses via Yukawa interactions in the superpotential.

Specifically, these masses arise from the terms

L � −1

2

∑

i, j

ψ̄i

⎡

⎣

(

∂2 f̂

∂Ŝi∂Ŝ j

)

Ŝ=S

1 − γ5

2
+

(

∂2 f̂

∂Ŝi∂Ŝ j

)†

Ŝ=S

1 + γ5

2

⎤

⎦ ψ j
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in our master formula. We will focus on the mass of the electron; the calculation of

other SM fermion masses follows along identical lines.

We first note that, since the superpotential contains the term f̂ � feêĥ0
d Êc, we

find

∂2 f̂

∂ ê∂ Êc

∣
∣
∣
∣
∣
Ŝ=S

= feĥ0
d

∣
∣
ĥ0

d=h0
d
= feh0

d,

so that

L � −1

2
ψ̄e

[

feh0
d

1 − γ5

2
+ feh0∗

d

1 + γ5

2

]

ψEc

−1

2
ψ̄Ec

[

feh0
d

1 − γ5

2
+ feh0∗

d

1 + γ5

2

]

ψe

= −
[

ψ̄Ec feh0
d

1 − γ5

2
ψe + ψ̄e feh0∗

d

1 + γ5

2
ψEc

]

,

where in the last step we have used the Majorana bilinear relations to combine

terms. Using the definition (8.3) of the Dirac electron field, and replacing the field

h0
d by its VEV, the reader can easily check that these terms reduce to a mass term

for the Dirac electron. Specifically,

L � − fevd ēe = −meēe, (8.23)

with me ≡ fevd . Thus, as in the SM, the electron acquires a mass via its coupling

to the Higgs field. This justifies our calling the superpotential coupling fe as the

electron Yukawa coupling. Note that in the MSSM the electron mass comes from

〈h0
d〉. The same is true for the other charged leptons and down-type quarks that

couple just to the doublet Hd via superpotential interactions. A similar calculation

for the masses of T3 = +1/2 fermions of the SM finds their masses proportional

to vu . The neutrino, of course, remains massless just as in the SM, since we have

not introduced a Yukawa coupling for it.

Exercise Verify that the fermion Yukawa couplings can be written as,

fi = gmi√
2MW

1/ sin β, if T3 f = 1

2
, (8.24a)

and

fi = gmi√
2MW

1/ cos β, if T3 f = −1

2
. (8.24b)
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Notice that these expressions for the MSSM Yukawa couplings fi in terms of the
fermion masses are different from the corresponding expressions for the SM Yukawa
couplings λi .

We remark that since the mass of the fermions arises from the superpotential,

it must be supersymmetric, i.e. the scalar superpartners will get an identical con-

tribution to the mass from the superpotential Yukawa couplings. This should not

be surprising since we have already seen that we cannot have soft SUSY breaking

masses for chiral fermions.

8.3.3 Higgs bosons

Before turning to the masses of the superpartners, let us examine the spectrum of

physical particles from the electroweak symmetry breaking sector. Within the SM

with just one complex doublet, we know that a single neutral spin zero particle –

the Higgs boson – is left in the spectrum as a relic of the spontaneous breakdown of

SU (2)L × U (1)Y → U (1)em. This is because the charged component of the doublet

and one of the neutral components are the three would-be Goldstone bosons that

become the longitudinal components of the W ± and Z0 after the Higgs mechanism.

Since the symmetry breaking pattern of the MSSM is the same as that of the SM,

we expect the same set of would-be Goldstone bosons: however, since we now start

with two sets of complex doublets, one charged and three neutral spin zero bosons

remain in the physical spectrum of the MSSM.

In order to identify these states and compute their masses , we must examine the

Higgs potential:

V Higgs = (m2
Hu

+ μ2)(|h0
u|2 + |h+

u |2) + (m2
Hd

+ μ2)(|h0
d |2 + |h−

d |2)

− Bμ(h+
u h−

d + h0
uh0

d + h.c.)

+ g2

8

{
(|h+

u |2 − |h0
u|2 + |h0

d |2 − |h−
d |2)2 + 4|h+

u |2|h0
u|2 + 4|h0

d |2|h−
d |2

− 4 (h+∗
u h−∗

d h0
uh0

d + h0∗
u h0∗

d h+
u h−

d )
}

+ g′2

8

[|h+
u |2 + |h0

u|2 − |h0
d |2 − |h−

d |2]2
. (8.25)

The neutral fields may be broken up into real and imaginary components h0
u =

h0
uR+ih0

uI√
2

and h0
d = h0

dR+ih0
dI√

2
, so that the scalar potential can be regarded as a function

V (h0
uR, h0

uI, h0
dR, h0

dI, h+
u , h+∗

u , h−
d , h−∗

d ) of eight independent fields. Since we are

interested in excitations of the vacuum, we expand the Higgs potential about its
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minimum as,

V Higgs = Vmin +
∑

hi

∂V

∂hi

∣
∣
∣
∣
hi =〈hi 〉

(hi − 〈hi 〉)

+ 1

2

∑

hi ,h j

∂2V

∂hi∂h j

∣
∣
∣
∣
hi, j =〈hi, j 〉

(hi − 〈hi 〉)(h j − 〈h j 〉) + · · · , (8.26)

where the hi are the eight arguments of V as listed above, and the only non-vanishing

VEVs are 〈h0
dR〉 = √

2vd and 〈h0
uR〉 = √

2vu . The coefficients of the linear terms

should all vanish, since the derivatives are evaluated at the minimum of the potential;

the quadratic terms will then be Higgs boson mass terms, and since in general there

will be mixing, these will form mass matrices. The conservation of electric charge

means that there can be no mixing between charged and neutral Higgs fields, so

that there is one mass matrix for the charged sector and a different one in the neutral

sector. Moreover, because of the (assumed) C P invariance of the Higgs sector, the

real and imaginary components of the neutral Higgs bosons do not mix either, so

that the 4 × 4 mass matrix in the neutral sector decomposes into two 2 × 2 blocks.

First, let us construct the mass matrices that contain the would-be Goldstone

bosons. These reside in the charged sector and in the C P-odd sector (i.e. the

imaginary components) of the neutral fields. The states orthogonal to the Goldstone

boson will automatically be the physical states in these sectors.

We begin with the charged fields. The Lagrangian will have the form

L � (
h+∗

u h−
d

)
M2

h±

(
h+

u

h−∗
d

)

, (8.27)

where

M2
h± =

⎛

⎝

∂2V
∂h+

u ∂h+∗
u

∣
∣
∣
hi →vi

∂2V
∂h+∗

u ∂h−∗
d

∣
∣
∣
hi →vi

∂2V
∂h+

u ∂h−
d

∣
∣
∣
hi →vi

∂2V
∂h−

d ∂h−∗
d

∣
∣
∣
hi →vi

⎞

⎠ .

The derivatives are simple to compute if we remember that we want to evaluate

these at the VEV of the Higgs fields; then we can drop terms that are proportional

to h+
u , h−

d , h0
uI or h0

dI (after the derivatives are taken) as these fields vanish in the

vacuum. For instance,

∂2V

∂h+
u ∂h+∗

u

∣
∣
∣
∣
hi →vi

= (m2
Hu

+ μ2) + g2

4

(
v2

u + v2
d

) + g′2

4
(v2

u − v2
d)

= Bμ cot β + g2

2
v2

d,
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where in the last step we have used the first of the minimization conditions (8.16a)

to eliminate m2
Hu

+ μ2 in favor of Bμ. The mass squared matrix in the charged

sector is found to be,

M2
h± =

(

Bμ cot β + g2

2
v2

d −Bμ − g2

2
vuvd

−Bμ − g2

2
vuvd Bμ tan β + g2

2
v2

u

)

, (8.28)

where we have used (8.16b) to eliminate m2
Hd

+ μ2 from the lower right entry of

the matrix. Its eigenvalues are given by

mG± = 0 and m2
H± = Bμ(cot β + tan β) + M2

W . (8.29)

The zero eigenvalue merely confirms that, but for the Higgs mechanism, G± would

have been the Goldstone boson. In the unitarity gauge, these do not appear in the

Lagrangian with massive W bosons. The other state, H±, remains in the spectrum.

The mixing matrix takes the form,

(
G+

H+

)

=
(

cos β sin β

− sin β cos β

) (
h−∗

d

h+
u

)

. (8.30)

Let us now turn to the neutral sector, focussing for the moment on the mass terms

for the imaginary components of the neutral fields. These may be written as,

L � 1

2

(
h0

uI h0
dI

)
M2

h0
iI

(
h0

uI

h0
dI

)

, (8.31)

with

M2
h0

iI
=

⎛

⎝

∂2V
∂h02

uI

∣
∣
∣
hi →vi

∂2V
∂h0

uI∂h0
dI

∣
∣
∣
hi →vi

∂2V
∂h0

uI∂h0
dI

∣
∣
∣
hi →vi

∂2V
∂h02

dI

∣
∣
∣
hi →vi

⎞

⎠ .

A computation similar to that for the charged sector gives,

M2
h0

iI
=

(
Bμ cot β Bμ

Bμ Bμ tan β

)

. (8.32)

The eigenvalues are,

mG0 = 0 and m2
A = Bμ(cot β + tan β). (8.33)

From the eigenvalue corresponding to m2
H± , we see that

m2
H± = m2

A + M2
W , (8.34)

so that, at least at tree level, m H± ≥ MW and m H± ≥ m A.
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Exercise We have already argued that the real and imaginary components of the
neutral fields cannot mix. Explicitly verify that this is indeed the case. Also, verify
the mass matrix is indeed given by (8.32). To obtain the diagonal entries, you will
once again have to use the minimization conditions.

Again, after a gauge transformation to the unitarity gauge, G0 disappears from the

Lagrangian which now includes a mass for the Z0 boson. The massive A particle

remains as a pseudoscalar Higgs boson, as will be seen when we calculate its

couplings to matter fermions.3 The mixing matrix for G0 and A is
(

G0

A

)

=
(

sin β − cos β

cos β sin β

) (
h0

uI

h0
dI

)

. (8.35)

Finally, let us turn to the mass matrix for the remaining neutral scalars involving

the h0
uR and h0

dR. The mass squared matrix of the real components of the neutral

Higgs scalars occurs in the Lagrangian as,

L � 1

2

(
h0

uR h0
dR

)
M2

h0
iR

(
h0

uR

h0
dR

)

, (8.36)

with

M2
h0

iR
=

⎛

⎝

∂2V
∂h02

uR

∣
∣
∣
hi →vi

∂2V
∂h0

uR∂h0
dR

∣
∣
∣
hi →vi

∂2V
∂h0

uR∂h0
dR

∣
∣
∣
hi →vi

∂2V
∂h02

dR

∣
∣
∣
hi →vi

⎞

⎠

=
(

m2
A cos2 β + M2

Z sin2 β −(m2
A + M2

Z ) sin β cos β

−(m2
A + M2

Z ) sin β cos β m2
A sin2 β + M2

Z cos2 β

)

, (8.37)

where to obtain the last step we have used manipulations very similar to those used

to obtain the other mass matrices above. The eigenvalues of this mass matrix are

m2
h,H = 1

2

[

(m2
A + M2

Z ) ∓
√

(m2
A + M2

Z )2 − 4m2
A M2

Z cos2 2β

]

, (8.38)

where h and H denote the lighter and heavier of the neutral scalar mass eigenstates.

Exercise The masses of h and H respect several important bounds. To see this,
recall that the expectation value of the matrix (8.37) – for any vector (cos θ, sin θ )T –
must lie between the eigenvalues m2

h and m2
H . Verify that setting θ = β yields,

mh ≤ m A| cos 2β| ≤ m H , (8.39a)

3 Because parity is not conserved in weak interactions, the attentive reader may wonder whether A remains an
eigenstate beyond tree level. However, C P is conserved and the C P-odd A is precluded from mixing with the
C P-even scalar Higgs bosons that we consider shortly.
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while setting θ = π/2 − β yields,

mh ≤ MZ | cos 2β| ≤ m H . (8.39b)

Notice that this implies that mh = 0 if tan β = 1.
Note that these bounds hold only at tree level. Radiative corrections that we

alluded to earlier allow h to be significantly heavier than MZ . This is fortunate since
otherwise the non-observation of h in experiments at LEP2 would have excluded
the MSSM!

Finally, we may write the physical Higgs scalars in terms of h0
uR and h0

dR as
(

h
H

)

=
(

cos α sin α

− sin α cos α

) (
h0

uR

h0
dR

)

, (8.40a)

with α the Higgs scalar mixing angle being given by

tan α =
(m2

A − M2
Z ) cos 2β +

√

(m2
A + M2

Z )2 − 4m2
A M2

Z cos2 2β

(m2
A + M2

Z ) sin 2β
. (8.40b)

Let us now turn to the mass spectrum of the superpartners. We first discuss masses

of gauge and Higgs fermions, and then turn to the partners of the matter fermions.

8.3.4 Gluinos

The gluino g̃, the gaugino partner of the gluon, is the only color octet fermion. Since

SU (3)C is not broken, the gluino cannot mix with any other fermion, and must be a

mass eigenstate. Its mass term then arises just from the soft supersymmetry breaking

gaugino mass term,4

L � −1

2
M3 ¯̃gg̃ (8.41)

so that its mass at tree level is simply mg̃ = |M3|. If the real parameter M3 is

negative, following the discussion in the Technical Aside of Chapter 7, we can

always redefine the gluino field g̃ → −iγ5g̃. The new gluino field then has positive

mass and retains its Majorana character. For later convenience, we will write this

redefinition as g̃ → (−iγ5)θg̃ g̃, where θg̃ = 0 (1) for M3 > 0 (M3 < 0).

Exercise Show that the transformation ψ → ψ ′ = −iγ5ψ changes the sign of the
mass term in the Lagrangian for a free Majorana fermion, but not the kinetic energy
term. Show also that if ψ is Majorana, then so is ψ ′.

4 Recall that we have already discussed how the C P-violating mass M ′
3 can be removed by field redefinition.
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8.3.5 Charginos and neutralinos

Spontaneous breakdown of SU (2)L × U (1)Y implies that states with the same elec-

tric charge, color, and spin will mix. This means that gauginos and higgsinos cannot

be the physical particles with definite mass. Rather, the neutral fermion fields ψh0
u
,

ψh0
d
, λ3 and λ0 mix to form neutral fermion mass eigenstates, the neutralinos, while

the negatively charged fields ψh+
u R, ψh−

d L, and the linear combination λ1+iλ2√
2

(this

is just the superpartner of the field W −
μ defined earlier) mix to form the negative

charginos.5

We first work out the form of the chargino and neutralino mass matrices, and then

diagonalize them to identify the physical charginos and neutralinos. These mass

matrices receive a supersymmetric contribution from the superpotential higgsino

mass term μ, a SUSY breaking one from gaugino masses, and finally a contribution

from electroweak symmetry breaking. This last contribution is also SUSY breaking

unless vu = vd because D-term contributions to the potential from the Higgs field

do not vanish in the vacuum.

The supersymmetric contribution, which arises from the superpotential terms,

f̂ � μ
(
ĥ0

uĥ0
d + ĥ+

u ĥ−
d

)
(8.42)

gives rise to fermion bilinear terms,

L � −1

2

∑

i, j

ψ̄i

(

∂2 f̂

∂Ŝi∂Ŝ j

)

Ŝ=S
PLψ j + h.c.,

which take the form,

Lmass � −μ

2

[

ψ̄h0
u
ψh0

d
+ ψ̄h0

d
ψh0

u

]

−μ

2

[

ψ̄h+
u
ψh−

d
+ ψ̄h−

d
ψh+

u

]

. (8.43)

Gaugino–higgsino bilinear terms coming from electroweak breaking arise from,

L � −
√

2
∑

i

gS†
i tAλ̄A PLψi + h.c., (8.44)

5 Recall that ψh+
u

is a Majorana spinor whose left-chiral component is positively charged while the right-chiral

component is negatively charged.
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when Si are the Higgs fields that develop VEVs. These contributions can be

written as,

L � −
√

2
(

h+†
u , h0†

u

) 1

2

[
gλ̄3 + g′λ̄0 gλ̄1 − igλ̄2

gλ̄1 + igλ̄2 −gλ̄3 + g′λ̄0

]

PL

(
ψh+

u

ψh0
u

)

−
√

2
(

h−†
d , h0†

d

) 1

2

[−gλ̄3 − g′λ̄0 −gλ̄1 − igλ̄2

−gλ̄1 + igλ̄2 gλ̄3 − g′λ̄0

]

PL

(
ψh−

d

ψh0
d

)

+ h.c. (8.45)

Electroweak symmetry breaking contributions to gaugino–higgsino masses arise

when the Higgs boson fields develop VEVs. The corresponding terms in (8.45)

involving charged higgsinos are,

−gvu√
2

ψ̄h+
u

PR(λ1 − iλ2) − gvd√
2

(−λ̄1 + iλ̄2)PLψh−
d

+ h.c.

= −gvu√
2

(λ̄1 − iλ̄2)PRψh+
u

+ gvd√
2

(λ̄1 − iλ̄2)PLψh−
d

+ h.c.,

where the first term in the first line comes from the Hermitian conjugate part of

(8.45), and in the second step we have used the Majorana bilinear identities to swap

the order of the spinors. This then leads us to define Dirac fields for the negatively

charged gaugino,

λ = λ1 + iλ2√
2

(8.46a)

and a negatively charged higgsino,

χ̃ = PLψh−
d

− PRψh+
u

(8.46b)

in terms of which the charged and neutral gaugino–higgsino mass terms in (8.45)

can then be written as,

Lmass = gvu λ̄
1 + γ5

2
χ̃ + gvd λ̄

1 − γ5

2
χ̃ + h.c.

+ gvu√
2

λ̄3ψh0
u
− g′vu√

2
λ̄0ψh0

u
− gvd√

2
λ̄3ψh0

d
+ g′vd√

2
λ̄0ψh0

d
. (8.47)

Exercise Verify that the charged higgsino mass term in the Lagrangian (8.43)
simply becomes +μ ¯̃χχ̃ .

Finally, the Lagrangian contribution from the soft SUSY breaking gaugino

masses is,

Lmass = −1

2
M1λ̄0λ0 − M2

1

2
λ̄3λ3 − M2λ̄λ. (8.48)
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The gaugino–higgsino mass terms (8.43), (8.47), and (8.48) can be written as

Lneutralino = −1

2

(
ψ̄h0

u
, ψ̄h0

d
, λ̄3, λ̄0

)
Mneutral

⎛

⎜
⎜
⎝

ψh0
u

ψh0
d

λ3

λ0

⎞

⎟
⎟
⎠

,

with

Mneutral =

⎛

⎜
⎜
⎜
⎜
⎝

0 μ − gvu√
2

g′vu√
2

μ 0 gvd√
2

− g′vd√
2

− gvu√
2

gvd√
2

M2 0
g′vu√

2
− g′vd√

2
0 M1

⎞

⎟
⎟
⎟
⎟
⎠

(8.49a)

and

Lchargino = − (
λ̄, ¯̃χ

) (

Mcharge PL + MT
charge PR

) (
λ

χ̃

)

,

with

Mcharge =
(

M2 −gvd

−gvu −μ

)

. (8.49b)

The physical charginos and neutralinos are eigenstates of these mass matrices.

The neutralino mass matrix is real and Hermitian, and so can be diagonalized by an

orthogonal transformation as usual. The chargino mass matrix is not symmetric, so

that the chargino mass terms are “γ5-dependent”. The diagonalization of charginos

is performed as described in the Technical Note of Chapter 7.

Diagonalization of neutralinos

The neutralino mass matrix Mneutral is guaranteed to have real eigenvalues since it

is Hermitian. It can be diagonalized by a unitary (in fact, real orthogonal) matrix

Vn such that,

V †
n MneutralVn = MD

where MD is the diagonal matrix of eigenvalues which, though real, are not neces-

sarily positive. The matrix Vn is the matrix whose columns are the eigenvectors of

Mneutral. The neutral higgsino and gaugino fields are related to the mass eigenstate
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fields by,

⎛

⎜
⎜
⎝

ψh0
u

ψh0
d

λ3

λ0

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

v
(1)
1 v

(2)
1 v

(3)
1 v

(4)
1

v
(1)
2 v

(2)
2 v

(3)
2 v

(4)
2

v
(1)
3 v

(2)
3 v

(3)
3 v

(4)
3

v
(1)
4 v

(2)
4 v

(3)
4 v

(4)
4

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

Z̃ ′
1

Z̃ ′
2

Z̃ ′
3

Z̃ ′
4

⎞

⎟
⎟
⎠

. (8.50)

It is customary to define mass eigenstate fields with positive eigenvalues. We thus

define mass eigenstates such that

Z̃i = (−iγ5)θi Z̃ ′
i , (8.51)

with θi equals 0 (1) if the eigenvalue corresponding to Z̃ ′
i is positive (negative). The

neutralinos are labeled according to increasing mass, with Z̃1 being the lightest

neutralino and Z̃4 the heaviest.

The neutralino mass matrix can be diagonalized analytically, but the resulting

formulae are lengthy and not particularly illuminating. Usually, the eigenvalues and

eigenvectors are calculated numerically.

Diagonalization of charginos

The chargino mass terms are γ5-dependent and, as discussed in the Technical Note

of Chapter 7, can be diagonalized by different unitary transformations of the left-

and right-handed components of the fields. We can write

PL

(
λ

χ̃

)

= U PL

(
W̃2

W̃1

)

; PR

(
λ

χ̃

)

= V PR

(
W̃2

W̃1

)

, (8.52)

with U and V being 2 × 2 unitary matrices. Then,

L � −
(

W̃ 2 W̃ 1

)

V †MchargeU PL

(
W̃2

W̃1

)

−
(

W̃ 2, W̃ 1

)

U †MT
chargeV PR

(
W̃2

W̃1

)

.

We construct matrices U and V so that these mass terms are diagonal, i.e.

V †MchargeU =
(

mW̃2
0

0 mW̃1

)

≡ MD and

U †MT
chargeV =

(
mW̃2

0

0 mW̃1

)

≡ M†
D, (8.53)

with mW̃1
and mW̃2

as real (but not necessarily positive) numbers. U is simply the

unitary matrix that diagonalizes the Hermitian matrix MT
chargeMcharge, while V is

the corresponding matrix that diagonalizes MchargeMT
charge. The eigenvalues of the
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matrix MT
chargeMcharge (which are the same as those of the matrix MchargeMT

charge)

are of course real and positive. Since

M†
DMD = U †

(

MT
chargeMcharge

)

U,

these eigenvalues are just m2
W̃2,1

, and are given by

m2
W̃1,2

= 1

2

[
(μ2 + M2

2 + 2M2
W ) ∓ ζ

]
, (8.54)

with

ζ 2 = (μ2 − M2
2 )2 + 4M2

W

[
M2

W cos2 2β + μ2 + M2
2 − 2μM2 sin 2β

]
.

We define W̃1 to be the lighter chargino mass eigenstate, and W̃2 the heavier one.

It is easy to see that U , the matrix of eigenvectors of MT
chargeMcharge, is

U =
⎛

⎝

1√
1+x2

2

1√
1+x2

1
x2√
1+x2

2

x1√
1+x2

1

⎞

⎠ ,

where

x2/1 = μ2 − M2
2 + 2M2

W cos 2β ± ζ

2
√

2MW (−M2 cos β + μ sin β)
. (8.55)

Likewise, the matrix V , constructed from the eigenvectors of MchargeMT
charge, is

given by

V =
⎛

⎝

1√
1+y2

2

1√
1+y2

1
y2√
1+y2

2

y1√
1+y2

1

⎞

⎠ ,

with

y2/1 = μ2 − M2
2 − 2M2

W cos 2β ± ζ

2
√

2MW (−M2 sin β + μ cos β)
. (8.56)

It is straightforward to check that x1x2 = y1 y2 = −1, as expected from the orthog-

onality of the eigenvectors. Using this to eliminate x2 and y2, the U and V matrices

can be recast as,

U =
(

θx1
cos γL sin γL

−θx1
sin γL cos γL

)

(8.57a)

and

V =
(

θy cos γR sin γR

−θy sin γR cos γR

)

, (8.57b)
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with θx = sign(x1) and θy = sign(y1). The mixing angles γL and γR lie in the range

0 ≤ γL, γR ≤ 180◦, and are given by,

tan γL = 1/x1 and tan γR = 1/y1. (8.58)

From Eq. (8.53) we see that unsquared chargino masses are given by,

mW̃1
= sin γR

(

M2 sin γL −
√

2MW cos β cos γL

)

− cos γR

(√
2MW sin β sin γL + μ cos γL

)

(8.59a)

and

mW̃2
= θxθy

[

cos γR

(

M2 cos γL +
√

2MW cos β sin γL

)

+ sin γR

(√
2MW sin β cos γL − μ sin γL

)]

. (8.59b)

If either of the mW̃i
is negative, we replace W̃i → γ5W̃i , and work with fields with

positive mass eigenvalues.

In general, the chargino and neutralino mixing patterns are complex, and depend

on the parameters, μ, M1, M2, and tan β. However, if |μ| � |M1,2|, MW , then

W̃2 and Z̃3,4 are approximately higgsinos with squared masses of about μ2, while

the lighter chargino and the two lighter neutralinos are gaugino-like. If |M1,2| �
|μ|, MW , the situation is reversed, and the heavier chargino, and the two heavy

neutralinos are gaugino-like, while the lighter chargino and the lighter neutralinos

are approximately higgsino-like. These properties will be useful in understanding

sparticle decay patterns discussed in Chapter 13.

Exercise From the “squared mass” matrices of charginos and neutralinos, show
that,

m2
W̃1

+ m2
W̃2

− 2M2
W = μ2 + M2

2 ,

and

m2
Z̃1

+ m2
Z̃2

+ m2
Z̃3

+ m2
Z̃4

− 2M2
Z = 2μ2 + M2

1 + M2
2 .

These are, of course, tree-level relations.

Exercise If soft SUSY breaking gaugino masses are zero, show that the lightest
neutralino is a massless photino, γ̃ ≡ sin θWλ3 + cos θWλ0. In this case, show that
W̃1 and Z̃2 are lighter than MW and MZ , respectively.
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Although we note this in the context of the MSSM, this result is much more
general, in the sense that it does not depend on the details of the electroweak
symmetry breaking sector.

Incidently, note also that if M1 = M2 = M, the photino, defined above, is an
eigenstate of the neutralino mass matrix with mass M.

Exercise We have just seen that the lightest neutralino is a massless photino if
gaugino masses are zero. Show that it is a massless higgsino cos βψ̄h0

u
+ sin βψ̄h0

d

if, instead, μ vanishes.
Show that a massless neutralino can also occur if

μ + M2
W sin 2β

(
1

M2

+ tan2 θW

M1

)

= 0.

Find the appropriate eigenvector in this case.

8.3.6 Squarks and sleptons

Now we turn to squark and slepton masses. Unlike matter fermions whose masses

only arise from superpotential Yukawa interactions, squarks and sleptons (collec-

tively referred to as sfermions) have four distinct sources for these mass terms. For

definiteness, we will write these terms for top squarks, but it will be obvious how

to write the corresponding terms for other squarks as well as sleptons.

Superpotential terms

We expect that sfermions must get a mass contribution equal to the corresponding

fermion mass. The relevant part of the superpotential is,

f̂ � μĥ0
uĥ0

d + ft t̂ ĥ
0
u T̂ c.

Since L � − ∑

i

∣
∣∂ f̂ /∂Ŝi

∣
∣
2

Ŝ=S , we see that the squares of ∂ f̂ /∂ t̂ = ft ĥ0
u T̂ c and of

∂ f̂ /∂ T̂ c = ft t̂ ĥ0
u , upon the replacement h0

u → vu , give the anticipated terms,

L � −m2
t t̃†L t̃L − m2

t t̃†R t̃R. (8.60a)

This is, however, not the only t-squark bilinear that can come from the superpotential

because the cross terms from |∂ f̂ /∂ ĥ0
u|2, upon the replacement h0

d → vd , yield an

intra-generational mixing contribution to the t̃ mass,

L � − (μmt cot β)
(

t̃†L t̃R + t̃†R t̃L
)

. (8.60b)

Notice that both these contributions will vanish if the corresponding quark Yukawa

coupling is zero.
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Soft SUSY breaking scalar masses

These terms arise from

L � −Q̃†
i m2

Qi j Q̃ j − ũ†
Ri m

2
Ui j ũR j

� −m2
t̃L

t̃†L t̃L − m2
t̃R

t̃†R t̃R. (8.61)

Remember that there is just one soft SUSY breaking squark (slepton) mass for each

generation of left-squarks (left-sleptons); i.e.

mt̃L = mb̃L
= m Q3, mẽL

= m ν̃e = mL1, etc.

Clearly, these terms come from SUSY breaking and are present regardless of

whether or not electroweak symmetry is spontaneously broken.

Soft SUSY breaking trilinear terms

Soft SUSY breaking interactions of squarks with neutral Higgs bosons,

L � At ft t̃Lh0
u t̃†R + h.c.,

give rise to intra-generational squark mixing terms

L � −(−At mt )(t̃
†
L t̃R + t̃†R t̃L), (8.62)

when the Higgs field is replaced by its VEV. That these terms appear proportional

to mt is an artifact of writing at as At ft . Nevertheless, like the superpotential terms,

these terms are absent if the electroweak symmetry is unbroken.

D-term contributions

We write these terms which come from

L � −1

2

∑

A

|
∑

i

S†
i gαtαASi |2

� −1

2
g2|Q̃†T3Q Q̃ + H †

u

τ3

2
Hu + H †

d (−τ3

2
)Hd |2

−
(

g′

2

)2

|H †
u YHu Hu + H †

d YHd Hd + Q̃†YQ Q̃ + ũ†
Ri YU c ũRi + d̃†

Ri YDc d̃Ri |2,

for both top and bottom squarks. Squark mass contributions arise from cross terms

between squark and Higgs boson fields. The SU (2) D-term gives,

L � −1

2

[

2(
g

2
)2(v2

d − v2
u)(t̃†L t̃L − b̃†

Lb̃L)
]

= −M2
W cos 2βT3Qi Q̃†

Li Q̃Li , (8.63a)
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while the hypercharge D-term gives,

L � sin2 θW cos 2βM2
Z

(

t̃†L
YQ

2
t̃L + b̃†

L

YQ

2
b̃L + t̃†R

YU c

2
t̃R + b̃†

R

YDc

2
b̃R

)

. (8.63b)

Note that the hypercharges that appear in the terms involving right-handed fields

are those for the corresponding left-handed antiquark fields that appear in Table 8.1.

Eliminating the hypercharge in favor of the electric charge, the D-term contribution

to any MSSM sfermion squared mass can be written as,

m2
D-term = M2

Z cos 2β
(
T3 − Q sin2 θW

)
. (8.64)

We can now assemble the mass squared matrices for the sfermions. For top

squarks, we have

L � −
(

t̃†L, t̃†R

)

M2
t̃

(
t̃L
t̃R

)

,

where the matrix M2
t̃ is given by

(
m2

t̃L
+ m2

t + D(t̃L) mt (−At + μ cot β)

mt (−At + μ cot β) m2
t̃R

+ m2
t + D(t̃R)

)

, (8.65a)

and

D(t̃L) = M2
Z cos 2β(

1

2
− 2

3
sin2 θW),

D(t̃R) = M2
Z cos 2β(+2

3
sin2 θW),

are the hypercharge D-term contributions (8.64) to the squared masses of t̃L and

t̃R. The eigenvalues of this matrix are,

m2
t̃1,2

= 1

2

(
m2

t̃L
+ m2

t̃R

) + 1

4
M2

Z cos 2β + m2
t

∓
{[

1

2
(m2

t̃L
− m2

t̃R
) + M2

Z cos 2β(
1

4
− 2

3
xW )

]2

+ m2
t (μ cot β − At )

2

} 1
2

,

(8.65b)

with t̃1 the lighter top squark mass eigenstate, and t̃2 the heavier one, and xW ≡
sin2 θW. The top squark mixing matrix is defined by

(
t̃1
t̃2

)

=
(

cos θt − sin θt

sin θt cos θt

) (
t̃L
t̃R

)

, (8.65c)
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with the top squark mixing angle θt given by,

tan θt = m2
t̃L

+ m2
t + M2

Z cos 2β
(

1
2

− 2
3
xW

) − m2
t̃1

mt (−At + μ cot β)
. (8.65d)

For bottom squarks, we find the mass matrix M2
b̃

to be

(
m2

b̃L
+ m2

b + D(b̃L) mb(−Ab + μ tan β)

mb(−Ab + μ tan β) m2
b̃R

+ m2
b + D(b̃R)

)

, (8.66a)

with mb̃L
= mt̃L by SU (2) symmetry, and

D(b̃L) = M2
Z cos 2β(−1

2
+ 1

3
sin2 θW),

D(b̃R) = M2
Z cos 2β(−1

3
sin2 θW).

The corresponding eigenvalues are,

m2
b̃1,2

= 1

2

(

m2
b̃L

+ m2
b̃R

)

− 1

4
M2

Z cos 2β + m2
b

∓
{[

1

2
(m2

b̃L
− m2

b̃R
) − M2

Z cos 2β(
1

4
− 1

3
xW )

]2

+ m2
b(μ tan β − Ab)2

} 1
2

,

(8.66b)

and the bottom squark mixing angle (defined the same way as in Eq. (8.65c)) is

tan θb =
m2

b̃L
+ m2

b + M2
Z cos 2β

(− 1
2

+ 1
3
xW

) − m2
b̃1

mb (−Ab + μ tan β)
. (8.66c)

For tau sleptons we have,

(
m2

τ̃L
+ m2

τ + D(τ̃L) mτ (−Aτ + μ tan β)

mτ (−Aτ + μ tan β) m2
τ̃R

+ m2
τ + D(τ̃R)

)

, (8.67a)

with

D(τ̃L) = M2
Z cos 2β(−1

2
+ sin2 θW),

D(τ̃R) = M2
Z cos 2β

(− sin2 θW

)
,

and

m2
τ̃1,2

= 1

2

(
m2

τ̃L
+ m2

τ̃R

) − 1

4
M2

Z cos 2β + m2
τ
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∓
{[

1

2
(m2

τ̃L
− m2

τ̃R
) − M2

Z cos 2β(
1

4
− xW )

]2

+ m2
τ (μ tan β − Aτ )2

} 1
2

,

(8.67b)

and

tan θτ = m2
τ̃L

+ m2
τ + M2

Z cos 2β
(− 1

2
+ xW

) − m2
τ̃1

mτ (−Aτ + μ tan β)
. (8.67c)

Since we have ignored neutrino masses, the MSSM only contains the scalar

partner for the left-handed neutrino, one for each flavor. Also, because lepton flavor

has been assumed to be conserved, the three sneutrinos cannot mix with one another,

and hence, must be mass eigenstates. For the third generation, we thus have

m2
ν̃τ

= m2
L3 + 1

2
M2

Z cos 2β, (8.68)

where the first term is the soft SUSY breaking mass for the third generation scalar

lepton doublet, and the second term comes from the D-term contribution to the

sneutrino mass. Since there are only superpartners of left-handed neutrinos in the

MSSM, we will henceforth drop the subscript L on the sneutrinos.

The masses of the first and second generation squarks and sleptons can be ob-

tained in exactly the same fashion. However, since first and second generation

quark and lepton masses are small compared to the soft SUSY breaking masses,

intra-generation mixing effects can be neglected so that f̃L and f̃R are essentially

mass eigenstates. To a very good approximation, the masses of the first generation

of sfermions are given by

m2
ũL

= m2
Q1

+ m2
u + M2

Z cos 2β(
1

2
− 2

3
sin2 θW) (8.69a)

m2
d̃L

= m2
Q1

+ m2
d + M2

Z cos 2β(−1

2
+ 1

3
sin2 θW) (8.69b)

m2
ũR

= m2
U1

+ m2
u + M2

Z cos 2β(
2

3
sin2 θW) (8.69c)

m2
d̃R

= m2
D1

+ m2
d + M2

Z cos 2β(−1

3
sin2 θW) (8.69d)

m2
ẽL

= m2
L1

+ m2
e + M2

Z cos 2β(−1

2
+ sin2 θW) (8.69e)

m2
ν̃e

= m2
L1

+ M2
Z cos 2β(

1

2
) (8.69f)

m2
ẽR

= m2
E1

+ m2
e + M2

Z cos 2β(− sin2 θW), (8.69g)
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where the first terms on the right-hand side of these expressions are the soft SUSY

breaking masses for the first generation of sfermions. There are analogous expres-

sions for second generation masses. Notice that we are abusing notation here in

that sometimes we use mt̃L to denote the entire entry in the squark mass matrix

(as implied by these equations), while at other times we use it to denote just the

corresponding soft SUSY breaking mass. We trust that the meaning will be clear

from the context.

We remind the reader that in deriving these MSSM mass spectra, we have

ignored the possibility of c-terms. If such terms are present, like a-terms, they

will contribute to intra-generation sfermion mixing, and possibly also to flavor

physics.

Finally, we stress that (8.68) follows only from SU (2)L gauge symmetry, so that

its analogue for the first two generations of sleptons and squarks (whose Yukawa

couplings are negligible) gives a model independent relation between the physical

masses of the up and down components of the slepton/squark doublets. Most im-

portantly, it tells us that the mass gap between �̃L and the corresponding sneutrino

(� = e, μ), and likewise for the left-squarks, can never be too large. This is clearly

relevant for collider searches for SUSY.

Exercise The alert reader may wonder why the sfermion masses do not equal
the corresponding fermion mass even if we take the “SUSY limit” in the sfermion
mass squared matrix, and set the soft-masses and A-parameters to zero, and take
tan β = 1 so that the Higgs field D-terms vanish in the vacuum. The point is that
within the MSSM, electroweak symmetry is unbroken unless we introduce soft SUSY
breaking masses for the Higgs fields. Then, fermion and sfermion masses become
equal as both vanish!

There is, however, an interesting extension of the MSSM that leads to a SUSY
limit in which electroweak symmetry is spontaneously broken. We need to introduce
a SM “singlet Higgs” superfield N̂ , and choose the superpotential as,

f̂ = f̂ MSSM + λĤu Ĥd N̂ − K N̂ (8.70a)

where the parameter K > 0 has dimensions of mass squared, and appropriate
group contractions are implied. Show that the scalar potential is given by,

V = |λh0
d N + μh0

d |2 + |λh0
u N + μh0

u|2 + |λh0
uh0

d − K |2 + · · · , (8.70b)

where the ellipsis refers to terms involving charged Higgs boson or squark and
slepton fields. Again assuming that these do not develop any VEV, show that this
potential can have a minimum with vu = vd �= 0 and 〈N 〉 �= 0 with λ〈N 〉 + μ = 0.
Notice that because N condenses, there is effectively an additional contribution to
μ equal to λ〈N 〉. In other words, the total “effective μ term” vanishes!
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Work out the top squark mass squared matrix for this model. Show that the off-
diagonal terms vanish, while the diagonal terms are just m2

t . In the sfermion sector,
we thus have what looks like a SUSY limit of the MSSM but with non-vanishing
masses for the fermions and sfermions. This model with the extra gauge singlet
superfield is referred to as the Next to Minimal Supersymmetric Standard Model,
or the NMSSM.

8.4 Interactions in the MSSM

In order to work out the phenomenological implications of the MSSM, we must

first evaluate the interactions of the various superpartners, i.e. the mass eigenstates,

with SM particles. This is done in two steps. First, we write down the interactions

of the primitive fields of the MSSM (the fields with definite SU (3)C × SU (2)L ×
U (1)Y quantum numbers) using our master formula, and then transform these to

the interactions of the mass eigenstates by performing the “rotations” (and, in the

case of the Higgs sector, also a shift) of these fields discussed in the last section.

As in any gauge theory, before proceeding further we must fix a gauge. Since our

attention will be mainly on tree level processes, we will write these in the unitarity

gauge, where only physical fields are present. For many loop calculations, it is more

convenient to work in the renormalizable Rξ gauges, in which the propagator has

better high energy behavior. Then, additional couplings involving Dewitt–Fadeev–

Popov ghosts and unphysical Goldstone bosons must be included. We do not work

these couplings out in this book.

In the following, we first evaluate the interactions in supersymmetric QCD. Next,

we work out the interactions between matter fermions, sfermions, electroweak

gauge bosons and the charginos and neutralinos. We then list the couplings of the

MSSM Higgs bosons to other particles and sparticles. Finally, we list some “hybrid”

interactions of matter sfermions.

8.4.1 QCD interactions in the MSSM

We begin by showing that we can recover the SM QCD Lagrangian written in

Chapter 1 using our master formula. Clearly, the gluon field kinetic energy term

L = − 1
4

Fμν A Fμν

A in the master formula has the usual form, and leads to the three

and four gluon interactions listed in Eq. (1.7).

The kinetic energies and gauge couplings of quarks are contained in the terms,

L � i

2

∑

i

ψ̄i �Dψi ,
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of the master formula, where the ψi are the fermion components of the quark

superfields q̂ and Q̂c. Just as for the electron field in Eq. (8.4), manipulation of the

kinetic energy terms for ψq and ψQc leads to canonically normalized kinetic energy

terms for the Dirac quark field q defined by,

q = PLψq + PRψQc .

To obtain the coupling between quarks and gluons, we must examine the interaction

terms. Using (3.8c) and (3.8d) it is easy to see that

ψ̄q t∗
AG/A PRψq = −ψ̄q tAG/A PLψq,

so that

Lgqq̄ � −gsψ̄q tAG/A PLψq − gsψ̄Qc tAG/A PRψQc

= −gsq̄γμ

λA

2
G Aμq, (8.71)

which is just the interaction in Eq. (1.7).

The gauge invariant kinetic energy term for any flavor of left- or right-type squark

field is,

L � (Dμq̃)†(Dμq̃)

= (∂μq̃† − igsq̃
†tAGμ

A)(∂μq̃ + igstAG Aμq̃).

The cross terms lead to

Lgq̃ ¯̃q = −igs

(

q̃†λA

2
∂μq̃ − ∂μq̃†λA

2
q̃

)

Gμ

A, (8.72)

while the remaining interaction term yields,

Lggq̃ ¯̃q = g2
s q̃†λA

2

λB

2
q̃G AμGμ

B, (8.73)

where matrix multiplication is implied.

Exercise We have obtained the interactions of gluons with q̃L and q̃R. Show that
the interactions of the squark mass eigenstates q̃1 and q̃2 with gluons have the same
forms as in (8.72) and (8.73). This is just the familiar GIM (Glashow–Iliopoulos–
Maiani) mechanism in a different setting.

The gluino–quark–squark interaction comes from the Lagrangian term

L � −
√

2
∑

i,A

S†
i gtAλ̄A

1 − γ5

2
ψi + h.c.,
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with (Si , ψi ) = (q̃L, ψq) or (q̃†
R, ψQc ). For the contribution from the superfield Q̂c,

we write the term involving the right projector from the Hermitian conjugate part,

and then use the Majorana bilinear identities to get the interaction,

L � −
√

2q̃†
La

(
gλA

2

)

ab

λ̄A
1 − γ5

2
ψqb −

√
2q̃†

Ra

(

−gλA

2

)

ab

λ̄A
1 + γ5

2
ψQcb,

where q̃†
R is the field that annihilates the scalar partner of the weak singlet antiquark,

or creates the scalar partner of the right-handed quark. To obtain this form, we must

remember that the superfields q̂ and Q̂c belong to the 3 and 3∗ representations,

respectively, and write the generator tA accordingly. We can allow for the possibly

negative value of M3 by replacing the gaugino λA by (+iγ5)θg̃ g̃A (rather than just

g̃A). Making the additional replacements of PLψq = PLq and PRψQc = PRq to

write the interaction in terms of the Dirac quark field q leads to

Lg̃qq̃ = −
√

2gs(−i)θg̃ q̃†
L

¯̃gA
λA

2
PLq +

√
2gs(i)θg̃ q̃†

R
¯̃gA

λA

2
PRq + h.c. (8.74)

We can take into account intra-generation squark mixing by writing q̃L and q̃R in

terms of the squark mass eigenstates q̃1 and q̃2 defined as in (8.65c). The quark–

squark–gluino interaction then depends on the squark mixing angle, and we have

Lg̃qq̃i = −
√

2gsq̃
†
1

¯̃gA
λA

2

[
(−i)θg̃ cos θq PL + (i)θg̃ sin θq PR

]
q

−
√

2gsq̃
†
2

¯̃gA
λA

2

[
(−i)θg̃ sin θq PL − (i)θg̃ cos θq PR

]
q + h.c.

(8.75)

Although we have written this for generic squarks, in practice, mixing angle effects

are usually only important for the third generation.

We have a gluon–gluino–gluino interaction arising from the minimal coupling

of the color octet gluino,

L � i

2
λ̄A �DλA � −1

2
gs ¯̃gA(tadj

B G/B)AC g̃C,

which leads to

Lgg̃g̃ = i
gs

2
f ABC ¯̃gAγμg̃B Gμ

C. (8.76)

Notice that this interaction is not altered by the transformation, g̃A → (−iγ5)θg g̃A.

Finally, supersymmetry necessarily implies the existence of four squark inter-

actions. These arise from the D-terms on the third line of our master formula, and
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take the form,

L4q̃ = −g2
s

8

∑

A

(
∑

i

q̃†
LiλAq̃Li −

∑

i

q̃†
RiλAq̃Ri

)2

, (8.77)

where i denotes the flavor of the squark. Notice that the cross terms in the sum over

flavors and types imply vertices such as ũ†
RũRb̃†

Lb̃L, where the squark pairs could

have different flavors and/or types. Moreover, for the same reason as in the last

exercise, we see that writing this in terms of mass eigenstates (q̃1 and q̃2) does not

lead to “cross terms” (such as q̃†
1q̃2) in this coupling.

8.4.2 Electroweak interactions in the MSSM

Standard Model interactions

The triple and quartic vector boson gauge self-couplings arise from the squared

field strength term in the master formula Eq. (6.44) and so are exactly as given by

(1.19a) and (1.19b). Next, we turn to the SM electroweak interactions of quarks

and leptons from the master formula. We will first evaluate the couplings of the

up and down quarks to the gauge bosons W ±, Z0 and γ . The starting point in the

master formula is the term,

L � i

2

∑

i

ψ̄i �Dψi

where Dμ = ∂μ + ig(t · Vμ)PL − ig(t∗ · Vμ)PR and i = Q̂, Û c, and D̂c. We will

leave it to the reader to verify that the second and third terms of the covariant

derivative yield identical contributions to the Lagrangian. The SU (2)L and U (1)Y

gauge boson interactions take the form,

L � − g

2

(
ψ̄uL

ψ̄dL

)
( �W3 �W1 − i �W2

�W1 + i �W2 − �W3

) (
ψuL

ψdL

)

− 1

3

g′

2
ψ̄u � B PLψu − 1

3

g′

2
ψ̄d � B PLψd − 4

3

g′

2
ψ̄U c � B PRψU c

+ 2

3

g′

2
ψ̄Dc � B PRψDc .

To write these in terms of the Dirac quark fields u and d, we substitute PLψu =
PLu, PLψd = PLd, PRψU c = PRu, and PRψDc = PRd and, finally, we eliminate

the fields Wi and B in favor of the gauge boson mass eigenstates. The resulting

Lagrangian is,

LW ūd = − g√
2

ūγ μ PLdW +
μ + h.c. (8.78)
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for the charged gauge bosons, and

L = −e(+2

3
)ūγμu Aμ + eūγμ

[

(− 5

12
t + 1

4
c) + (−1

4
c − 1

4
t)γ5

]

u Z0μ (8.79)

for the electromagnetic and Z -boson interactions with u-quarks. Aside from inter-

generational mixing between the quarks, these results are in accord with the SM

interactions that we obtained in Chapter 1. The gauge interactions of other quarks

and leptons can be obtained in the same fashion. These interactions have all been

listed in Eq. (1.16a) and Eq. (1.16b), with coupling constants defined in Table 1.2.

Gauge boson couplings to matter scalars

The interactions of gauge bosons with sfermions originate in the gauge invariant

kinetic terms,

L � (
DμSi

)†
(DμSi ) ,

for the scalars. Notice that in addition to the coupling of a vector boson to a sfermion

pair, these terms also include a two-gauge boson–two-sfermion interaction.

Three-point couplings: W ± bosons do not couple to the SU (2) singlet sfermions

f̃ R. The coupling of W ± to doublet sfermions of the first generation takes the form,

L � − ig√
2

(

ũ†
L∂μd̃L − d̃L∂μũ†

L

)

W +μ − ig√
2

(
ν̃†

e∂μẽL − ẽL∂μν̃†
e

)
W +μ + h.c.

(8.80)

Except for intrageneration sfermion mixing, other sfermion generations couple to

W in exactly the same way. For third generation squarks and sleptons, mixing

effects can be important. These couplings can be readily obtained from Eq. (8.80)

via the replacement,

f̃ L = cos θ f f̃ 1 + sin θ f f̃ 2,

where f = t, b or τ . In addition to these three-point couplings the kinetic energy

term for sfermions also includes a two-gauge boson–two-sfermion interaction. We

will list these couplings shortly.

The interaction of a photon with a sfermion pair is given by,

L � −ieq f

(

f̃ †i ∂μ f̃ i − f̃ i∂μ f̃ †i

)

Aμ, (8.81)

where f̃ is any squark or slepton, q f is the electric charge of the sfermion (which

is, of course, the same as the charge of the corresponding fermion), and i = L or

R. Notice that the photon couples just to left- or to right-sfermion pairs, i.e. there

is no f̃ L f̃ Rγ interaction. Intra-generational (or for that matter, inter-generational)

mixing does not alter the form of (8.81).
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Exercise Show that the conservation of electric current for the coupling,

L = Jμ Aμ,

implies that the photon cannot couple two sfermions with different masses. This
explains why there is no f̃ 1 f̃ 2γ interaction.

The interactions of sfermions with a Z0 boson are given by,

L � ie
[(

α f − β f
)

f̃ †L∂μ f̃ L + (
α f + β f

)
f̃ †R∂μ f̃ R

]

Zμ + h.c., (8.82)

where again f̃ i is any squark or slepton of type i and α f and β f , which also

determine the couplings of Z0 to matter fermions, are given in Table 1.2. Like the

photon, Z0 interactions do not couple left- and right-type sfermions to each other.

This should not be surprising since gauge bosons do not couple left-handed and

right-handed fermions to each other. Supersymmetry then implies that they cannot

couple the respective superpartners to one another either.

Exercise In the presence of intra-generational mixing show that the couplings of
Z0 to sfermions are modified to,

L � ie
[(

α f − β f cos 2θ f
)

f̃ †1∂μ f̃ 1 + (
α f + β f cos 2θ f

)
f̃ †2∂μ f̃ 2

− β f sin 2θ f

(

f̃ †1∂μ f̃ 2 + f̃ †2∂μ f̃ 1

)]

Zμ + h.c. (8.83)

Notice that unlike the photon, Z0 does couple sfermions of different masses together.

Four-point Couplings: We now work out the two-vector boson–two-sfermion

couplings that are also contained in the gauge invariant kinetic energy terms. The

covariant derivative for squark fields can be written as,

DμũL = ∂μũL + i

(

equ Aμ − e(αu − βu)Zμ + gs
λA

2
G Aμ

)

ũL + ig√
2

W +
μ d̃L,

Dμd̃L = ∂μd̃L + i

(

eqd Aμ − e(αd − βd)Zμ + gs
λA

2
G Aμ

)

d̃L + ig√
2

W +
μ ũL,

DμũR = ∂μũR + i

(

equ Aμ − e(αu + βu)Zμ + gs
λA

2
G Aμ

)

ũR,

Dμd̃R = ∂μd̃R + i

(

eqd Aμ − e(αd + βd)Zμ + gs
λA

2
G Aμ

)

d̃R,

where q f , α f , and β f are defined in Table 1.2. Here, ũ and d̃ denote any up- or

down-type squark. Except for obvious replacements and the absence of the gluon
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field, �̃L, �̃R, and sneutrino covariant derivatives are identical to those for d̃L, d̃R

and ũL, respectively.6

The quartic interactions that we mentioned are now easy to work out. The inter-

actions with photons, Z0, and gluons can be written as

LV V f̃ f̃ = f̃ †L/R

(

eq f Aμ − e(α f ∓ β f )Zμ + ξ f gs
λA

2
G Aμ

)

×
(

eq f Aμ − e(α f ∓ β f )Zμ + ξ f gs
λB

2
Gμ

B

)

f̃ L/R, (8.84a)

where the minus sign in the terms involving Z0 is for f̃ L and the plus sign for f̃ R

and ξ f = 1 for squarks and ξ f = 0 for charged sleptons and sneutrinos. Notice that

in addition to just electroweak interactions, squarks also have QCD–electroweak

hybrid interactions. Quartic interactions involving W ± bosons can be written as

LW W f̃ f̃ = 1

2
g2 f̃ †L f̃ LW ±

μ W ∓μ (8.84b)

where f̃ L = ũL, d̃L, �̃L or ν̃. Finally, the interactions involving both neutral and

charged gauge bosons are,

LV W ũd̃ = g√
2

ũ†
L

(

e(qu + qd)Aμ − e(αu + αd)Zμ + gs
λA

2
G Aμ

)

W +μd̃L

+ g√
2
ν̃
†
L

(
eq� Aμ − e(α� + αν)Zμ

)
W +μ�̃L + h.c. (8.84c)

Left-type squark pairs have a contact interaction with the W -boson gluon pair.

In writing Eq. (8.84a)–(8.84c) we have ignored intragenerational mixing of

sfermions. This can be easily included by writing f̃ L and f̃ R in terms of the mass

eigenstates. Clearly, the four-point interactions involving just gluons and photons

will couple just f̃ 1 f̃ 1 and f̃ 2 f̃ 2 pairs, while the others will couple f̃ 1 f̃ 2 pairs as

well.

Chargino and neutralino couplings to matter

Because these are dimension four interactions, these interactions are unaffected

by the soft SUSY breaking terms. There are just two sources of these couplings.

First, the gaugino components of charginos and neutralinos couple to fermions and

sfermions via the term

L � −
√

2
∑

i,A

gS†
i tAλ̄A

1 − γ5

2
ψi + h.c.,

6 These covariant derivatives give an alternative way to write down the coupling of any gauge boson to a sfermion
pair.
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in Eq. (6.44). These couplings are completely determined by gauge interactions

and various sparticle mixing matrices. The higgsino components of the charginos

and neutralinos also contribute to these couplings via superpotential Yukawa inter-

actions contained in

L � −1

2
ψ̄i

(

∂2 f̂

∂Ŝi∂Ŝ j

)

Ŝ=S
PLψ j + h.c.

For most purposes, these couplings are only important for the third generation.

We begin by evaluating the neutralino–quark–squark couplings arising from

gaugino interactions. The relevant terms are contained in

L � − 1√
2

{
(

ũ†
L d̃†

L

)
(

gλ̄3 + g′
3
λ̄0 g(λ̄1 − iλ̄2)

g(λ̄1 + iλ̄2) −gλ̄3 + g′
3
λ̄0

)

PL

(
ψu

ψd

)

+ ũ†
Rg′

(

−4

3

)

λ̄0 PRψU c + d̃†
Rg′

(

+2

3

)

λ̄0 PRψDc

}

+ h.c., (8.85)

where, for convenience, we have written the Hermitian conjugate of the terms

involving the SU (2) singlet antiquarks. The interactions of charged sleptons and

sneutrinos can be obtained by replacing ũL → ν̃, d̃L → �̃, d̃R → �̃R, dropping the

term involving ũR, and replacing 2/3, the weak hypercharge of the SU (2) singlet d̄,

by 2, the hypercharge of the antilepton. We also need to replace the quark hyper-

charges that multiply λ̄0 by corresponding lepton or neutrino hypercharges, and also

appropriately replace the quark Majorana spinors by those of the lepton/neutrino.

We proceed, however, to extract the quark–squark–neutral gaugino interactions, and

eliminate the Majorana fields in favor of the Dirac quark fields using PLψu = PLu,

PLψd = PLd, PRψU c = PRu and PRψDc = PRd. Finally, using Eq. (8.50) and

(8.51), we substitute λ3 = ∑

i v
(i)
3 (iγ5)θi Z̃i , and λ0 = ∑

i v
(i)
4 (iγ5)θi Z̃i to write,

L f̃ f Z̃i
=

∑

f =u,d,�,ν

[

iA f
Z̃i

f̃ †L Z̃ i PL f + iB f
Z̃i

f̃ †R Z̃ i PR f + h.c.
]

, (8.86)

where

Au
Z̃i

= (−i)θi −1

√
2

[

gv
(i)
3 + g′

3
v

(i)
4

]

, (8.87a)

Ad
Z̃i

= (−i)θi −1

√
2

[

−gv
(i)
3 + g′

3
v

(i)
4

]

, (8.87b)

Bu
Z̃i

= 4

3
√

2
g′(i)θi −1v

(i)
4 and (8.87c)

Bd
Z̃i

= − 2

3
√

2
g′(i)θi −1v

(i)
4 . (8.87d)
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The couplings of leptons and sleptons to neutralinos have the same form as in

(8.86) above, but with couplings given by

A�

Z̃i
= − (−i)θi −1

√
2

[

gv
(i)
3 + g′v(i)

4

]

, (8.88a)

Aν

Z̃i
= (−i)θi −1

√
2

[

gv
(i)
3 − g′v(i)

4

]

, (8.88b)

B�

Z̃i
= −(i)θi −1

√
2g′v(i)

4 and (8.88c)

Bν

Z̃i
= 0. (8.88d)

Next, we turn to the contribution to fermion–sfermion–neutralino interactions

that arise from the superpotential terms,

L � −1

2
ψ̄i

(

∂2 f̂

∂Ŝi∂Ŝ j

)

Ŝ=S
PLψ j + h.c.,

with

f̂ � fuûĥ0
uÛ c + fd d̂ ĥ0

d D̂c + feêĥ0
d Êc + · · · ,

where the ellipsis denotes Yukawa couplings for the second and third generations.

For up- (down-)type (s)fermions, we have contributions when one of ψi , ψ j is ψh0
u

(ψh0
d
), with the other one being ψ f or ψFc . It is straightforward to check that these

contributions can be written as,

L � − f f v
(i)
a (−i)θi f̃ †R Z̃ i PL f − f f v

(i)
a (i)θi f̃ †L Z̃ i PR f,

with a = 1 for up-type (s)fermions, and a = 2 for down-type ones. Combining this

with the contributions (8.86) from the gaugino components of neutralinos, we have,

LZ̃i f f̃ � f̃ †L Z̃ i

(

iA f
Z̃i

PL − (i)θi f f v
(i)
a PR

)

f

+ f̃ †R Z̃ i

(

iB f
Z̃i

PR − (−i)θi f f v
(i)
a PL

)

f + h.c. (8.89)

Finally, eliminating f̃ L and f̃ R in favor of the sfermion mass eigenstates f̃ 1 and

f̃ 2, we arrive at

LZ̃i f f̃ = f̃ †j Z̃ i

[

α
f̃ j

Z̃i
PL + β

f̃ j

Z̃i
PR

]

f + h.c., (8.90)
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with

α
f̃ 1

Z̃i
= iA f

Z̃i
cos θ f + (−i)θi f f v

(i)
a sin θ f , (8.91a)

β
f̃ 1

Z̃i
= −iB f

Z̃i
sin θ f − (i)θi f f v

(i)
a cos θ f , (8.91b)

α
f̃ 2

Z̃i
= iA f

Z̃i
sin θ f − (−i)θi f f v

(i)
a cos θ f , (8.91c)

β
f̃ 2

Z̃i
= iB f

Z̃i
cos θ f − (i)θi f f v

(i)
a sin θ f . (8.91d)

Again, a = 1 if f is an up-type quark, and a = 2 if it is a down-type quark or

a charged lepton. Since we do not have a right-handed neutrino superfield, the

neutrino–sneutrino–neutralino coupling is given by (8.86).

The interactions of charginos with either squarks and quarks or sleptons and lep-

tons can be calculated in a similar fashion. For chargino–quark–squark interactions,

using (8.85) we find that

L � −gũ†
Lλ̄PLd − gd̃†

Lλc PLu + h.c.

Here, λc is the charge conjugate of the charged Dirac gaugino λ. Eliminating λ and

λc in favor of the chargino mass eigenstates, we find

L � iAd
W̃i

ũ†
LW̃ i PLd + iAu

W̃i
d̃†

LW̃ c
i PLu + h.c., (8.92)

where

Ad
W̃1

= i(−1)θW̃1 g sin γR, (8.93a)

Ad
W̃2

= i(−1)θW̃2 θyg cos γR, (8.93b)

Au
W̃1

= ig sin γL, (8.93c)

Au
W̃2

= iθx g cos γL. (8.93d)

These couplings, which originate in the gauge interactions, are generation indepen-

dent; i.e. u and d (ũL and d̃L) respectively refer to any up- and down-type quark

(squark). Moreover, the coupling of charginos to leptons and sleptons is identical,

with the identification u → ν and d → �.

There are also superpotential contributions to these chargino interactions that

can be worked out in the same way as for neutralinos. We will leave it to the reader

to work out that including these leads to the couplings,

LũdW̃i
= ũ†

1W̃ i

[

(iAd
W̃i

cos θu − BW̃i
sin θu)PL + B ′

W̃i
cos θu PR

]

d

+ ũ†
2W̃ i

[

(iAd
W̃i

sin θu + BW̃i
cos θu)PL + B ′

W̃i
sin θu PR

]

d + h.c.,

(8.94)
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where

BW̃1
= −(−1)θW̃1 fu cos γR, (8.95a)

BW̃2
= (−1)θW̃2 θy fu sin γR, (8.95b)

B ′
W̃1

= − fd cos γL, (8.95c)

B ′
W̃2

= fdθx sin γL. (8.95d)

For chargino–sbottom–top interactions, we have

Ld̃uW̃i
= d̃†

1W̃ c
i

[

(iAu
W̃i

cos θd − B ′
W̃i

sin θd)PL + BW̃i
cos θd PR

]

u

+ d̃†
2W̃ c

i

[

(iAu
W̃i

sin θd + B ′
W̃i

cos θd)PL + BW̃i
sin θd PR

]

u + h.c.

(8.96)

Finally, the chargino–slepton–neutrino and chargino–sneutrino–lepton interactions

can be obtained by replacing u → ν and d → � everywhere including in the defi-

nitions of the couplings in (8.95a)–(8.95d). We then have,

Lτ̃ ντ W̃i
= τ̃

†
1 W̃ c

i

[

(iAν

W̃i
cos θτ − B ′′

W̃i
sin θτ )PLντ

]

+ τ̃
†
2 W̃ c

i

[

(iAν

W̃i
sin θτ + B ′′

W̃i
cos θτ )PL

]

ντ

+ ν̃†
τ W̃ i

[

iAτ

W̃i
PL + B ′′

W̃i
PR

]

τ + h.c., (8.97)

with

Aν

W̃i
= Au

W̃i
, (8.98a)

Aτ

W̃i
= Ad

W̃i
, (8.98b)

B ′′
W̃1

= − fτ cos γL, (8.98c)

B ′′
W̃2

= fτ θx sin γL. (8.98d)

Gauge boson interactions with charginos and neutralinos

These interactions arise from two sources, both of which are supersymmetric. First,

there is the contribution from gaugino kinetic energy terms,

L � i

2
λ̄ �Dλ,

in the master formula, with the covariant derivative involving gauge group

generators in the adjoint representation: (�Dλ)A = ∂/ λA + ig(tadj
B �WB)ACλC, with
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[tadj
B ]AC = −iεAC B . The SU (2)L gauginos thus have a coupling of the form

L � −ig

2

(−λ̄1 �W3λ2 + λ̄1 �W2λ3 + λ̄2 �W3λ1 − λ̄2 �W1λ3

−λ̄3 �W2λ1 + λ̄3 �W1λ2

)
,

= g
[
λ̄ �W3λ − (λ̄ �W −λ3 + h.c.)

]
,

while there is no coupling to the hypercharge gaugino. To obtain the last step, we

have used λ̄3γμλc = −λ̄γμλ3, as the reader can readily verify.

There are also higgsino contributions

L � i

2

[
(
ψ̄h+

u
ψ̄h0

u

) i

2

[
g �W3 + g′ � B g �W1 − ig �W2

g �W1 + ig �W2 −g �W3 + g′ � B
]

PL

(
ψh+

u

ψh0
u

)

+ (
ψ̄h−

d
ψ̄h0

d

) i

2

[ −g �W3 − g′ � B −g �W1 − ig �W2

−g �W1 + ig �W2 g �W3 − g′ � B
]

PL

(
ψh−

d

ψh0
d

)]

+ h.c.

Exercise Verify that we can write the gaugino and higgsino contributions as:

L � g
{
λ̄ �W3λ − (λ̄ �W −λ3 + h.c.)

}

+ 1

2
¯̃χ

(
g �W3 + g′ � B)

χ̃

+ 1

4

√
g2 + g′2

(

ψ̄h0
u
γμγ5ψh0

u
− ψ̄h0

d
γμγ5ψh0

d

)

Zμ

− g√
2

( ¯̃χ �W − PRψh0
u
− ¯̃χ �W − PLψh0

d
+ h.c.).

Here, the first line clearly comes from the couplings of the gauginos to gauge
bosons, while the rest comes from the gauge interactions of higgsinos.

We can now write these in terms of the chargino and neutralino mass eigenstates

to obtain the following couplings to the photon and Z0 boson:

L = e
(

W̃ 1γμW̃1 + W̃ 2γμW̃2

)

Aμ

− e cot θWW̃ 1γμ(xc − ycγ5)W̃1 Zμ − e cot θWW̃ 2γμ(xs − ysγ5)W̃2 Zμ

+ (−1)(θW̃1
+θW̃2

) e

2
(cot θW + tan θW)

×
[

W̃ 1γμ(xγ5 − y)(γ5)(θW̃1
+θW̃2

)W̃2 Zμ + h.c.
]

,

(8.99)
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where

xc = 1 − 1

4
sec2 θW(cos2 γL + cos2 γR), (8.100a)

yc = 1

4
sec2 θW(cos2 γR − cos2 γL), (8.100b)

xs = 1 − 1

4
sec2 θW(sin2 γL + sin2 γR), (8.100c)

ys = 1

4
sec2 θW(sin2 γR − sin2 γL), (8.100d)

x = 1

2
(θx sin γL cos γL − θy sin γR cos γR), and (8.100e)

y = 1

2
(θx sin γL cos γL + θy sin γR cos γR). (8.100f)

Notice that the photon does not couple to the W̃ +
1 W̃ −

2 pair, as may be expected from

the conservation of electromagnetic current.

The couplings of Z0 with the neutralinos arise only via their higgsino compo-

nents, and are given by,

L = 1

4

√
g2 + g′2

∑

i, j

(−i)θi (i)θ j (v
(i)
1 v

( j)
1 − v

(i)
2 v

( j)
2 ) Z̃ iγμ(γ5)θi +θ j +1 Z̃ j Zμ

≡
∑

i j

Wi j Z̃ iγμ(γ5)θi +θ j +1 Z̃ j Zμ. (8.101)

In models where |μ| � (�)|M1,2|, the neutralinos Z̃1 and Z̃2 (Z̃3 and Z̃4) are mainly

gaugino-like so that their couplings to Z0 are strongly suppressed by mixing angles.

The couplings of neutralino pairs to gauge bosons are, therefore, very sensitive to

model parameters. This is not the case for charginos. Their couplings to the photon

are fixed by their electric charge. Moreover, chargino pairs couple to Z0 via both

their gaugino as well as their higgsino components, so that their couplings to vector

bosons are much more robust.

Exercise If tan β = 1 show that the higgsino 1√
2
(ψh0

u
+ ψh0

d
) has mass |μ| but that

Z0 does not couple to a pair of these higgsinos.

Finally for charged vector bosons, substituting in terms of the mass eigenstates,

we obtain,

L = −g(−i)θ j
∑

i, j

W̃ i

(

X j
i + Y j

i γ5

)

γμ Z̃ j W
μ + h.c., (8.102)
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with

X j
1 = 1

2

[

(−1)θW̃1
+θ j

(
cos γR√

2
v

( j)
1 + sin γRv

( j)
3

)

−cos γL√
2

v
( j)
2 + sin γLv

( j)
3

]

, (8.103a)

X j
2 = 1

2

[

(−1)θW̃2
+θ j θy

(− sin γR√
2

v
( j)
1 + cos γRv

( j)
3

)

+ θx

(
sin γL√

2
v

( j)
2 + cos γLv

( j)
3

)]

. (8.103b)

The Y j
1,2 can be obtained from the X j

1,2 by changing the sign of just the first term

inside the square brackets. We see that W bosons couple to the chargino–neutralino

system via both gaugino and higgsino components. In this sense, W W̃i Z̃ j couplings

should, like the couplings of Z0 to charginos, also be quite robust. Only if |M1| �
|M2| and |μ| (in which case the neutralino is dominantly a hypercharge gaugino)

is this coupling dynamically suppressed.

8.4.3 Interactions of MSSM Higgs bosons

Higgs boson couplings to SM fermions

The interactions of Higgs bosons with SM fermions arise directly from the terms,

L � −1

2

∑

i, j

ψ̄i
∂2 f̂

∂Ŝi∂Ŝ j

∣
∣
∣
∣
∣
Ŝ=S

PLψ j + h.c.,

in our master formula. We have already examined a portion of these terms when

we discussed masses for the SM fermions. Our present discussion proceeds along

the same lines. The superpotential contains

f̂ � fu(ûĥ0
u − d̂ ĥ+

u )Û c + fd(ûĥ−
d + d̂ ĥ0

d)D̂c + fe(ν̂τ ĥ−
d + êĥ0

d)Êc + · · ·
We can easily work out the coupling of Dirac fermions to the scalar components in

ĥu to obtain,

L � − fuū PLuh0
u − fuū PRuh0†

u

We can now eliminate h0
u in favor of the Higgs mass eigenstates using (8.35) and

(8.40a). Recalling that fu = gmu/
√

2MW sin β we find the required Lagrangian

density,

L � − gmu

2MW sin β
[cos αūuh − sin αūu H − i cos βūγ5u A] . (8.104)
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A similar calculation for the down-type quark and charged lepton Yukawa interac-

tions yields,

L � − gmd

2MW cos β

[
sin αd̄dh + cos αd̄d H − i sin βd̄γ5d A

]

− gme

2MW cos β
[sin αēeh + cos αēeH − i sin β ēγ5eA] . (8.105)

The interactions with charged Higgs bosons can be similarly obtained by eliminat-

ing h+
u and h−

d using (8.30):

L � g

2
√

2MW

H+ [(mu cot β + md tan β)ūd + (md tan β − mu cot β)ūγ5d

+ me tan βν̄e(1 + γ5)e] + h.c. (8.106)

Higgs boson couplings to vector bosons

As in any Yang–Mills theory, the coupling of vector bosons to Higgs boson pairs

is fixed by the minimal coupling prescription; i.e. these arise from cross terms in

the scalar field kinetic energy terms

L � (DμSi )
†(DμSi ),

where Si = Hu and Hd . Expanding these terms and substituting for the physical

vector boson and Higgs fields yields the expected photon coupling to the charged

Higgs boson pair,

L � ie
(
H+∂μ H− − H−∂μ H+)

Aμ. (8.107)

The Z0 boson couples to both charged as well as neutral Higgs fields, with

couplings given by,

L � i

2
(g′ sin θW − g cos θW)

(
H+∂μ H− − H−∂μ H+)

Z0μ, (8.108)

and

L � 1

2
(g′ sin θW + g cos θW)

[
cos(α + β)

(
h∂μ A − A∂μh

)

− sin(α + β)
(
H∂μ A − A∂μ H

)]
Z0μ. (8.109)

Notice that Z0 only couples the pseudoscalar boson to a scalar boson. Couplings

of Z0 to hh, h H , and H H pairs are forbidden by the assumed C P invariance of

the Higgs boson sector.
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The couplings of W bosons to pairs of Higgs bosons are given by,

L � i
g

2

[
cos(α + β)

(
h∂μ H− − H−∂μh

) − sin(α + β)
(
H∂μ H− − H−∂μ H

)

+ i
(

A∂μ H− − H−∂μ A
)]

W +μ + h.c. (8.110)

The gauge kinetic term for the Higgs fields also contains two-vector boson–two-

Higgs boson couplings. These are given by,

L � H+ H−
[

e2 Aμ Aμ + 1

4
(g′ sin θW − g cos θW)2 Z0μZ0

μ

+ e(g′ sin θW − g cos θW)AμZ0
μ + g2

2
W +μW −

μ

]

, (8.111a)

L �
(

g2

4
W +μW −

μ + 1

8
(g cos θW + g′ sin θW)2 Z0μZ0

μ

)
[
h2 + H 2 + A2

]
,

(8.111b)

and

L � 1

2
eg

(
Aμ + tan θW Z0μ

)
W −

μ H+

× [cos(α + β)h − sin(α + β)H − iA] + h.c. (8.111c)

Finally, a vector boson–vector boson–Higgs boson coupling can also arise from

the four-point interactions in the case when one of the neutral Higgs fields is replaced

by its vacuum expectation value. Instead of starting over, we can get these couplings

from the four-point couplings that we have just obtained in (8.111b) and (8.111c),

and simply set one of the neutral fields to their VEV using Eq. (8.40a):

〈h〉 =
√

2 (cos αvu + sin αvd) ,

〈H〉 =
√

2 (cos αvd − sin αvu) ,

〈A〉 = 0.

The resulting interaction is,

L � gMW

(

W +μW −
μ + Z0μZ0

μ

2 cos2 θW

)

[sin(α + β) h + cos(α + β) H ] . (8.112)

Notice that there is no Z0W − H+ coupling and, by electromagnetic gauge invari-

ance, also no γ W − H+ coupling.
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Higgs boson self-couplings

We have already remarked at the end of Section 8.2 that in the MSSM, quartic

interactions of Higgs fields arise only from D-terms, and so are completely de-

termined by gauge couplings. Since we have already worked out the complete

potential in (8.25), it is straightforward to write the quartic couplings in terms of

mass eigenstates. We find,

L � − 1

8

{
2g2 H+ H− [

cos2(β − α)h2 + sin2(β − α)H 2

+ sin 2(β − α)h H + cos2 2β A2
]

+ (g2 + g′2) cos2 2β(H+ H−)2 + 1

4
(g2 + g′2)

× [
cos 2α (h2 − H 2) − 2 sin 2α h H + cos 2β A2

]2

− (g2 − g′2) cos 2β H+ H− [
cos 2α(h2 − H 2) − 2 sin 2αh H + cos 2β A2

]}
.

(8.113)

We see that the Higgs quartic scalar self-couplings are all fixed by gauge inter-

actions. This is the origin of the tree-level bounds on mh in (8.39a) and (8.39b),

respectively. That these bounds are special to the MSSM is exemplified by the

following exercise.

Exercise Show that if the Higgs sector of the MSSM is extended by the inclusion
of an extra SU (3)C × SU (2)L × U (1)Y singlet (as in the exercise at the end of
Section 8.3), the quartic self interactions of Higgs bosons are no longer determined
by just the gauge couplings. Convince yourself that the tree-level bounds on mh are
not valid in this case.

The D-terms also result in trilinear couplings amongst the Higgs fields. As

before, we can obtain these by setting one of the neutral Higgs fields to their VEV.

The result is,

L � − 1

8

{
H+ H−[8gMW (sin(α + β)h + cos(α + β)H )

+ 4gMZ cos 2β

cos θW

(sin(β − α) h − cos(β − α) H )]

+ 2gMZ

cos θW

[sin(β − α) h − cos(β − α) H ]

× [
cos 2α h2 − cos 2α H 2 − 2 sin 2α h H + cos 2β A2

]}
. (8.114)
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Notice that although these are all dimension 3 operators, there are no explicit soft

SUSY breaking contributions to these interactions. This is because there is no

gauge-invariant combination of three Higgs field doublets.

Higgs boson couplings to charginos and neutralinos

Supersymmetry dictates that Higgs bosons must interact with charginos and

neutralinos. Since trilinear Higgs boson terms in the superpotential are forbidden

by gauge invariance, these interactions can arise only from the couplings of Higgs

bosons and higgsinos to SU (2) × U (1) gauginos. Letting Si = Hu and Hd in the

terms

L � −
√

2
∑

i,A

S†
i gtAλ̄A

1 − γ5

2
ψi + h.c.

in the master formula, and eliminating the original fields in favor of the mass

eigenstate fields leads to the required interactions. Since we have already done

several similar calculations, we will simply present the final results.

The couplings of the light Higgs scalar to charginos and neutralinos are given

by

L = g
√

2Sh
1 W̃ 1W̃1h + g

√
2Sh

2 W̃ 2W̃2h +
[

g√
2

W̃ 1(Sh + Phγ5)W̃2h + h.c.

]

+
∑

i, j

Xh
i j Z̃ i (−iγ5)θi +θ j Z̃ j h, (8.115)

where

Sh
1 = 1

2
(−1)θW̃1 [sin α sin γR cos γL + cos α sin γL cos γR], (8.116a)

Sh
2 = 1

2
(−1)θW̃2

+1
θxθy[sin α cos γR sin γL + cos α cos γL sin γR], (8.116b)

Sh = 1

2

[−(−1)θW̃1 θx sin γR sin γL sin α + (−1)θW̃1 θx cos γL cos γR cos α

− (−1)θW̃2 θy sin γL sin γR cos α + (−1)θW̃2 θy cos γL cos γR sin α
]
,

(8.116c)

and Ph is the same as Sh except that the signs of the first two terms are reversed.

Finally,

Xh
i j = −1

2
(−1)θi +θ j

(

v
(i)
2 sin α − v

(i)
1 cos α

) (

gv
( j)
3 − g′v( j)

4

)

. (8.117)
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The couplings of the heavy scalar H can be obtained from those of h by replacing

cos α → − sin α and sin α → cos α.

The corresponding couplings of the pseudoscalar A are given by

L � ig
√

2S A
1 W̃ 1γ5W̃1 A + ig

√
2S A

2 W̃ 2γ5W̃2 A

+
[−ig√

2
W̃ 1(S A + P Aγ5)W̃2 A + h.c.

]

+
∑

i, j

X A
i j Z̃ i (−iγ5)θi +θ j +1 Z̃ j A, (8.118)

where

S A
1 = 1

2
(−1)θW̃1 [sin γR cos γL sin β + sin γL cos γR cos β], (8.119a)

S A
2 = −1

2
(−1)θW̃2 θxθy[cos γR sin γL sin β + cos γL sin γR cos β], (8.119b)

S A = 1

2

[−(−1)θW̃1 θx sin γR sin γL sin β + (−1)θW̃1 θx cos γL cos γR cos β

+ (−1)θW̃2 θy sin γL sin γR cos β − (−1)θW̃2 θy cos γL cos γR sin β
]
,

(8.119c)

and P A is obtained by reversing the sign of the first two terms of the expression for

S A. The coupling of A to neutralinos is,

X A
i j = 1

2
(−1)θi +θ j

(

v
(i)
2 sin β − v

(i)
1 cos β

) (

gv
( j)
3 − g′v( j)

4

)

. (8.120)

Note that h and H couple to the scalar combination of W̃i W̃i or Z̃i Z̃i while A
couples to the pseudoscalar combination. It is for this reason that we refer to h and

H as scalars, and to A as a pseudoscalar.

Finally, the interactions of the charged Higgs bosons are given by,

L =
∑

k

(i)θk

[

cos β A(k)
1 θy(−1)θW̃2 Z̃ k PRW̃2 + cos β A(k)

2 (−1)θW̃1 Z̃ k PRW̃1

− sin β A(k)
3 θx (−1)θk Z̃ k PLW̃2 − sin β A(k)

4 (−1)θk Z̃ k PLW̃1

]

H+ + h.c.

(8.121)
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with

A(k)
1 = − 1√

2

(

gv
(k)
3 + g′v(k)

4

)

sin γR − gv
(k)
1 cos γR, (8.122a)

A(k)
2 = 1√

2

(

gv
(k)
3 + g′v(k)

4

)

cos γR − gv
(k)
1 sin γR, (8.122b)

A(k)
3 = − 1√

2

(

gv
(k)
3 + g′v(k)

4

)

sin γL + gv
(k)
2 cos γL, (8.122c)

A(k)
4 = 1√

2

(

gv
(k)
3 + g′v(k)

4

)

cos γL + gv
(k)
2 sin γL. (8.122d)

Higgs boson couplings to squarks and sleptons

In addition to the couplings that we have listed, there are several four scalar interac-

tions in the MSSM. Since these are dimension four operators, there are no explicit

soft-SUSY breaking contributions to these.

The D-term contributions from the term

L � −1

2

∑

A

∣
∣
∣
∣
∣

∑

i

S†
i gαtαASi

∣
∣
∣
∣
∣

2

in the master formula can be written as,

L � −1

2

{

g2

4

[

(h+†
u h0

u + h0†
u h+

u ) − (h−†
d h0

d + h0†
d h−

d )

+ (ν̃†
e ẽL + ẽ†Lν̃e) + (ũ†

Ld̃L + d̃†
LũL) + · · ·

]2

− g2

4

[

(h+†
u h0

u − h0†
u h+

u ) + (h−†
d h0

d − h0†
d h−

d )

+ (ν̃†
e ẽL − ẽ†Lν̃e) + (ũ†

Ld̃L − d̃†
LũL) + · · ·

]2

+ g2

4

[

(h+†
u h+

u − h0†
u h0

u) − (h−†
d h−

d − h0†
d h0

d)

+ (ν̃†
e ν̃e − ẽ†LẽL) + (ũ†

LũL − d̃†
Ld̃L) + · · ·

]2

+ g′2
[

H †
u Hu − H †

d Hd − L̃†
e L̃e + 1

3
Q̃†

1 Q̃1 + · · ·
2

+ ẽ†RẽR − 2

3
ũ†

RũR + 1

3
d̃†

Rd̃R + · · ·
]2

}

− g2
s

8

∑

A

(
∑

i

q̃†
LiλAq̃Li −

∑

i

q̃†
RiλAq̃Ri

)2

. (8.123)
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The ellipses denote sfermion terms from the second and third generations. In the

first term of the last square parenthesis, an SU (2) matrix product is implied; i.e.

h†
uhu ≡ h+†

u h+
u + h0†

u h0
u , etc. and L̃e and Q̃1 denote the first generation slepton

and squark doublets, respectively. The last term is just the squark D-terms from

supersymmetric QCD discussed previously.

We have already seen some of these terms before. For instance, terms involving

the squares of bilinears in just the Higgs fields lead to the quartic self-interactions

in (8.113). We see that there are several other quartic self-interactions that originate

in these D-terms:

1. The cross terms between the Higgs and scalar matter bilinears lead to four-point

vertices involving a pair of Higgs bosons and a pair of scalars (squarks or

sleptons). These Higgs boson couplings are fixed by gauge interactions and,

hence, are generation-independent. In the case where both the Higgs bosons are

neutral, a quick examination shows that there is no h Aq̃q̃ or H Aq̃q̃ coupling

or, for that matter, the corresponding slepton couplings.

2. The squares of the sfermion bilinears lead to several new quartic interactions

amongst squarks and sleptons. These include four squark interactions, four

slepton interactions, and also two squark two slepton contact interactions.

All these couplings are again fixed by gauge interactions. Notice that the

sfermions participating in these interactions may be of the same or different

type (L or R) and of the same or different flavor. Note also that although some

of the four squark couplings, for instance, the four ũR couplings from the

hypercharge D-term, superficially resemble that from the QCD interaction, the

color structure of these interactions is quite different.

Trilinear superpotential terms also yield four scalar interactions determined by

the Yukawa couplings. Clearly there are many such terms – even for just one

generation there are 7 + 4 = 11 terms corresponding to taking the derivative of

the superpotential with respect to any of the seven chiral matter fields (û, d̂, ê, ν̂,

Û c, D̂c, and Êc) or the four Higgs fields. We will leave it to the interested reader

to enumerate all the terms which are straightforward to list, but only illustrate the

form of the result with just one term arising from the derivative with respect to ĥ−
d .

This yields the interactions,

L = −
∣
∣
∣ fd ũLd̃†

R + feν̃ẽ†R + · · ·
∣
∣
∣
2

, (8.124)

where the ellipsis denotes contributions from the second and third generations. The

following features of the four-point interactions from D-terms and F-terms might

be worth noting.
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� The superpotential F-terms do not contribute to Higgs potential.
� Both D- and F-terms yield four scalar interactions as well as two sfermion two

Higgs boson couplings. However, unlike the generation-independent D-terms, the

superpotential couplings are important only for the third generation. In particular,

four scalar couplings from the superpotential that involve sfermions of different

generations are small.
� The bilinears that enter the D-terms always involve matter sfermions of the same

type (L or R). In contrast, the corresponding F-term bilinears always couple L

and R sfermions together. The form of the couplings in (8.123) and in (8.124) is,

therefore, quite different.

It is now straightforward to write the interactions in (8.123) and (8.124) in terms

of the mass eigenstate fields. However, since we will not have any occasion to use

these couplings in the remainder of this book, we have chosen not to list the lengthy

and cumbersome formulae that result upon doing so.

The quartic interactions of Higgs and sfermion fields also lead to H f̃ f̃ couplings

if one of the Higgs fields acquires a VEV. In addition, soft SUSY breaking scalar

trilinear couplings (A-terms) are an additional source of these interactions. The

process of obtaining the couplings of the physical Higgs fields to the left- and

right-squark fields is lengthy but straightforward. We present here the results for

a single generation of squarks. Of course, q̃L and q̃R need to be replaced by the

corresponding mass eigenstates to obtain the coupling to physical particles.

The couplings of squarks to charged Higgs bosons are given by,

LH+q̃q̃ � g

[

− MW√
2

sin 2β + m2
d tan β + m2

u cot β√
2MW

] (

ũ†
Ld̃L H+ + d̃†

LũL H−
)

+
[

gmumd(cot β + tan β)√
2MW

] (

ũ†
Rd̃R H+ + d̃†

RũR H−
)

+
[ −gmd√

2MW

(Ad tan β + μ)

] (

ũ†
Ld̃R H+ + d̃†

RũL H−
)

+
[ −gmu√

2MW

(Au cot β + μ)

] (

ũ†
Rd̃L H+ + d̃†

LũR H−
)

. (8.125a)

Here, and in the following, we have eliminated the Yukawa couplings in favor of

the corresponding quark mass.

The couplings to the lighter scalar h are,

Lhq̃q̃ � g

[

MW (T3ûL
− 1

2
YûL

tan2 θW) sin(β − α) − m2
u cos α

MW sin β

]

ũ†
LũLh

+ g

[

MW (T3d̂L
− 1

2
Yd̂L

tan2 θW) sin(β − α) − m2
d sin α

MW cos β

]

d̃†
Ld̃Lh

https://doi.org/10.1017/9781009289801.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289801.009


8.4 Interactions in the MSSM 183

+ g

[

MW (T3Û c − 1

2
YÛ c tan2 θW) sin(β − α) − m2

u cos α

MW sin β

]

ũ†
RũRh

+ g

[

MW (T3D̂c − 1

2
YD̂c tan2 θW) sin(β − α) − m2

d sin α

MW cos β

]

d̃†
Rd̃Rh

+ gmd

2MW cos β
(−μ cos α + Ad sin α)

(

d̃†
Ld̃R + d̃†

Rd̃L

)

h

+ gmu

2MW sin β
(−μ sin α + Au cos α)

(

ũ†
LũR + ũ†

RũL

)

h, (8.125b)

while the corresponding couplings to H are given by,

LHq̃q̃ � g

[

−MW (T3ûL
− 1

2
YûL

tan2 θW) cos(β − α) + m2
u sin α

MW sin β

]

ũ†
LũL H

+ g

[

−MW (T3d̂L
− 1

2
Yd̂L

tan2 θW) cos(β − α) − m2
d cos α

MW cos β

]

d̃†
Ld̃L H

+ g

[

−MW (T3Û c − 1

2
YÛ c tan2 θW) cos(β − α) + m2

u sin α

MW sin β

]

ũ†
RũR H

+ g

[

−MW (T3D̂c − 1

2
YD̂c tan2 θW) cos(β − α) − m2

d cos α

MW cos β

]

d̃†
Rd̃R H

+ gmd

2MW cos β
(μ sin α + Ad cos α)

(

d̃†
Ld̃R + d̃†

Rd̃L

)

H

+ gmu

2MW sin β
(−μ cos α − Au sin α)

(

ũ†
LũR + ũ†

RũL

)

H. (8.125c)

Note that the isospin and hypercharge values that appear in (8.125b) and (8.125c)

refer to the corresponding quantities for the MSSM fields in Table 8.1.

Finally, the couplings to the pseudoscalar neutral Higgs field are given by,

LAq̃q̃ � i
gmd

2MW
(μ + Ad tan β)

(

d̃†
Rd̃L − d̃†

Ld̃R

)

A

+ i
gmu

2MW
(μ + Au cot β)

(

ũ†
RũL − ũ†

LũR

)

A. (8.125d)

As already noted, especially for the third generation squarks and sleptons, mixing

effects must be included by substituting for the appropriate mass eigenstates.

The corresponding couplings to sleptons can be obtained by substituting md →
me, mu → 0, Ad → Ae, Au → 0, ũL → ν̃L, d̃L → �̃L, ũR → 0, and d̃R → �̃R, and

by making appropriate weak isospin and hypercharge assignments.
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8.5 Radiative corrections

Up to now, we have focussed our attention on the tree-level masses and couplings of

MSSM particles. Since MSSM couplings are all assumed to be in the perturbative

regime, this should be a good approximation to the true masses and couplings. There

are, however, some situations where radiative corrections are very important. The

best known of these is in the Higgs boson sector where the tree-level bound (8.39b),

if applicable, would already exclude the model! Clearly, such a correction cannot

be neglected. In this section we briefly discuss the radiative corrections that cannot

be neglected in phenomenological analyses of SUSY. This discussion is not meant

to be complete, but is included as a caution, and to provide the reader a flavor of the

issues involved. For a comprehensive discussion, we refer the reader to the original

literature.

8.5.1 Higgs boson masses

We have already mentioned that radiative corrections to Higgs boson masses can

be large, and are especially important for the lightest Higgs scalar h. The biggest

corrections arise from the top (quark and squark) Yukawa coupling to Higgs field

Hu . For large values of tan β b-Yukawa, and to a lesser degree τ -Yukawa, contri-

butions are also significant. Smaller corrections also arise from gauge interactions

of the Higgs bosons.

These radiative corrections can be included diagrammatically, by calculating

the relevant Higgs boson self-energy graphs, and by identifying the location of

the pole in the propagator. An alternative procedure involves analyzing the one-

loop corrected effective potential. The form of the one-loop correction to the scalar

potential can be written as

�V =
∑

i

(−1)2si

64π2
T r

(

(MiM†
i )2

[

log
MiM†

i

Q2
− 3

2

])

, (8.126)

where the sum over i runs over all fields that couple to Higgs fields, M2
i is the

Higgs field dependent mass squared matrix (defined as the second derivative of the

tree-level Lagrangian) of each of these fields, and the trace is over the internal as

well as any spin indices. The function �V depends on the Higgs fields through M,

and must be added to the tree-level potential. It is this corrected effective potential

that must be used to obtain the vacuum state as well as the masses and mixings

of the physical particles in the Higgs sector. Here, we illustrate how to obtain the

dominant corrections arising from top Yukawa couplings. To keep things simple,

we also ignore intra-generational mixing.
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Exercise Show that the neutral Higgs field dependent mass matrix for stops in the
(t̃L, t̃R) basis is given by,

(
m2

t̃L
+ f 2

t |h0
u|2 0

0 m2
t̃R

+ f 2
t |h0

u|2
)

,

while the corresponding top quark mass is given by ft h0∗
u where, for simplicity, we

have ignored any t̃L–t̃R mixing. Use these to show that the one-loop correction to
the effective Higgs potential due to top Yukawa couplings is given by,

�V 
 3

32π2

[

(m2
t̃L

+ f 2
t |h0

u|2)2 log(m2
t̃L

+ f 2
t |h0

u|2)

+ (m2
t̃R

+ f 2
t |h0

u|2)2 log(m2
t̃R

+ f 2
t |h0

u|2)

− 2 f 4
t |h0

u|4 log( f 2
t |h0

u|2) − 3

2

]

. (8.127)

To obtain this, we have to remember that in Eq. (8.126) the contribution from scalar
loops is written for real scalar fields. Since t̃L and t̃R are complex, their contribution
needs to be doubled. The factor 3 is a color factor.

Finally, we remark that to obtain the effective potential for the charged as well
as neutral Higgs fields, we must allow both top and bottom quarks and squarks in
the loops. Technically, this means that we have to construct a 4 × 4 field-dependent
mass matrix for the squarks, and 2 × 2 mass matrix for the fermions. Even for our
simplified calculation, these matrices are no longer diagonal. The trace can be
evaluated by evaluating the (field-dependent) eigenvalues of these squared mass
matrices, inserting these in place of Mi in (8.126) and summing. Carry out these
steps, and show that you obtain an SU (2) × U (1) invariant effective potential.

We can use this effective potential to construct corrected Higgs boson mass

matrices in the same way as before. We will now have additional contributions

from the top quark Yukawa coupling ft , and involving the top quark and top squark

masses. The result for the scalar Higgs bosons is simple to write down in this

approximation:

m2
h,H = 1

2

[
(m2

A + M2
Z + δ) ∓ ξ 1/2

]
(8.128)

where

ξ = [
(m2

A − M2
Z ) cos 2β + δ

]2 + sin2 2β(m2
A + M2

Z )2,
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and

δ = 3g2m4
t

16π2 M2
W sin2 β

log

[

(1 + m2
t̃L

m2
t

)(1 + m2
t̃R

m2
t

)

]

. (8.129)

In addition, the relation

m2
H± = m2

A + M2
W

is unaltered as long as bottom quark Yukawa couplings are neglected. Finally, the

Higgs scalar mixing angle α is modified to

tan α = (m2
A − M2

Z ) cos 2β + δ + ξ 1/2

sin 2β(m2
A + M2

Z )
. (8.130)

In these formulae, we have eliminated ft using (8.24a). Notice that the presence of

δ in the expression for mh allows h to exceed MZ as seems to be required by the

LEP data discussed earlier.

Although we have illustrated these corrections keeping only top quark Yukawa

couplings and neglecting intra-generation stop mixing, many phenomenological

analyses include mixing effects as well as the corrections due to b and τ Yukawa

couplings (these are important if tan β is large), and also gauge couplings. Much

effort has gone into making as precise predictions as possible for Higgs boson

masses, especially mh . At the present time, state-of-the-art calculations including

dominant two-loop effects indicate that the value of mh can be as high as about 130

GeV, well beyond the reach of the LEP2 e+e− collider at CERN, which ran at a

maximum energy of ∼ 208 GeV, and even larger if mt > 175 GeV.

Gluino mass

It has been noted by Martin and Vaughn that the tree-level gluino mass suffers

large corrections – up to 25% – due to loop corrections.7 In this case, one must

compute the gluino self-energy diagrams, and look for the pole position in the

gluino propagator. Including loop graphs with gluon exchange and quark–squark

loops, they find

mg̃ = M3(Q)
(

1 + αs

4π
[15 + 6 log(Q/M3) +

∑

Aq̃]
)

(8.131)

in the DR regularization scheme.8 Here,

Aq̃ =
∫ 1

0

dx x log[xm2
q̃/M2

3 + (1 − x)m2
q/M2

3 − x(1 − x)], (8.132)

7 S. Martin and M. Vaughn, Phys. Lett. B318, 331 (1993).
8 The calculation is performed in the DR renormalization scheme: see Chapter 9.
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8.5 Radiative corrections 187

where the sum is over the 12 different quark–squark multiplets, and squark mixing

has been neglected.

8.5.2 Squark mass

The dominant corrections to squark masses come from strong interactions, and so

are the same for q̃L and q̃R, and also independent of flavor. The radiatively corrected

squark mass is given by,

δm2
q̃ = m2

q̃ − m2
q̃(Q)

= 2αs(Q)

3π
mq̃(Q)2

{

1 + 3x + (x − 1)2 ln |x − 1| − x2 ln x + 2x ln
Q2

m2
q̃

}

.

(8.133)

If intra-generation squark mixing is not negligible, the form of the corrections is

more complicated, and we refer the reader to Pierce et al. for the complete result.9

8.5.3 Chargino and neutralino masses

By and large the corrections to these masses are not very large, but there are

regions of parameter space where they can be several percent. Nevertheless, there are

important circumstances where inclusion of these corrections could be important.

We will see later that the phenomenology is to a great extent determined by what

the lightest supersymmetric particle (LSP) is. This is largely because (as long as

R-parity is conserved) all sparticle decays terminate in the LSP. In many models,

the LSP is the lightest neutralino or the lighter stau, depending on the values of

model parameters. In the case where these sparticles are approximately degenerate

at tree level, the radiative corrections might prove to be crucial in identifying the

LSP.10

Another scenario where radiative corrections are crucial occurs when |M2| is

much smaller than other soft SUSY breaking parameters so that the SU (2) gauginos

are the lightest of the sparticles. It is then the radiative corrections that break the

degeneracy between the charged and neutral partners, making the latter slightly

lighter. A realization of such a scenario occurs in the so-called anomaly-mediated

SUSY breaking model discussed in Chapter 11.

9 See, D. Pierce et al., Nucl. Phys. B491, 3 (1997).
10 We have oversimplified the discussion here. In gauge-mediated SUSY breaking models that we will discuss in

Chapter 11 the LSP is a gravitino: since couplings of sparticles to the gravitino are extremely weak, all other
sparticles cascade decay to the next lightest super particle (NLSP) which then decays to the gravitino. It is very
important to correctly identify the NLSP to obtain the correct phenomenology.
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These radiative corrections have been analyzed in the literature. Complete for-

mulae can be found in Pierce et al., where details are provided.

8.5.4 Yukawa couplings and SM fermion masses

At tree level, the Yukawa couplings that enter the superpotential are simply related

to the corresponding SM fermion masses via (8.24a) and (8.24b). This is because

ĥ0
u (ĥ0

d) couple only to up-(down-)type fermions. At one-loop level, the field h0
u can

also couple to down-type quarks via its couplings to up- and down-type squarks.

Exercise Draw a Feynman diagram involving a gluino and down-type squark, or
a chargino and an up-type squark, in a loop to show that h0

u can couple to the down
quarks at the one-loop level.

Thus, beyond tree level, down-type quarks can obtain contributions to their

masses proportional to vu . Although these contributions are loop-suppressed, they

can be comparable to the tree-level contribution (proportional to vd) if tan β � 1.

Clearly, then the relation between Yukawa couplings and the corresponding quark

mass is considerably modified. We refer the interested reader to the paper by Pierce

et al. for details regarding these corrections.

8.6 Should the goldstino be part of the MSSM?

The MSSM is the simplest viable supersymmetric extension of the SM. Within

this framework, our ignorance of the underlying mechanism of SUSY breaking

is reflected in the 178 parameters discussed in Section 8.1.2. We should regard

the MSSM as an effective theory that will someday be obtained from a more

fundamental theory, once we understand the principles behind the physics of SUSY

breaking. Presumably, this will result in a dramatic reduction in the set of parameters

that one will regard as fundamental, in the sense that most soft SUSY breaking

parameters will be derived from more basic considerations.

Indeed despite the many suggestions for how SUSY breaking effects are felt by

the superpartners of SM particles, no compelling theory has as yet emerged. There

are two common themes to all models of SUSY breaking.

� First, it appears that the SUSY breaking occurs in a sector of the theory that

differs from that containing the SM particles and their superpartners. We are

forced into considering such theories because models where SUSY breaking

occurs in the SM sector run into phenomenological troubles with the sum rules

such as (7.35) that led to light scalars as discussed in Chapter 7. This then raises an
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additional question: even if we can dynamically break SUSY, how do we convey

this information to the observable sector of SM particles and their superpartners?

The answer to this question will be taken up in Chapter 11 where we discuss

various models.
� Second, supersymmetry is broken spontaneously rather than explicitly. Clearly,

this is the more appealing route, and also affords a rationale for why SUSY

breaking is soft in the MSSM: since SUSY breaking operators are proportional

to a VEV, dimensional analysis tells us that dimension four SUSY breaking

interactions are forbidden at least in a renormalizable theory.

The attentive reader will, however, be disturbed by the fact that spontaneous

breaking of SUSY should be accompanied by a massless Goldstone fermion in

the low energy spectrum. This should then be the LSP. Yet, our discussion of the

MSSM has made no mention of this. Indeed the MSSM (as we have formulated it

with explicit SUSY breaking terms) does not contain a goldstino.

The naive reason that we can get away with doing so is that in most models we

promote SUSY to a local supersymmetry. This, as we will discuss in Chapter 11, re-

sults in a theory that necessarily incorporates gravity, and requires the introduction

of the (spin 2) graviton and its superpartner, a spin 3/2 fermion, the gravitino. Then,

when SUSY is spontaneously broken, the would-be Goldstone fermion combines

with the (originally massless) gravitino to form a massive gravitino and disappears

from the physical spectrum, while the graviton (which is protected from acquir-

ing a mass by the unbroken reparametrization invariance) remains massless. This

phenomenon is analogous to what happens in spontaneously broken local gauge

theories: the would-be Goldstone bosons combine to form the longitudinal compo-

nents of a massive gauge field, and no massless spin zero excitations remain in the

spectrum.

In principle, if the gravitino is light enough we ought to include it as part of the

low energy theory. It is, generally speaking, not usual to do so for the same reason

that we do not include the graviton: like the graviton, the gravitino typically couples

too weakly to matter for particle physics.11 Thus the MSSM is a parametrization

of the effective low energy theory, but with some prejudices thrown in.

11 We will discuss an exception to this in Chapter 11 when we discuss gauge-mediated SUSY breaking. If the
SUSY breaking scale is low enough, we will see that the couplings of the longitudinal components of the
gravitino (i.e. the goldstino) play an important role for collider signals.
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