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Exterior Univalent Harmonic Mappings
With Finite Blaschke Dilatations
D. Bshouty and W. Hengartner

Abstract. In this article we characterize the univalent harmonic mappings from the exterior of the unit disk,
∆, onto a simply connected domain Ω containing infinity and which are solutions of the system of elliptic
partial differential equations fz̄(z) = a(z) fz(z) where the second dilatation function a(z) is a finite Blaschke
product. At the end of this article, we apply our results to nonparametric minimal surfaces having the property
that the image of its Gauss map is the upper half-sphere covered once or twice.

1 Introduction

In this article we study univalent harmonic mappings defined on the exterior of the unit
disk, ∆ = {z : |z| > 1} which keep infinity fixed. Without loss of generality, we may
assume that f preserves the orientation. By [2], such mappings can be identified as non-
constant solutions of the elliptic partial differential equation

(1.1) fz̄(z) = a(z) fz(z) on∆

where the second dilatation function a(z) =
∑∞

k=0 αk
1
zk of f belongs to H(∆) and |a(z)| <

1 on∆. It then follows [3], that f admits the representation

(1.2) f (z) = A
(

z −
1

z̄

)
+ B
(

z̄ −
1

z

)
+ C log |z|2 + F(z), A 6= 0,

where F is a bounded harmonic function in ∆. Furthermore, substituting (1.2) in (1.1)
and comparing the constant and the 1

z coefficients in (1.2), we get the following relations
between the constants A, B and C

(1.3) B = α0A and C =
α1α0A + α1A

1− |α0|2
.

In other words, B and C depend only on A, a(∞) and a ′(∞) and are completely indepen-
dent of the boundary values f ∗(eit ) = F∗(eit ).

Suppose that Ω is a simply connected domain of C̄ containing infinity whose boundary
is locally connected. Let a ∈ H(∆) and |a(z)| ≤ k < 1 on ∆. Given arg A, then there is
a univalent solution of (1.1) which is of the form (1.2) and which maps ∆ onto Ω. The
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uniqueness of such mappings is still in question and is only known for limited special cases
of Ω. If a(z) admits an analytic extension across an open interval J of the unit circle and
satisfies |a(eit )| = 1, eit ∈ J then the existence theorem does not hold any more. This
can be explained by the fact that in this case f (eit ) and a(eit ) are closely related on J. We
investigate the consequences of this relationship in the case where a(z) is a finite Blaschke
product.

We first give in Section 2, a short summary of results obtained by the authors on the
behaviour of the boundary correspondence f ∗(eit ) in the case where the dilatation function
a admits a continuous extension across a subinterval I of the unit circle.

In Section 3, we restrict ourselves to the case where a is a finite Blaschke product. We
show that the number of complete resting points of f ∗ is N − 2 where N is the degree of
the Blaschke product. It follows then that the image Ω = f (∆) contains at most N − 2
points of convexity. If N = 1, then by Theorem 2.1, Ω is a one point punctured plane and
there exists no univalent solution of (1.1) which maps∆ onto the unbounded component
of the complement of any compact continuum. If N = 2, then C \ Ω is a convex set, i.e.,
∂Ω is either a point, a linear line segment or a convex Jordan curve. Further details about
this case can be found in Section 5.2.

In Section 4, we characterize univalent solutions of (1.1) which map∆ ontoΩ by means
of their boundary correspondence. It provides simultaneously a constructive existence
proof for special cases where a is a finite Blaschke product.

Finally, we consider in Section 5 the special cases N = 1, 2 and 4 and in Section 6, we
apply our results to minimal surfaces.

2 Boundary Behaviour of Harmonic Maps on an Interval where |a| = 1,
Summary

In this section we give a short summary of results proved by the authors in earlier papers.
We adapt the statements for harmonic mappings defined in∆ = C̄ \ Ū .

Let

f (z) = A
(

z −
1

z̄

)
+ B
(

z̄ −
1

z

)
+ C log |z|2 + F(z), A 6= 0

be a univalent harmonic and orientation preserving mapping defined on ∆, where B and
C satisfy (1. 3). Our first result characterizes such harmonic mappings for which f (∆) is a
one point punctured plane, i.e., f (∆) = C̄ \ {q} for some point q ∈ C.

Theorem 2.1 [3] Let f be a univalent harmonic and orientation-preserving mapping defined
on∆ and normalized by (1. 2). Then f (∆) = C̄ \ {q} for some point C if, and only if f is of
the form

f (z) = A
(

z −
1

z̄

)
+ B
(

z̄ −
1

z

)
+ C log |z|2 + D

where D is a constant. These mappings are solutions of the elliptic differential equation (1.1)
where a(z) is of the form

(2.1) a(z) =
Ā

A

(1− p1z)(1− p2z)

(z − p1)(z − p2)
, |p1| < 1 and |p2| ≤ 1.
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Conversely, any univalent harmonic mapping which is of the form (1.2) and which is a solu-
tion of (1.1) with respect to a dilatation function a(z) of the form (2.1) has the property that
f (∆) = C̄ \ {q} for some point q ∈ C.

The next result is an existence theorem.

Theorem 2.2 [3] Let Ω be a simply connected proper subdomain of C̄ containing infinity
whose boundary ∂Ω is locally connected. Let a(z) ∈ H(∆), |a(z)| < 1 on ∆. For a fixed
arg(A), unless a(z) is of the form (2.1), there is a univalent solution of (1.1) satisfying the
following properties:

(1) f is of the form (1.2)
(2) f (∆) ⊂ Ω.
(3) The unrestricted limits f ∗(eit ) = limz→eit f (eit ) exist on ∂U \ E and belong to ∂Ω where

E is a countable set.
(4) For eit ∈ E, the cluster set of f at eit is a straight-line segment joining two points of ∂Ω.
(5) If Ω is the complement of a compact convex set, or if |a(z)] ≤ k < 1 then f (∆) = Ω.
(6) If C \ Ω is strictly starlike with respect to a finite point p, and if |a(z)| ≤ k < 1 for all

z ∈ ∆, then f is uniquely determined.

Suppose that a(z) admits an analytic extension across an interval I of the unit circle and
that its absolute value there is one. Then the boundary values of f depend strongly on the
values of a.

Theorem 2.3 [BH, Corollary 2.5] Let Ω be a simply connected proper subdomain of C̄ con-
taining infinity and suppose that the boundary ∂Ω is locally connected. Let a(z) be an analytic
function on ∆, |a| < 1 on ∆ and suppose that a(z) has an analytic extension across a subin-
terval I = {eit : α < t < β} of the unit circle ∂∆ such that |a(z)| ≡ 1 on I. Let f (z) be a
univalent solution of (1.1) which maps∆ onto Ω and which is of the form (1.2). Finally, let eit

be an interior point of I. Then the following properties hold:

(1) The boundary correspondence f ∗(eit ) satisfies

(2.2) f ∗(eit )− a(eit ) f ∗(eit ) +

∫ t

f ∗(eit ) da(eit ) = const.

(2) If f ∗ jumps at eit , (which must and can happen only when f ∗(I) contains a linear seg-
ment) then we have

(2.3) arg[ f ∗(ei(t+0))− f ∗(ei(t−0))] = −
1

2
arg
(

a(eit )
)

mod π.

(3) If f ∗ is continuous at eit , then we have

(2.4) lim
h→0

Im

{√
a(eit )

[
f ∗(ei(t+h))− f ∗(ei(t−h))

h

]}
= 0.
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(4) If f ∗ is not constant on a subinterval of I, then the right limit

(2.5) lim
h↓0

arg[ f ∗(ei(t+h))− f ∗(ei(t−0))] = −
1

2
arg a(eit ) mod π.

The relation (2.2) can be expressed in the differential form

(2.6) d f ∗(eit )− a(eit ) d f ∗(eit ) = 0, on I

or equivalently by

(2.7) Im
(√

a(eit ) d f ∗(eit )
)
= 0.

Hence, unless d f ∗(eit ) = 0, we have

(2.8) arg d f ∗(eit ) = −
1

2
arg a(eit ) mod π, on I.

Definition 2.4 (1) We call β(τ ) a regulated function on the interval [a, b] if the one-sided
limits β(τ + 0) and β(τ − 0) exist for all t ∈ [a, b].

(2) Let Ω be a simply connected domain of C̄ containing infinity and suppose that the
boundary ∂Ω is locally connected (every prime end is a singleton). Let φ be a conformal
mapping from ∆ onto Ω keeping infinity fixed. We call Ω a regulated domain if for each
prime end q = w(τ ) = φ(eiτ ) of ∂Ω the direction angle of the forward (half-)tangent at
w(τ ),

(2.9) β(q) = lim
s↓τ

arg[w(s)− w(τ )] = lim
s↓τ

arg[w(s)− q],

exists and defines a regulated function. For more details see [4].
In what follows, we need the following definition.

Definition 2.5 LetΩ be a simply connected regulated domain of C̄ containing infinity and
let f be a univalent harmonic orientation-preserving mapping from∆ onto Ω. Let q be a
prime end of ∂Ω.

(1) If q does not belong to a jump of f ∗, we define γ(q) and δ(q) by ( f ∗)−1(q) = J(q) =
{eit , γ(q) ≤ t ≤ δ(q)}.

(2) If q is an interior point of a jump, i.e., q = λ f ∗(ei(t+0)) + (1−λ) f ∗(ei(t−0)), 0 < λ < 1,
then define γ(q) = δ(q) = t .

(3) If q is the end point f ∗(ei(t−0)) of a jump, then define γ(q) as in (1) and put δ(q) = t .
(4) If q is the end point f ∗(ei(t+0)) of a jump, then put γ(q) = t and define δ(q) as in (1).

Observe that the cluster sets C( f ∗, eiγ(q)) and C( f ∗, eiδ(q)) contain q but they may also
contain other points if a jump appears. Furthermore, if J(q) = ( f ∗)−1(q) is a continuum
then |a| ≡ 1 on J(q). Finally, relation 2.5 implies that

(2.10) β(q) = lim
h↓0

arg[ f ∗(ei(δ(q)+h))− f ∗(ei(δ(q)−0))] = −
1

2
arg a(eiδ(q)) mod π
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exists at each prime end q ∈ f ∗(I).
Let Ω be a regulated domain containing infinity and let f be a univalent harmonic and

orientation-preserving mapping from ∆ onto Ω. Suppose that a(z), as defined by (1.1),
admits an analytic continuation across an open interval I ⊂ ∂∆ such that |a(z)| = 1 there.
Let q be a prime end in f ∗(I). Denote by α(q) the opening angle at q as seen from the
inside of Ω. Set A(t) = arg a(eit ), eit ∈ I as a continuous function and define 4A(q) =
1
2

[
A
(
δ(q)
)
− A
(
γ(q)
)]

. Then we have the following relation between α(q) and4A(q).

Theorem 2.6 [1] Let Ω be a simply connected regulated domain of C̄ containing infinity
and let f be a univalent harmonic orientation-preserving mapping from∆ onto Ω normalized
as in (1.2). Suppose that a(z), as defined by (1.1), admits an analytic continuation across
an interval I ⊂ ∂∆ such that |a(z)| ≡ 1 there. Let q be a prime end in f ∗(I) such that
J(q) = ( f ∗)−1(q) ⊂ I0. With the above notation, we have the following properties:

(1) If 0 ≤ α(q) < π, then α(q) = −4A(q).
(2) If π ≤ α(q) ≤ 2π, then either α(q) = −4A(q) or α(q) = −4A(q) + π.

Theorem 2.6 states that the total change of− 1
2 arg a(eit ) over the interval J(q) = f−1(q)

is either equal to the opening angle α(q) as seen from the inside of the domain or, if π ≤
α(q) ≤ 2π, it can also be α(q)− π. We shall use the following notation.

Definition 2.7 A prime end q0 ∈ ∂Ω is said to be a complete resting point of f ∗ if
−4A(q0) = α(q0).

Remark 2.8 (1) If the prime end q is an interior point of a linear segment of f ∗(I), then
either q is an interior point of a jump of f in which case4A(q) = 0 or the inverse image
f−1(q) is not a singleton and we have4A(q) = −π.

(2) Each prime end with an opening angle α(q) strictly less than π is a complete resting
point of f ∗. In particular if α(q) = 0, then ( f ∗)−1(q) is a singleton yet q is still a complete
resting point of f ∗. On the other hand, if α(q) > π, it may happen that ( f ∗)−1(q) is an
interval of ∂∆ with nonempty interior but q is not a complete resting point.

Proof of Theorem 2.6 The cases 0 ≤ α < 2π where given in [BH, Theorem 2.13]. It
remains to consider the case where α = 2π. Suppose that α(q0) = 2π, q0 ∈ f ∗(I), is not
a tip of a linear segment. We shall proceed as in the proof of Theorem 3.3 in [1]. Let I1 =
{eit , t1 ≤ t ≤ t2} be a closed subinterval of I containing f−1(q0). We define

(2.11) B(t) = −π
∑

α(q)=−4A(q)

Hq(t) + π
∑

α(q)=2π and
δ(q)=γ(q)

Hq(t)−
1

2
A(t), B

(
δ(q0)

)
= β(q0),

where Hq(t) is the Heavyside function Hq(t) = 0 if t < δ(q) and Hq(t) = 1 if δ(q) ≤ t . The
first sum is taken over the set of all complete resting points and the second sum is taken over
all prime ends q ∈ f ∗(I1) satisfying α(q) = 2π and δ(q) = γ(q). Let us remark that for
each prime end q ∈ f ∗(I1) we have B

(
δ(q)
)
= β(q) and B

(
γ(q)
)
= βL(q) where βL(q)− π

is the direction angle of the backward half-tangent of ∂Ω. We want to show that the first
sum in (2.11) contains only finitely many terms and that there are no terms in the second
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sum. We begin by showing that the second sum contains only finitely many terms. Indeed,
if not there is a sequence of points q j ∈ f ∗(I1) which converges from one side to a point
q1 ∈ f ∗(I1) for which β(q j)− βL(q j) converges to −π as j →∞. Therefore, the sequence
β(q j) does not converge which contradicts the hypothesis that Ω is a regulated domain.

Next, since B(t2) − B(t1) is finite, we conclude that nR, the number of complete resting
points of f ∗(I1), is finite. Let now α(q0) = 2π, q0 ∈ f ∗(I). If q0 is not a tip of a linear
segment, then there must be infinitely many complete resting points in each neighborhood
of q0 which contradicts the last conclusion. If q0 is a tip of a linear segment, then the
case δ(q0) = γ(q0) is excluded since q0 cannot be an interior point of a jump. Therefore
α(q0) = 2π is excluded and (2.11) reduces to

(2.12) B(t2)− B(t1) = −πnR −
1

2
[A(t2)− A(t1)].

The same arguments which prove Theorem 2.13 in [1] show that

α(q) = −4A(q) = 2π or α(q) = −4A(q) + π

and the proof of Theorem 2.6 is complete.

3 A Geometric Characterization of the Image Domain

Let

(3.1) a(z) = eiγ
N∏

k=1

1− pkz

z − pk
=
∞∑

k=0

αkz−k, |pk| < 1, 1 ≤ k ≤ N,

be a finite Blaschke product of degree N defined on ∆ the exterior of the unit disk U and
let

f (z) = A
(

z −
1

z̄

)
+ B
(

z̄ −
1

z

)
+ C log |z|2 + F(z)

be a univalent solution of the partial differential equation (1.1), fz̄(z) = a(z) fz(z), where F
is a bounded harmonic function in∆ and where

B = α0A and C =
α1α0A + α1A

1− |α0|2
.

We are interested in characterizing the image domains Ω of such mappings. As we have
already seen, the boundary correspondence has to satisfy the relation (2.7),

Im
(√

a(eit ) d f ∗(eit )
)
= 0,

f ∗—almost everywhere on the unit circle ∂U . Note that every harmonic function f of the
form (1.2) whose coefficients B and C satisfy (1.3) has the property

(3.2) fz̄(z)− a(z) fz(z) = O
( 1

z2

)
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near infinity.

Definition 3.1 Let Ω be a simply connected regulated domain of C̄ containing infinity.
(1) We say that a prime end q ∈ ∂Ω is a point of convexity (with respect to Ω) if there

exists a neighborhood V of f−1(q) and a line segment L containing q as an interior point
such that L \ {q} lies in the exterior of f (∆ ∩V ).

(2) We say that a prime end q ∈ ∂Ω is a point of convexity (with respect to Ω) if there
exists a neighborhood V of f−1(q) and a line segment L containing q as an interior point
such that L \ {q} lies in the interior of f (∆ ∩V ).

If the complement C \Ω of Ω is a convex set, then,Ω has no points of convexity. This is
in contrast to bounded Jordan domains in C which have at least three points of convexity.
If a is a finite Blaschke product, then we conclude from (2.12) that there are only finitely
many prime ends which are points of convexity with opening angle α(q) < π. It follows
then that each point of convexity is a complete resting point of f ∗.

Our next result is a direct consequence of Theorem 2.6 and combines the number of
complete resting points with the degree of the Blaschke product.

Theorem 3.2 Let Ω be a regulated domain containing infinity and let a(z) be a Blaschke
product of degree N ≥ 2 on∆. Let

f (z) = A
(

z −
1

z̄

)
+ B
(

z̄ −
1

z

)
+ C log |z|2 + F(z), A 6= 0,

be a univalent solution of (1.1) with respect to this Blaschke product which maps ∆ onto Ω.
ThenΩ is either the punctured plane or it is a domain whose boundary has at most N−2 points
of convexity. Furthermore, the number of complete resting points of f ∗ is equal to N − 2.

Proof Recall the relation (2.12),

B(t2)− B(t1) = −πnR −
1

2
[A(t2)− A(t1)].

Choose a prime end q0 ∈ ∂Ω and put t1 = δ(q0) and t2 = δ(q0) + 2π. Then we have
B
(
δ(q0) + 2π

)
− B
(
δ(q0)

)
= 2π and 1

2

[
A
(
δ(q0) + 2π

)
− A
(
δ(q0)

)]
= −Nπ. Theorem 3.2

then follows immediately.

Remarks 3.3 (1) If N = 1, then by Theorem 2.1, there is no univalent solution of (1.1)
which maps ∆ onto the unbounded component of the complement of a compact contin-
uum.

(2) If N = 2, then f (∆) is either a one point punctured plane or it is the complement
of a compact convex set.

4 The Inverse Problem

Recall that a univalent and orientation-preserving harmonic mapping defined on the ex-
terior of the unit disk, ∆, which keeps infinity fixed, is necessarily of the form (1.2). In
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particular, if f is a solution of (1.1), where a(z) is a Blaschke product of degree N ≥ 2, then
the boundary function f ∗ satisfies the relation (2.6) or equivalently (2.7) or (2.8). Fur-
thermore, there are N − 2 prime ends which are complete resting points of f ∗ and hence,
the image domain Ω has at most N − 2 points of convexity. It is a natural question to
ask if these boundary conditions are sufficient that a solution of the Dirichlet problem is a
univalent harmonic solution of (1.1) which maps ∆ onto Ω. Unfortunately the answer is
negative. For instance, there is no univalent harmonic mapping f (z) = Az + O(1), A > 0,
which is a univalent solution of fz̄(z) = 1

z2 fz(z) and maps ∆ onto ∆. Moreover, we shall
see in Section 5, that there is no univalent harmonic mapping f (z) = Az + O(1), which is
a univalent solution of fz̄(z) = 1

z4 fz(z) and maps∆ onto

Ω = {w : |w − 1| > 2} ∩ {w : |w + 1| > 1}

even if (2.6) is satisfied on the boundary. In other words, additional conditions must be
satisfied.

Suppose now that f is of the form (1.2). Then F( 1
ζ

) is a bounded harmonic function of
ζ in the unit disk U . Using the Poisson formula with respect to the boundary function F∗

of F, we have

F(
1

ζ
) =

1

2π

∫ 2π

0
Re
( eit + ζ

eit − ζ

)
F∗(e−it ) dt

= −
1

2π

∫ −2π

0
Re
( e−it + ζ

e−it − ζ

)
F∗(eit ) dt

for ζ in U . Since F∗(eit ) = f ∗(eit ), we get for z in∆,

F(z) =
1

2π

∫ 2π

0
Re
( e−it + 1

z

e−it − 1
z

)
f ∗(eit ) dt

= −
1

2π

∫ 2π

0
Re
( eit + z

eit − z

)
f ∗(eit ) dt

= −
1

4π

∫ 2π

0

eit + z

eit − z
f ∗(eit ) dt −

1

4π

∫ 2π

0

e−it + z̄

eit − z̄
f ∗(eit ) dt.

Therefore, we get

Fz(z) = −
1

2π

∫ 2π

0

eit

(eit − z)2
f ∗(eit ) dt(4.1)

Fz̄(z) = −
1

2π

∫ 2π

0

eit

(eit − z)2
f ∗(eit ) dt.(4.2)
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Next, using (4.1) and integration by parts, yields

1

2πi

∫ 2π

0

d f ∗(eit )

eit − z
= −

1

2πi

∫ 2π

0

d

dt

( 1

eit − z

)
f ∗(eit ) dt

= −
1

2πi

∫ 2π

0

−ieit

(eit − z)2
f ∗(eit ) dt

=
1

2π

∫ 2π

0

eit

(eit − z)2
f ∗(eit ) dt(4.3)

= −Fz(z)

=
B

z2
+

C

z
+ A− fz(z),

Similarly, we have

1

2πi

∫ 2π

0

d f ∗(eit )

eit − z
=

1

2π

∫ 2π

0

eit

(eit − z)2
f ∗(eit ) dt

= −Fz̄(z)(4.4)

=
Ā

z2
+

C̄

z
+ B̄− fz̄(z).

In what follows we need the following property of boundary correspondence.

Definition 4.1 Let Ω be a regulated Jordan domain of C̄ which contains infinity and let φ
be a conformal univalent mapping from the ∆ onto Ω keeping infinity fixed. We say that
a (orientation-preserving) mapping f ∗(eit ) from ∂∆ into ∂Ω is a quasihomeomorphism,
if its image contains at least three non-collinear points of ∂Ω and if φ−1 ◦ f ∗(eit ) is the
pointwise limit of a sequence of (orientation-preserving) homeomorphisms from ∂∆ onto
∂Ω. If, in addition, the linear segments from f ∗(ei(t−0)) to f ∗(ei(t+0)) are parts of ∂Ω, then
we call f ∗(eit ) a quasihomeomorphism from ∂∆ onto ∂Ω.

Theorem 4.2 Let

(4.5) a(z) = eiγ 1

zn0

m∏
k=1

[1− pkz

z − pk

]nk

=
∞∑

k=0

αkz−k,

n0 ≥ 0, nk > 0 and 0 < |pk| < 1, if 1 ≤ k ≤ m, pk 6= p j if i 6= j and
∑m

k=0 nk = N,
be a finite Blaschke product of degree N and let Ω be a regulated Jordan domain of C̄ which
contains infinity and whose boundary has at most N − 2 points of convexity. Let f ∗(eit ) be
a positively oriented quasihomeomorphism from the unit circle ∂∆ onto ∂Ω satisfying (2.7),
i.e.,

Im
(√

a(eit ) d f ∗(eit )
)
= 0

f ∗-a.e. on ∂∆. Then the mapping

(4.6) f (z) = A
(

z −
1

z̄

)
+ B
(

z̄ −
1

z

)
+ C log |z|2 −

1

2π

∫ 2π

0
Re
( eit + z

eit − z

)
f ∗(eit ) dt
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is a univalent solution of (1.1),
fz̄(z) = a(z) fz(z)

which maps∆ onto Ω, if and only if

(4.7)
1

2πi

∫ 2π

0

a(z)− a(eit )

z − eit
d f ∗(eit ) =

(
B̄ +

C̄

z
+

Ā

z2

)
− a(z)

(
A +

C

z
+

B

z2

)

holds for all z in∆.

Remark 4.3 The two conditions (2.7) and (4.7) imply the relation (1.3) between the con-
stants A, B and C . Indeed, let a(z) =

∑∞
k=0 αkz−k. Since

a(z)− a(eit )

z − eit
=
α0 − a(eit )

z
+ O
( 1

z2

)

near infinity,
∫ 2π

0 d f ∗(eit ) = 0 and
∫ 2π

0 a(eit ) d f ∗(eit ) =
∫ 2π

0 d f ∗(eit ) = 0, the assertion
follows by comparing the constant and the 1

z coefficients in (4.7).

Proof Note that (2.7) is equivalent to (2.6),

d f ∗(eit ) = a(eit ) d f ∗(eit )

f ∗-a.e. on ∂∆. Therefore, we get from (4.3) and (4.4)

fz̄(z)− a(z) fz(z) = −
1

2πi

∫ 2π

0

d f ∗(eit )− a(z) d f ∗(eit )

(eit − z)

+
(

B̄ +
C̄

z
+

Ā

z2

)
− a(z)

(
A +

C

z
+

B

z2

)

= −
1

2πi

∫ 2π

0

a(eit )− a(z)

(eit − z)
d f ∗(eit )(4.8)

+
(

B̄ +
C̄

z
+

Ā

z2

)
− a(z)

(
A +

C

z
+

B

z2

)
.

Hence, f is a solution of (1.1) if and only if (4.8) holds. Next, observe that (4.7) implies
that f (z) = (Az + Bz̄)

(
1 + o(1)

)
in a neighborhood of infinity, where |B| = |α0||A| < |A|.

Therefore, for large r, the image f (|z| = r) is a closed Jordan curve. Applying the argument
principle, which holds for solutions of (1.1) in the annulus 1 < |z| < r, we conclude that f
is univalent on∆ and that f (∆) = Ω.

In what follows, we show that condition (4.7) in Theorem 4.2 can be replaced by (1.3)
and a system of [ N

2 ] ([x] denotes the integer part of a positive number x) equations from
the following relations.
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(1) For 0 < |pk| < 1 and 1 ≤ j ≤ nk,

(4.9)
1

2πi

∫ 2π

0

ei jt d f ∗(eit )

(eit − pk) j
= ( j pkA + C) +

B

pk
δ j,1.

(2) If n0 = 2, then

(4.10)

∫ 2π

0
e−it d f ∗(eit ) = 2πi(A− α2A)

and if n0 ≥ 3, then

∫ 2π

0
e−it d f ∗(eit ) = 2πiA,

∫ 2π

0
e−i jt d f ∗(eit ) = 0, 2 ≤ j ≤ n0 − 2,(4.11)

∫ 2π

0
e−i(n0−1)t d f ∗(eit ) = −2πiαn0 A.

Set p(z) =
∏m

k=1(1 − pkz)nk and q(z) = zn0
∏m

k=1(z − pk)nk . Then, multiplying (4.7) by
e−iγ/2z2q(z), we deduce that

e−iγ/2z2q(z)

2πi

∫ 2π

0

a(eit )− a(z)

(eit − z)
d f ∗(eit )

= e−iγ/2q(z)(B̄z2 + C̄z + Ā)− eiγ/2 p(z)(Az2 + Cz + B).

(4.12)

Since a(z) is a Blaschke product of degree N we conclude that the left hand side of (4.12) is
a polynomial t(z) of degree at most N + 1. We claim that

(4.13) t(z) ≡ zN+2 t
(1

z̄

)
.

Indeed, in view of (2.6) we have

t(z) =
e−iγ/2q(z)

2πi

∫ 2π

0

z2d f ∗(eit )

(eit − z)
−

eiγ/2 p(z)

2πi

∫ 2π

0

z2 d f ∗(eit )

(eit − z)

so that

zN+2 t
(1

z̄

)
=

eiγ/2 p(z)

2πi

∫ 2π

0

eit z d f ∗(eit )

(eit − z)
−

e−iγ/2q(z)

2πi

∫ 2π

0

eit zd f ∗(eit )

(eit − z)
.

Since ∫ 2π

0

z2 d f ∗(eit )

(eit − z)
−

∫ 2π

0

eit z d f ∗(eit )

(eit − z)
= −z

∫ 2π

0
d f ∗(eit ) = 0,
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the claim follows. Next, the right hand side of (4.12) is a polynomial s(z) of degree at most
N + 2 and it is readily seen that relation (4.13) also holds for s(z). Hence, (4.7) reduces to
2 + [ N

2 ] independent conditions. These conditions may be chosen by comparing the values
of any arbitrary 2 + [ N

2 ] independent linear functionals on the linear space of polynomials.
Taking into consideration the two relations in (1.3), we remain with [ N

2 ] equations.
In particular, consider the point evaluations and derivations of order j, 1 ≤ j ≤ nk − 1

at the points 1
pk

. Then, since p(z) and its first nk − 1 derivatives vanish at 1
pk

, we conclude
that the above mentioned point evaluation and derivation functionals are identical for

1

2πi

∫ 2π

0

a(eit ) d f ∗(eit )

(eit − z)
and

( B̄

z2
+

C̄

z
+ Ā
)

which imply (4.9). Suppose now that n0 ≥ 2. We now consider the point evaluations and
derivations of order j, 1 ≤ j ≤ n0 +1 at the origin. Then q(z) and its first n0−1 derivatives
vanish there and we have B = C = 0. Therefore, the above mentioned point evaluation
and derivation functionals are identical for

−
1

2πi

∫ 2π

0

z2 p(z)

(eit − z)
d f ∗(eit ) and Āe−iγq(z)− Ap(z)z2.

We now divide both expressions by z2 p(z) and conclude that the expressions

1

2πi

∫ 2π

0

d f ∗(eit )

(eit − z)
and A−

Ā

z2a(z)

have n0 − 1 equal coefficients when developed in power series around the origin. Since
1

a(z) = a( 1
zb ), the power series expansion of 1

a(z) at the origin is
∑∞

k=n0
αkzk so that

A−
Ā

z2a(z)
= A− Aαn0 zn0−2 + O(zn0−1)

near the origin. If n0 = 2, then (4.10) follows. If n0 ≥ 3, (4.11) follows. Summarizing, we
have

Theorem 4.4 The necessary and sufficient condition (4.7) in Theorem 4.2 can be replaced
by any set of [ N

2 ] linear functionals which together with the condition (1.3) form a linearly
independent set. In particular, we may choose them from the set of equations (4.9) and/or
(4.10) or (4.11).

Remark 4.5 The necessity of the equations (4.9) to (4.11) can also be obtained by the

simple observation that fz̄(z)
a(z) has to be an analytic function on∆.

5 Special Cases

In this section we shall meet again the same restrictions on a(z) and arg(A) which we have
met in Theorem 2.1 and 2.2 and we shall get more information about the possible values
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of the constant A. We suppose again that a(z) is a finite Blaschke product. Applying an
appropriate Möbius premapping, we may assume without loss of generality that one of the
factors of a(z) is 1

z and that we may put γ = 0 in (3.1). This fact implies that B = 0
(see (1.2)) and it will reduce considerably the calculations hereafter. Since |a(eit )| ≡ 1 the
relation (2.7) is enforced on ∂∆.

5.1 The Case a(z) = 1/z

By Theorem 2.1, we know that the only univalent solutions of (1.1) are of the form

f (z) = Az + 2Ā log |z| −
A

z̄

which maps ∆ onto C̄ minus a point. The fact that Ω has to be a one point punctured
plane can be deduced directly from the relation (2.7) which is satisfied on ∂∆ if and only if
d f ∗ ≡ 0 i.e., if and only if ∂Ω is a point.

5.2 The Case a(z) = 1
z

1−pz
z− p̄ , |p| < 1

In this case (1.3) becomes

(5.1) B = 0 and C = −pA.

It remains to choose one independent condition of (5.1). We choose in (4.9) p1 = p and
j = 1 and we get

1

2πi

∫ 2π

0

eit d f ∗(eit )

eit − p̄
= p̄A + C = 2i p̄ Im(A).

Therefore,

(5.2)

∫ 2π

0

d f ∗(eit )

eit − p̄
=

1

p̄

∫ 2π

0

[ eit

eit − p̄
− 1
]

d f ∗(eit ) = −4π Im(A).

We may rewrite (5.2) in the form

(5.3)

∫ 2π

0

√
a(eit ) d f ∗(eit )

|1− p̄eit |
= −4π Im{A}.

By Theorem 3.2, ∂Ω is a closed convex curve with no resting points. Therefore,√
a(eit ) d f ∗(eit ) = ±|d f ∗(eit )| does not change sign and (5.3) reduces to

(5.4)

∫ 2π

0

|d f ∗(eit )|

|1− p̄eit |
= ±4π Im{A}.

The relation (5.4) shows immediately that f (∂U ) is a singleton if and only if Im(A) = 0.
We may summarize the above discussion as follows.

Theorem 5.1 Let a(z) = 1
z

1−pz
z− p̄ , |p| < 1 and assume that

f (z) = A
(

z −
1

z̄

)
+ B
(

z̄ −
1

z

)
+ C log |z|2 + O(1)

is a univalent solution of (1.1) defined on∆.
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(1) If Im(A) = 0, then f (∆) = C̄ \ {q} for some point q ∈ C.
(2) If Im(A) 6= 0, then ∂Ω is either a straight-line segment or a convex closed Jordan curve

whose weighted length is given by

∫ 2π

0

|d f ∗(eit )|

|1− p̄eit |
= ±4π Im(A).

In particular, if a(z) = 1
z2 , then 4π| Im(A)| is the euclidean length of ∂Ω.

The existence proof of Theorem 2.2 which was given in [3] is not elementary and uses
non-constructive arguments such as Schauder’s fixed point theorem. Applying our The-
orem 3.2 and Theorem 4.2 we get a new elementary proof of Theorem 2.2 for the special
case a(z) = 1

z
1−pz
z− p̄ .

Theorem 5.2 Let Ω be a simply connected domain of C̄ containing infinity. Let a(z) = 1
z

1−pz
z− p̄ , |p| < 1, and let α, 0 < |α| < π, be given. Then there exists a univalent solution f

of (1.1) of the form
f (z) = |A|eiαz

(
1 + o(1)

)
,

which maps ∆ onto Ω if and only if ∂Ω is either a straight-line segment or a convex closed
Jordan curve. Furthermore, f is unique.

Proof Put Im(A) = ± 1
4π

∫ 2π
0
|d f ∗(eit )|
|1− p̄eit | and Re(A) = Im(A) cotan(α), where the sign is

positive if and only if 0 < α < π. Construct the boundary correspondence f ∗(eit ) =
F∗(eit ) using the relation (2.7). There are essentially two possibilities. We choose the one
for which (5.2) holds.

As an immediate consequence, we get the following interesting result:

Corollary 5.3 Let a(z) = 1
z

1−pz
z− p̄ , |p| < 1, and suppose that the complement ofΩ is a convex

continuum. Consider the family F(a,Ω) of all univalent solutions f (z) = Az
(

1+o(1)
)

of (1.1)
which map ∆ onto Ω. Then the variability region of A are the two horizontal straight-lines
Im(A) = constant, where the two constants are determined by (5.4).

The next example illustrates the above statements.

Example 5.4 Let a(z) = 1
z2 and let Ω = ∆. By the existence and uniqueness theorem,

Theorem 5.1 (Theorem 2.2 respectively), we conclude that

F

( 1

z2
,∆
)
=

{
fα(z) =

eiα

|1− e2iα|

(
z −

e2iα

z̄

)
, 0 < |α| < π

}
.

Since Im(A) = sin(α)
|1−e2iα| = ±

1
2 , we see that (5.4) holds. Indeed, we have 4π| Im(A)| = 2π,

which is the euclidean length of ∂Ω. Furthermore, Re(A) = 1
2 cot(α) which implies that

the region of variability of A consists of the two horizontal straight lines Im(A) = ± 1
2 . One

also realizes that there is no univalent solution of fz̄(z) = 1
z2 fz(z) normalized at infinity by

f (z) = Az
(
1 + o(1)

)
,A real, which maps∆ onto itself.
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5.3 The Case a(z) = 1
z2 ( 1−zp

z− p̄ )2, |p| < 1

In this case, we have N = 4. By Theorem 4.4, condition (4.7) may be replaced by any
two linear functionals which together with (1.3) form an independent linear set. Since
a(z) = O( 1

z2 ) near infinity, we have B = C = 0. Equation (4.10) and the substitution j = 1
and p1 = p in (4.9) yield

(5.5)
1

2πi

∫ 2π

0
e−it d f ∗(eit ) = A− p2A

and
1

2πi

∫ 2π

0

eit d f ∗(eit )

eit − p̄
= p̄A.

Applying the second derivation functional at the origin to (4.12), we may replace any of
these two relations by

(5.6)
1

2πi

∫ 2π

0
e−2it d f ∗(eit ) = 2(1− |p|2)pA.

Example 5.5 The special case where p = 0 , i.e. a(z) = 1/z4, has a nice geometric
interpretation. First note that Theorem 3.2 implies the existence of two prime ends which
are complete resting points and which may be points of convexity. These points separate
the boundary of the image into two arcs Γ1 and Γ2. For i = 1, 2 let `i denote the euclidean
length of Γi . Now, (5.6) reduces to

1

2πi

∫ 2π

0

√
a(eit ) d f ∗(eit ) =

1

2πi

∫ 2π

0
ε(t)|d f ∗(eit )| = 0

where ε(t) = 1 on one of the arcs, say Γ1 and ε(t) = −1 on Γ2. We conclude that the
euclidean lengths of both arcs are equal, i.e. `1 = `2. Of course, f ∗(eit ) is still enforced by

(5.7)
1

2πi

∫ 2π

0
eitε(t)|d f ∗(eit )| = A.

In the particular case where Ω = ∆, (5.7) can be easily interpreted as follows. Since
f ∗(eit ) and d f ∗(eit ) are orthogonal on ∂Ω we have the relation

arg d f ∗(eit )− arg f ∗(eit ) = π/2.

From (2.7) we conclude that

arg d f ∗(eit )− 2t = 0 or − π

as long as d f ∗(eit ) 6= 0, i.e., except at the tips of Γi which are now the complete resting
points of f ∗(eit ). We deduce that for some constants ci we have

arg f ∗(eit ) = 2t + ci
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on Γi . Using the representation f ∗(eit ) = ei arg f ∗(eit ) we get

|d f ∗(eit )| = |iei arg f ∗(eit )d arg f ∗(eit )| = |d arg f ∗(eit )| = 2,

as long as d f ∗(eit ) 6= 0. We shall set now the resting points at f ∗(eis), t0 −
π
2 < s < t0, and

at f ∗(eis), t0 + π
2 < s < t0 + π, so that (5.7) reduces to

±
( 1

2πi

∫ t0+π/2

t0

2eit dt −
1

2πi

∫ t0+3π/2

t0+π
2eit dt

)
= A.

Putting ζ = eit0 , we get

A =
±2(1− i)ζ

π
.

6 An Application to Minimal Surfaces

We now apply our results of Section 5 to minimal surfaces. Let Ω, be as before, a simply
connected proper subdomain of C̄ containing infinity and let S = (u, v, s), s = s(u, v), be
a nonparametric surface defined over Ω. Then S is a minimal surface if, and only if there
exists a univalent complex-valued harmonic mapping f = u + iv from a domain D of C̄
onto Ω such that

(6.1) s2
z = − fz̄(z) fz = −a f 2

z

holds on D where a is the second dilatation function of f . If Ω is the one point punctured
plane, then D is either conformally equivalent to∆ or to C\{0}; if not then we may choose
D = ∆. Historically, the function i

√
a is called the Weierstrass parameter of the minimal

surface and the Gauss map of S is given by the normal vector

(6.2) ~N =
(2 Im

√
a, 2 Re

√
a, 1− |a|)

1 + |a|
.

It is interesting to note that ~N depends only on the second dilatation function a and that√
a is an analytic function on D. Hence, the study of nonparametric minimal surfaces over
Ω with a given Gauss map leads us to the problem of finding univalent harmonic maps
from∆ (C \{0} respectively) ontoΩ which are solutions of (1.1) and where a is the square
of an analytic function on D.

6.1 Minimal Surfaces With Univalent Gauss Maps Onto the Upper Half-Sphere

We first start by considering the case where the image of the Gauss map is the upper half-
sphere covered once. By (6.1), a(z) has to be a square of an analytic function on ∆ and
(6.2) implies that a(z) is the square of a single Blaschke factor. Applying an appropriate
Möbius premapping, we may choose the isothermic parameters x and y such that a(z) =
1
z2 . Therefore, we have B = C = 0. Integrating (6.1) we get

s(z) = ±2 Im{A log z + O(1)}
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which defines a real valued function on ∆ if and only if A is pure imaginary. In particu-
lar there is no nonparametric minimal surface over the one point punctured plane whose
Gauss map has the property that its image is the upper half-sphere covered once. By Theo-
rem 3.2, there is no complete resting point of f ∗ and henceΩ contains no prime end which
is a point of convexity. Summarizing we get

Theorem 6.1 Let Ω be a simply connected regulated proper subdomain of C̄ containing in-
finity. Then there exists a nonparametric minimal surface S over Ω whose Gauss map has the
property that its image is the upper half-sphere covered exactly once if, and only if the comple-
ment C \ Ω is a compact convex continuum. S is uniquely determined up to translation and
reflection with respect to the (u, v)-plane. Furthermore, we have

f (z) = i|A|z + O(1) and s(z) = |A| ln |z| + O(1)

near infinity.

Example 6.2 Let us return to Example 5.4. We are looking for a nonparametric minimal
surface over∆ with a univalent Gauss map onto the upper half-sphere. The univalent har-
monic and orientation-preserving mappings from∆ ontoΩ = ∆ whose second dilatation
function is a(z) = 1

z2 are f (z) = ± i
2 (z + 1

z̄ ). Both describe the same minimal surfaces S,
which expressed in the isothermic parameters x and y, are

S =
(
−y +

y

x2 + y2
, x +

x

x2 + y2
,
±1

2
ln(x2 + y2) + const.

)
.

6.2 Minimal Surfaces Whose Gauss Map Images Are the Upper Sphere Covered Twice

In this case we may choose the isothermic parameters in such away that a(z) = ( 1−zp
z(z− p̄) )2.

The complement of the orthogonal projection Ω of S is either a convex set or ∂Ω has at
most two prime ends which are points of convexity. As we have seen in Section 5.3, the
conditions (5.5) and (5.6) are necessary and sufficient in order that the solution of the
Dirichlet problem with the boundary values induced by the relation (2.7) is a univalent
solution of (1.1). For the special case a(z) = 1

z4 we immediately get

Theorem 6.3 Let Ω be a simply connected regulated proper subdomain of C̄ containing infin-
ity.

(1) If ∂Ω has at most one point of convexity, then there exist nonparametric minimal surfaces
over Ω whose Gauss map has the property that its image is the upper half-sphere covered
twice.

(2) If ∂Ω contains two prime ends q1 and q2 which are points of convexity, then there exists a
nonparametric minimal surface S overΩwhose Gauss map has the property that its image
is the upper half-sphere covered twice if and only if q1 and q2 divide ∂Ω in two parts of
equal euclidean length.

(3) In all other cases there are no nonparametric minimal surfaces having the above property.
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Laval, Québec
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