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ABSTRACT. This review focuses on the transport of matter and angular momentum in the 
radiative zones of stellar interiors. The two main causes of such transport are the convective 
overshooting in the vicinity of convection zones, and the slow motions (meridional circulation and 
turbulence) due to the rotation of the star. In addition, momentum can be transfered through 
waves (generated by the motions above) and through magnetic stresses. The characteristics of those 
processes are examined, with special emphasis on turbulent diffusion. 

1. I n t r o d u c t i o n 

Transport processes play a key role in the structure and the evolution of a star: above 
all, they deliver the energy which is produced in the deep interior to the surface, from 
where it is radiated in into space. Quite naturally, the two modes of transport which are 
responsible for this, namely radiative transfer and thermal convection, are considered by the 
astrophysicists as two major subjects, and they occupy a prominent place both in research 
and in teaching. 

The purpose of this review to examine some other processes which contribute, in stellar 
radiation zones, to the transport of matter and angular momentum. It is not necessary to 
explicit here in detail the motivations for such particular interest: they have been outlined in 
the introductory talk by E. Schatzman. Let us just recall that some chemical abundances at 
the surface of the Sun can only be interpreted by invoking some transport of matter in the 
radiative interior (Schatzman 1969, 1977; Schatzman and Maeder 1981). And the internal 
rotation of the Sun, which is being unveiled by the thrilling results of helioseismology, is 
also the result of the transport of angular momentum within the radiation zone. 

Let us begin by a brief inventory of the transport processes that are likely to occur. One 
can distinguish two classes among them: the microscopic processes, which operate at the 
particle level, and the macroscopic ones, which involve motions on larger scales. 
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1.1. MICROSCOPIC PROCESSES 

Microscopic diffusion is caused by the collisions between particles, and by their interactions 
with the radiation field. In a stellar interior, the ambiant medium is non uniform, due to 
the stratification of density and temperature; therefore, the interactions between particles 
of different species tend to separate them. Similarly, the slight anisotropy of the radiation 
field also to produces a chemical composition gradient. 

The theory of such processes has been established by Chapman and Cowling (1970), and 
their application to stellar envelopes has been developed mainly by Michaud (1970) and his 
co-workers; an excellent review on the subject has been written by Vauclair and Vauclair 
(1982). 

Thermal conduction in a gas is also due to particle collisions, through which thermal 
kinetic energy is exchanged; it is very sirailar to microscopic diffusion. 

Radiative transfer is by far the most powerful transport process in a stellar radiation 
zone, at least as long as matter is non degenerate. Except in the vicinity of the surface, 
stellar matter is optically thick; radiation and matter interact so strongly that they achieve 
the so-called local thermodynamic equilibrium (LTE). Then the radiation field becomes 
very nearly isotropic, and radiative transfer can be treated likewise as a diffusive process. 

The governing equation for all those diffusion processes is 

ft =VDVc+{S} (1) 

where c is the quantity being diffused (energy, concentration of chemical species, etc.) and 
{S} the sources and sinks of that quantity. Various notations are used for the diffusion 
coefficient, in order to distinguish between the different processes when they compete; here 
it is simply labeled D. Let us recall that in LTE, the radiative diffusivity is related to the 
opacity K through 

K =
 4acT3 

3CPp2K ' 

with the usual notations for the physical constants and for the temperature, the density 
and the specific heat. 

Viscous friction also can be considered as a diffusive process, in that case of momentum, 
the diffusivity then being the viscosity v. One of the main characteristics of stellar interiors 
is the great disparity between that diffusion of momentum and the radiative transport of 
energy: the ratio Pr = v/K, which is called the Prandtl number, is extremely small (typically 
1CT6 or less). In contrast, the fluids which are the most familiar to us, such as air or water, 
have a Prandtl number of order unity. 

1.2. MACROSCOPIC PROCESSES 

Advection through large scale circulations is the simplest of macroscopic processes, and we 
have many examples of it around us, in Nature and in our household (central heating!). If 
V represents the velocity field, the governing equation for the advection of a scalar quantity 
c just expresses the conservation of that quantity: 

g + V . V c = { * } > (2) 
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with the same notations as above. 
In radiative interiors, two causes of large scale circulations have been identified. One has 

been extensively studied: it is the thermal imbalance of a rotating star. When submitted to 
the centrifugal force, a star can no longer achieve radiative equilibrium, and this induces a 
meridional advection of heat which is known as the Eddington-Sweet circulation (Eddington 
1925, Vogt 1925, Sweet 1950, Mestel 1953, Kippenhahn 1958, McDonald 1972, Tassoul and 
Tassoul 1982, etc.) 

Much less attention has been paid so far by the astrophysicists to the so-called Ekman 
circulation, which is generated in the boundary layer connecting two regions rotating at 
different speeds (Ekman 1905; see also Pedlosky 1979). Such a circulation is likely to occur at 
the bottom of the solar convection zone, in which a strong differential rotation is maintained 
by the convective motions, whereas the radiation zone below appears to rotate much more 
uniformly (Dziembowski et al. 1989, Brown et al. 1989). The penetration of such Ekman 
circulation into the convection zone has already been considered by Bretherton and Spiegel 
(1968). 

One of the consequences of meridional circulation is the advection of angular momentum, 
which modifies the internal rotation rate of the star, which in turn alters the large scale 
motion. A complete, physically consistent description of this complex feed back is still 
lacking; it would require to also include the transport processes which will be discussed 
next. 

Turbulent diffusion. When the velocity field has small scale, time-dependent component 
u, which may be considered as turbulent (in an intuitive sense - a proper definition of this 
term is beyond our scope here), the advection equation (2) can be expanded in the following 
way, by taking suitable averages: 

dc 
— = V - A V c + {higher order terms} + {S} . (3) 

For the justification of this procedure we refer to Knobloch (1978); in many instances, it 
suffices to retain the first term of this formal expansion, which is the second order operator 
explicited here. The turbulent diffusivity Dt can be deduced from the properties of u , as we 
shall do later. We shall devote the next section to this transport process, since it is likely 
to play a key role in stellar radiation zones. 

In stars, thermal convection is the most efficient form of turbulent diffusion. It is not 
confined to the convection zone (defined as the region of nearly adiabatic stratification), 
since the turbulent motions penetrate somewhat into the adjacent layers. This convective 
overshooting is discussed by J. Massaguer (this volume). 

Transport through waves. Due to their oscillatory nature, waves do not contribute much 
to the transport of matter, unless they reach a rather large, finite amplitude (Weiss and 
Knobloch 1989). But they are very efficient in transporting energy and momentum, and 
therefore they too deserve a more detailed examination (in section 3). 
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2. Turbulent diffusion 

2.1. ESTIMATE OF THE TURBULENT DIFFUSIVITY 

We have already stated that, to first approximation, the transport in a turbulent medium 
of a scalar quantity (such as temperature, chemical species, etc.) can be described as a 
diffusion process. For simplicity, we assume here the velocity field to be isotropic enough 
so that the turbulent diffusivity reduces to a scalar, Dt. This coefficient is determined by 
the characteristics of the turbulence: 

Dt = \«l, (4) 

where, to first approximation, u is the velocity and I is the size of the largest eddies (or, 
equivalently, the mean free path of those eddies, or mixing length). 

It may seem a simple matter to estimate those quantities u and I, but the prescriptions 
which are used for that purpose vary from case to case. 

For the mixing length I, one can often take the dimension of the turbulent region, when 
the largest eddies are of that size. A more refined recipe, due to Prandtl, is to choose the 
distance to the nearest boundary. But in some instances the kinetic energy is injected at 
a scale which is smaller than that of the whole unstable region; the most vigorous eddies, 
which contribute most to the turbulent transport, are then of intermediate size. 

In the strong stratification of a stellar convection zone, it is not clear whether the eddies 
extend (or travel) over large vertical distances. It is customary then to follow E. Vitense 
(1953), and to relate the mixing length to the local pressure scale height, I = aHp, the 
coefficient a being calibrated by comparing the numerical models with the observations. 

To estimate the velocity u, various prescriptions are available. Let us take for example the 
turbulent shear flow: u is then of the order of the variation AU of the mean flow speed over 
the considered domain. The simplest case is when the differential velocity is maintained by 
some external force at a constant level AU, as it occurs in Couette flows. But often that 
AU is governed by the strength of the turbulence, which in turn is determined by another 
condition, such as the momentum flux or the heat flux which has to be carried. Sometimes 
it is possible to estimate the rate st at which kinetic energy is injected into the turbulent 
motions at the scale £, from where it cascades down to smaller scales, to be dissipated there 
through viscous friction. In this case, if one further assumes that the turbulent eddies obey 
the Kolmogorov law (see Landau and Lifshitz 1987), u can be derived from 

et « u3/t. (5) 

An alternate approach is to estimate u through the growth rate 1/T of the considered 
instability : 

u » 1/T; (6) 

this conditions implies that the growth of the instability saturates when the non-linear term 
of the momentum equation, uVu, reaches the same level as the linear terms. 

The growth rate 1/T is often approximated by the growth rate derived from the linear 
perturbation theory, for lack of something better. But it is more correct to calculate it, 
whenever it is feasible, in the non-linear regime which is attained by the instability. This is 
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done for instance in the classical mixing-length theory for convection, where the velocity is 
estimated by imagining an eddy accelerated in the actual superadiabatic density gradient: 

«2 = C i - | - ( V r o d - V a < 1 ) £ 2 . 
tip 

The expression for the (prescribed) convective flux is then 

Fc = C2 p u 3 ^ ; (7) 

the constants Ci and C2 are numerical coefficients of order 1, depending on phenomenolo-
gical details of that approach. Notice that one retrieves here the same ratio u?/l as in eq. 5 
above: it is equivalent to specify the convective flux or the kinetic energy injection rate. 

2.2. TURBULENT DIFFUSION IN STELLAR RADIATION ZONES 

A radiation zone is a region of stable thermal stratification; therefore, the convective 
instability that causes the turbulent motions which are suspected there cannot be ascribed 
to the convective instability (except in the vicinity of a convection zone, from which there 
is some penetration into the stable layers). 

What may then be the cause of such turbulence? It turns out that many instabilities 
are likely to occur in a radiation zone; they have been described in several reviews (see for 
instance Knobloch and Spruit 1982, 1983, or Zahn 1983). Such instabilities convert into 
turbulent kinetic energy other forms of energy which is stored in the star (thermal energy, 
gravitational, magnetic, kinetic energy of large scale flows, etc.) 

These instabilities compete with each other, and it is the strongest of them that will 
control the turbulent transport in the radiation zone. In all likelihood, the most powerful 
are the shear instabilities due to differential rotation, since they are of dynamical nature 
and therefore have the fastest growth-rate. 

Some amount of differential rotation is always present in a stellar radiation zone. It is due 
to several causes: contraction or expansion of the star while it evolves, angular momentum 
loss through a wind, coupling with a differentially rotating convection zone, meridional 
circulation, tidal braking in a binary star. 

Let us examine those shear instabilities in more detail. For the discussion, it is convenient 
to distinguish between vertical differential rotation, in which the angular velocity varies with 
depth, and horizontal differential rotation, where it varies with latitude. 

2.2.1. Vertical differential rotation. A typical velocity profile likely to be encountered in the 
vertical direction, for instance below the convection zone of a solar-type star, is the so-
called mixing layer: the angular velocity adjusts from a constant value Cl above to a higher 
value fl + An below, within a layer of thickness L. Since the profile presents an inflexion 
point, the flow is unstable to infinitesimal perturbations (Rayleigh 1880); the instability is 
of dynamical type, and its growth rate is of order 

r _ 1 » An s/L , 

s being the distance to the rotation axis (the viscosity has been neglected, for it plays here 
a negligible role). 
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But in a stratified medium such as stellar interior, the buoyancy force acts to hinder the 
instability. If there were no radiative damping, the instability would be suppressed for 

ACls/L < N, (8) 

N being the buoyancy frequency 

N2 = -£-(Vad - Vr a d) . 
tip 

However, radiative damping smoothes out the temperature differences, and therefore it 
lowers the threshold of the instability, which occurs then as soon as 

(ACIR/L)2 > N2 PrRc. (9) 

In this criterion Rc is the critical Reynolds number associated with that profile (it is of 
order 100), and Pr is the Prandtl number (ratio between the viscosity v and the thermal 
diffusivity K), which in a radiation zone is of order 10~6 or less. 

This condition is valid as long as the star has a uniform chemical composition. If there is 
a (stable) gradient of molecular weight, the buoyancy force is only partly weakened through 
radiative damping, and one recovers the original criterion (eq. 8), the buoyancy frequency 
being then reduced to 

(JS»> HpdlnP- ( > 

In all cases where the instability occurs, the largest turbulent eddies have a size of order 
L and a velocity of order AQs, and therefore the turbulent diffusivity is of order 

Dt « AClsL. (11) 

Those two criteria (eq. 9 and 10) can be extended to smoother velocity profiles, which 
do not exhibit an inflexion point, although the instability is then of different nature as we 
shall see next; all it needs is to replace the finite difference (AQ/L) by the derivative dO/dr. 

2.2.2. Horizontal differential rotation. When the rotation rate varies with latitude, the 
situation presents two main differences with the vertical differential rotation that we have 
just considered. 

First, the instability of a horizontal shear flow cannot be hindered by a stratification, 
since the buoyancy force acts only in the vertical direction. And it can been shown that 
the Coriolis force has no influence either on the instability criterion (see Tritton and Davies 
1981). 

Second, the horizontal velocity profiles that are likely to occur have in general no inflexion 
point, and therefore they are stable against infinitesimal perturbations. But they are liable 
to finite amplitude instabilities, as observed in Nature and in the laboratory, provided the 
Reynolds number reaches some critical value. Work is in progress to determine theoretically 
the threshold of that instability (see for instance Lerner and Knobloch 1988). 

When a horizontal shear flow becomes unstable, it generates eddies which have the same 
vorticity as the mean flow, and which are therefore horizontal, and two-dimensional. Those 
billows, in turn, undergo a three-dimensional instability, provided the vertical motions are 
not hindered by some restoring force. 
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One such force is the Coriolis force in the rotating star, which will dominate the dynamics 
of all eddies for which (see Hopfinger et al. 1982) 

u/l < 0 ; (12) 

those will remain horizontal, and they will not contribute to turbulent diffusion in the 
vertical direction. But the smallest eddies are not sensitive to the Coriolis force; they are 
three-dimensional, and they obey Kolmogorov's law (eq. 5). Their distribution begins at 
the scale which verifies both 

u'/t « n and (u'f/e « et , 

and therefore the vertical turbulent diffusivity is given by 

Dt « u'l « e ( / n 2 . (13) 

The other restoring force is the buoyancy, but it only operates when there is a vertical 
gradient of molecular weight, since here again the temperature differences are smoothed 
out by radiative damping. Such a //-gradient will inhibit three-dimensional turbulence for 
the eddies whose turn-over rate is less than the residual buoyancy frequency (eq. 10) 

u/l < N„ , (14) 

and it will suppress it entirely when (see Zahn 1983) 

(JV„)2 > st/u . (15) 

A rather small gradient of molecular weight thus suffices to prevent turbulent diffusion 
in the vertical direction (for instance, that due to the varying composition of 3He in the 
Sun). However, such a "//-barrier" (as Mestel called it in an other context) will still allow 
momentum transport through gravity waves, as we shall see later on. 

2.3. TURBULENT DIFFUSION ASSOCIATED WITH MERIDIONAL CIRCULATION 

We have seen that the strength of the turbulent motions is determined by the energy 
injection rate et. As an illustrative example, we shall estimate this rate in the case where 
the turbulent motions are caused by a meridional circulation. 

We have already mentioned that radiative equilibrium can no longer be achieved in a 
rotating star. From Von Zeipel's famous paradox (1924), Eddington (1925) and Vogt (1925) 
drew the conclusion that the star must be the seat of a large scale meridional circulation, 
such that 

pTV • VS = - V F , (16) 

with S being the specific entropy and F the radiation flux. The procedure to determine the 
velocity U was established by Sweet (1950); the circulation time may be expressed in terms 
of the Kelvin Helmholtz time tKH = GM2/LR and of the oblateness due to the centrifugal 
force 

t«„ « tKH ( ^ — j . (17) 
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That meridional circulation advects angular momentum, whose conservation requires 

^ s
2n + u v ( s

2 n ) = r, (is) 

where T is the torque exerted per unit mass by the turbulent motions (as above, s is 
the distance to the rotation axis). Likewise, we may express the rate of variation of the 
rotational energy: 

£i(sfi)2 + nu.v(*2n) = nr. (19) 

In a stationary state, the advection term balances the right hand side, which is the work 
done by the turbulent torque, and therefore the energy injection rate into the turbulence. 
Splitting the angular velocity into its mean and fluctuating parts (over a level surface) 
ft(r) + Sft[r,8), and subtracting the kinetic energy of the mean flow from that which is 
advected into the layer, we obtain the following expression for the turbulent energy input, 
averaged over a horizontal layer (Zahn 1987): 

et(r) = - [ 6ft(r,8)TJV(ft0(r)sm28)d(cos8). (20) 
Jo 

Let us stress that this expression is valid for any type of meridional circulation, either 
the Eddington-Sweet or the Ekman circulation. But from now we must specificy which of 
those we are considering, since we have to provide the value of the large scale velocity. 

When dealing with the Eddington-Sweet circulation, a crude approximation of that 
energy generation rate st is 

« ~ c L (Q2R3Y 
et ~ CM[GM) ' 

but for most applications it is necessary to use the full equation 20, with suitable expressions 
of U and Sft. 

One knows how to derive the meridional velocity from the rotation law ft{r,8); for 
instance, when the star is homogeneous and the departures from solid rotation are not 
too large, the vertical component of U takes the simple form Ur(r,8) = — U2{r)P2 (cos 8), 
J72(r) being a positive function of r (McDonald 1972). 

The difficulty comes from the poor knowledge of the differential rotation Sft(r, 8), which is 
governed by the horizontal transport of angular momentum, through the two-dimensional 
eddies mentioned above, and also through the internal waves. The modelization of this 
transport is still an unsolved problem. In the meanwhile, all we can do is to assert 
6ft = — C ftoP2(cosd), introducing a coefficient C to be calibrated with the observations, 
much as the mixing-length parameter a used to model stellar convection zones. 

This type of turbulent diffusion appears to play a major role in the depletion of Li in 
solar-like stars (Baglin et al. 1985, Vauclair 1988). It may also affect the abundance of Li 
observed in the old halo stars (Vauclair 1988). 
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3. Transport by waves 

3.1. GENERAL PROPERTIES 

Waves occur in any continuous medium which is in stable equilibrium, due to the very 
existence of a restoring force. The waves encountered in a stellar radiation zone are of 
several types, depending on the forces that come into play: 

Restoring force Type of waves 

pressure acoustic, p-modes 
buoyancy internal, g-modes 
Coriolis inertial 

id. with curvature Rossby, toroidal 
Laplace-Lorentz Alfven 

This classification assumes that only one restoring force is operating, but often there are 
two, or more, giving rise to mixed modes (magneto-acoustic waves, for example). 

A familiar property of waves is that they transport energy, but they also transport 
momentum, and thus angular momentum. In fact, the quantity which is conserved in a 
travelling wave is the action Eja 

s ( f ) + ' • { < " + < . > ( ! ) } - « > (21) 

(E: energy density; a: local frequency; U: velocity of the ambiant medium; cg: group 
velocity). 

To study the transport through wave motion, one has to follow the whole history of the 
wave: How is it generated? How does it propagate? Where is it damped? Is it destroyed? 
(In other words: where does the wave release what it transports?) 

Here we shall focus only on the two first families of waves; for lack of results bearing on 
stellar interiors, we skip the waves due to the Coriolis force. The magnetic coupling through 
Alfven waves will be treated by H. Spruit (this volume). 

3.2. WAVE TRANSPORT IN A STELLAR RADIATION ZONE 

3.2.1. Acoustic waves. The most powerful source for wave production is thermal convec­
tion: as observed on the Sun, a substantial fraction of the turbulent convective energy is 
converted into acoustic waves. And some of those waves penetrate into the deep interior, as 
demonstrated by the frequencies and the wave-lengths that are detected by the helioseismo-
logical techniques. However they are only slightly damped in the radiative core, due to their 
short period, and therefore they deposit there very little of the energy (and momentum) 
which is carried by them. One still lacks of a quantitative treatment of this transport, to 
check whether it is indeed negligible. 
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3.2.2. Gravity waves. It is expected that internal gravity waves are excited in the overshoot 
region just below the convection zone, although there is no observational proof of this yet. 
The periods and wave-lengths of such waves may be infered from the kinematic properties 
of the lower convection zone (which are model dependent). 

It turns out that those internal waves, due to their long period, are severely damped 
through radiative dissipation (Press 1981); hence they do not penetrate far into the 
radiation zone, although they may be very effective in coupling the rotation of that region 
with that of the convection zone. 

However, those long period waves will survive in spite of the strong radiative damping 
if there is a vertical gradient of molecular weight: although the temperature fluctuations 
are smoothed out, buoyancy will then still operate on the density fluctuations due to the 
chemical inhomogeneities. In other words, such a //-gradient can be the site for isothermal 
gravity waves. 

Internal waves are likely to be generated also by the shear instabilities which have been 
described above, especially when there is a gradient of molecular weight. This is suggested in 
particular by an experience performed by Stillinger et al. (1983), who studied the turbulence 
induced by a grid in a stably stratified fluid. They found that the dynamics of the large 
scales is dominated by the buoyancy force and that they take the form of internal waves; 
only the smaller scales, for which u/£ > JVM (see eq. 14), participate in what they call "active 
turbulence", which is responsible for the vertical diffusion of matter. Those internal waves 
may thus carry energy and momentum through a region which is impermeable to turbulent 
diffusion; in other words, angular momentum is transported, but chemicals are not. 

Another interesting property of gravity waves has been discussed by Goldreich and 
Nicholson (1989) in the context of tidal braking in binary stars: in a differentially rotating 
star, those waves may dump their energy and momentum at the corotation point. To be 
specific, the frequency a of the wave, which is w in the rest frame, is a function of depth in 
the local frame, which rotates at the depth-dependent velocity O(r): 

a = m(f!(r) - UJ) , (22) 

where m is the azimuthal wave-number. At corotation, both the phase velocity a and the 
group velocity vanish, and the vertical wavenumber fcr, which obeys 

akr = Nm/r , 

becomes infinitely large. Thus the wave either breaks there, or it is strongly damped. 

4. Conclusion 

To summarize, some turbulent diffusion is likely to occur in the radiation zone of any star; 
it is caused by the instabilities due to the ever present differential rotation. But this type 
of transport operates in the vertical direction only when the composition gradient is not 
too large. Presently, the weak point of the theory is the poor knowledge of the horizontal 
transport of angular momentum, which determines the rate at which kinetic energy is 
transferred from the differential rotation of the star into the turbulent motions. 

On the other hand, transport by waves is a promising mechanism to explain the redis­
tribution of angular momentum within a star, without affecting its chemical composition. 
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Unfortunately, very little is known so far about the efficiency of this process, although it is 
clear that it too will be linked with the energy generation rate characterizing the turbulent 
motions which are responsible for the production of such waves. 

Finally, it appears that two regions of a star like the Sun play a key role in those transport 
processes: the layers located just below the convection zone, where nearly all such processes 
are likely to operate and to compete (convective overshoot, meridional circulation, turbulent 
diffusion, waves), and the upper slope of the 3He abundance, which inhibits the vertical 
diffusion of matter. 
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