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Consider a commutative ring R and a simplicial map, X
π−→K, of finite simplicial

complexes. The simplicial cochain complex of X with R coefficients, Δ∗X, then has
the structure of an (R, K) chain complex, in the sense of Ranicki . Therefore it has a
Ranicki-dual (R, K) chain complex, TΔ∗X. This (contravariant) duality functor
T : BRK → BRK was defined algebraically on the category of (R, K) chain
complexes and (R, K) chain maps.

Our main theorem, 8.1, provides a natural (R, K) chain isomorphism:

TΔ∗X ∼= C(XK)

where C(XK) is the cellular chain complex of a CW complex XK . The complex XK

is a (nonsimplicial) subdivision of the complex X. The (R, K) structure on C(XK)
arises geometrically.

Keywords: Manifolds; Surgery; K -Theory

1. Introduction; description of results

This article is an addition to a theory of blocked surgery, pioneered by Ranicki,
augmented by others in [1, 4, 5, 6, 8, 9, 16, 17], and still in a developing state.

Let R be a commutative ring; let K be a finite simplicial complex. In [16] Ranicki
introduced the category of (R,K) chain complexes and chain maps denoted BRK

here. He also defined algebraically, a contravariant functor T : BRK → BRK .1

The simplest geometric example of an (R,K) chain complex arises from a
K-space (X,π). This is a finite simplicial complex X and a simplicial map,
π : X → K. In that case, the simplicial cochains on X (with R coefficients) form

an (R,K) chain complex denoted Δ∗X.
At the same time, (X,π) specifies a regular CW complex XK , which is a (non-

simplicial) subdivision of X. We show that the cellular chain complex (with R
coefficients) of XK forms a second (R,K) chain complex C(XK).

Our main theorem, theorem 8.1, exhibits a geometrically defined chain isomor-
phism between C(XK) and TΔ∗X. Roughly put:

TΔ∗X = C(XK).

1The duality functor T for (R, Kop) complexes seems to play a lesser role at present in the
geometric contexts of interest here.
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2 F. Connolly

It is also our aim to give a transparent definition of this duality functor T , a clear
treatment of Ranicki’s natural transformation e : T 2 → id. and a simple proof that
eC : T 2C → C is an (R,K) chain equivalence for all C.

Our larger goal is to facilitate applications of Ranicki’s theory to geometric ques-
tions such as the topological rigidity of non-positively curved groups as in [4, 5,
9, 10] when those groups have elements of finite order.

The vehicle for such applications would be a full blown K-blocked surgery
theory of which there are only hints in [16]. This would start with a degree-
one normal map between closed manifolds, (f, b) : (M,ν(M)) → (X, ξ) (as in [2])
together with a reference map, π : X → K as above. It would seek an L-theoretic
obstruction to finding a normal cobordism of (f, b) to a ‘K-blocked homotopy
equivalence,’ M ′ → X. But we will not pursue this here or even define the terms
precisely.

In the classical case (K = point; [2, 12, 18, 19, 20]) one has the ‘surgery
obstruction’ σ∗(f, b) ∈ Ln(Z[π1(X)]) to such a normal cobordism. But this functor
Ln(), was generalized in [16] to yield obstruction groups Ln(A) for any ‘category-
with-chain-involution’ (A, ∗, ε). Here A is an additive category, BA

∗→BA is a
contravariant functor satisfying certain conditions, on the category BA, of finite
chain complexes in A, and ε : (∗)2 → id, is an equivalence in the homotopy category
of BA.

Ranicki, in [16], then starts with a finite complex K and a category with chain
involution, A = (A, ∗, ε) as above. He then constructs the additive category AK

of K-blocked objects from A, and K-blocked A-maps. From ∗, and ε, he defines
the Ranicki Duality Functor T : B(AK) → B(AK), and the natural transformation
e : T 2 → idB(AK). This construction allows one to define the surgery obstruction
groups, Ln(AK) where AK = (AK , T, e).

This seems to apply directly to a K-blocked normal map, Mn (f,b)−→Xn π→K. Here
the relevant category seems to be A = A(R), the category of finitely generated free
modules over a fixed commutative ring R. We write ARK for (AR)K and BRK

for B(ARK). Its objects are (R,K)-chain complexes. So the simplicial cochain
complexes of X and M denoted Δ∗X and Δ∗M , and the simplicial chain com-
plexes, ΔX ′ and ΔM ′, are (R,K)-chain complexes. (See § 3). Thus the L-groups
of (ARK , T, e) seem likely to be useful.

However, Ranicki’s definition of BRK
T−→BRK was only a starting point. Indeed

his assertion in [16] of the crucial theorem that (ARK , T, e) is a category with
chain involution was only proved in 2018 (by Adams-Florou and Macko, [1]).

This paper interprets Ranicki’s notions geometrically. Section 2 fixes chain-
complex conventions. Section 3 reviews Ranicki’s concepts concerning (R,K)
complexes while attempting to simplify notation. In § 5 we introduce the (R,K)
chain complex C ⊗K D, defined if D is an (R,K) complex and C is an (R,Kop)
complex. This complex C ⊗K D is a certain quotient of C ⊗R D.

Our definition (see 6.1) of the Ranicki dual TC, of an (R,K) complex C, is:

TC = C∗ ⊗K Δ∗K.

In § 7 we show, using work of M. Cohen [3], that each K-space (X,π) defines
a certain regular CW-complex XK , whose cellular chain complex has a natural
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(R,K) structure. Therefore from each K-space (X,π) we obtain three (R,K) chain
complexes:

(1) Δ∗X, the simplicial cochain complex of X (definition 4.1).

(2) C(XK), the cellular chain complex of the CW complex XK (§ 8).

(3) ΔX ′, the simplicial chain complex of X ′, the barycentric subdivision of X
(definition 7.2).

This paper shows that these three are closely related by T . Our main result,
theorem 8.1, exhibits an isomorphism of (R,K) chain complexes:

ΦX : TΔ∗X ∼= C(XK)

Then, using [13], we prove there are (R,K) chain homotopy equivalences:

TΔX ′ � Δ∗X; C(XK) � ΔX ′.

When X is a pl-manifold, and C = C(XK), Poincare duality then becomes an
n-cycle in the (R,Kop) complex, Hom(R,K)(TC,C).

This CW complex XK is a subdivision of X, and X ′ is a simplicial subdivision
of XK . In fact, for each simplex S of X and each face σ of π(S) ∈ K, there is a
single cell Sσ of XK . Specifically, if D(σ, π(S)) is the dual cell of σ in π(S):

Sσ = (π | S)−1|D(σ, π(S))| .

The author is indebted to Jim Davis for his helpful comments. He also wants to
acknowledge, with thanks, the referee’s suggestions for improving the text.

2. Chain complex conventions

Throughout this paper, R denotes a fixed commutative ring; AR is the additive
category of finitely generated free R modules.

For any additive category A we will write BA for the additive category of finite
chain complexes, C = {Cq, ∂q}q∈Z and chain maps f = {fq : Cq → Dq}q∈Z from A.
(Finite means: Cq = 0 for all but finitely many q). We abbreviate B(AR) to BR.

As usual two chain maps f, g : C → D are chain homotopic if there is a sequence
of A maps, h = {hq : Cq → Dq+1}, for which dD

q+1hq + hq−1d
C
q = gq − fq ∀q.

We regard A as the full subcategory of BA consisting of chain complexes
concentrated in degree zero.

Let C,D ∈ Ob(BR). The complexes C ⊗R D, and HomR(C,D) in Ob(BR), are:

(C ⊗R D)q =
∑

r∈Z

Cr ⊗R Dq−r; HomR(C,D)q =
∑

r∈Z

HomR(Cr,Dq+r) and:

dC⊗D(x ⊗ y) = dCx ⊗ y + (−1)|x|x ⊗ dDy; dHomφ = dD ◦ φ − (−1)|φ|φ ◦ dC

The evaluation map, evalC,D : HomR(C,D) ⊗R C −→ D is the R-chain map:

evalC,D(f ⊗ x) = f(x).
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Note that evalR,D : HomR(R,D) ⊗R R ∼= D.
Write evC : C∗ ⊗ C → R for evalC,R.
The contravariant functor BR

∗→BR is : C∗ = Hom(C,R); f∗ = Hom(f, 1R).
Therefore we have:

(C∗)−q = HomR(Cq, R); dC∗
−q = (−1)q+1(dC

q+1)
∗ : (C∗)−q → (C∗)−q−1.

The functor ∗ comes with a natural equivalence, ε : (∗)2 → 1BR. Specifically, the
chain isomorphism εC : C∗∗ → C is characterized by the identity:

a(εC(α)) = (−1)qα(a) ∀α ∈ (C∗∗)q, a ∈ (C∗)−q.

3. Basic definitions for (R, K) chain complexes

Definition 3.1. Let K be a finite poset with partial order �.
Kop denotes the same set with the opposite partial order.
(Later we will specialize to the case when K is a finite simplicial complex).

(1) An (R,K) module is an ordered pair M = (M(K), {M(σ)}σ∈K) such that:
(a) M(K) and each M(σ) are R-modules in Ob(AR);

(b) M(K) = ⊕σ∈KM(σ).
More generally, for any S ⊂ K we write: M(S) = ⊕σ∈SM(σ).

(2) An (R,K) map M
f→N of (R,K) modules is a map M(K)

f→N(K) of R
modules, whose components, f(τ, σ) : M(σ) → N(τ), satisfy:

f(τ, σ) = 0 unless τ � σ.

(3) The additive category of (R,K) maps and modules is written ARK .
We abbreviate the category of chain complexes, B(ARK), to BRK .

(4) An object C = {Cq, ∂q}q∈Z of BRK is an (R,K) chain complex. We then
write C(K) for {Cq(K), ∂q}q∈Z, an R-chain complex in ob(BR).
Note: C ∈ ob(BRK) is specified by specifying the R complex C(K) and the
required collection {Cq(σ)}σ∈K,q∈Z of R submodules.

(5) Let C,D ∈ ob(BRK). Hom(R,K)(C,D) is the (R,Kop) complex such that:
(a) Hom(R,K)(C,D)(K) is the subcomplex of HomR(C(K),D(K)) given by

those f = {fq : Cq → Dq+|f |}q∈Z for which each fq is an (R,K) map.

(b) Hom(R,K)(C,D)p(σ) is the set of f ∈ Hom(R,K)(C,D)(K)p satisfying:

fq |Cq(τ)= 0 if τ �= σ, ∀ q.

(6) We say a sequence of chain maps 0 → C ′ i→C
j→C ′′ → 0 in BRK is exact if for

each σ �= τ , i(σ, τ) = 0, j(σ, τ) = 0, and, for all q, the corresponding sequence,
0 → C ′

q(σ) → Cq(σ) → C ′′
q (σ) → 0. is an exact sequence in AR. We then say

i is an (R,K) monomorphism and j is an (R,K) epimorphism.
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(7) Note that ∗ specifies a contravariant functor, BRK
∗−→BRKop , provided

that we define (C∗)q(σ) as (C−q(σ))∗ and dC∗
as dC(K)∗ for C ∈ ob(BRK).

BRK
∗−→BRKop preserves exactness and homotopy. The transformation εC :

C∗∗ → C of § 2 is an (R,K) isomorphism, for all C ∈ ob(BRK).

(8) We say S ⊂ K is full in K if, whenever ρ, τ ∈ S, then:

{σ ∈ K | ρ � σ � τ} ⊂ S.

Let C be an (R,K) complex. Let S be a full subset of K. We define ∂
C(S)
q :

Cq(S) → Cq−1(S) by:

∂C(S)
q x =

∑

τ∈S

∂C(τ, σ)x, ∀x ∈ Cq(σ),∀τ, σ ∈ S.

Then C(S) := {Cq(S), ∂C(S)
q }q∈Z is an R chain complex. But in many cases,

it is neither a subcomplex nor a quotient complex of C(K).

4. K spaces and their chain complexes

For the rest of this paper, K denotes a finite simplicial complex.
A simplicial complex K is a poset so the above definitions apply. In this case

σ � τ means that the simplex σ is a face (not necessarily proper) of the simplex τ .
Δ∗(K;R) = {Δq(K;R), ∂q}q∈Z denotes the simplicial chain complex of K.
Δ∗(K;R) = HomR(Δ∗(X;R), R) denotes the simplicial cochain complex of K.
One can choose a basis, bK for Δ∗(K;R) consisting of one oriented q-simplex,

σ = 〈v0 . . . , vq〉 ∈ Δq(K;R) for each q-simplex with vertices v0, . . . vq, of K. Recall:
〈v0, . . . , vq〉 = sgn(π)〈vπ(0), . . . , vπ(q)〉 for each π ∈ Sq+1. The oriented q-simplex
σ ∈ Δq(K;R) defines a dual cochain σ∗ ∈ Δ∗(K;R)−q such that σ∗(τ) = 0 for all
τ �= ±σ, and σ∗(σ) = 1.

One then defines σ∗∗ ∈ Δq(K;R)∗∗ by: ε(σ∗∗) = σ.
Each simplex σ ∈ K defines subcomplexes, σ and ∂σ, and a subset st(σ):

σ = {τ ∈ K | τ � σ}; ∂σ = {τ ∈ K | τ < σ}; st(σ) = {τ ∈ K | τ � σ}
The incidence number [τ, σ] ∈ {1,−1, 0} is defined for any oriented simplices σ, τ

of K. It satisfies: ∂q(σ) =
∑

τ∈bK [σ, τ ]τ for any basis, bK of oriented simplices of K.
[σ, τ ] �= 0 iff τ is a codimension-one face of σ.

Definition 4.1. (K-spaces, Δ∗X and ΔX)
Let K be a finite simplicial complex. A K-space is a pair (X,π) where X is a finite

simplicial complex and |X| π→|K| is a simplicial map, X → K. A map of K-spaces,
(X,πX) → (Y, πY ) is a simplicial map f : |X| → |Y | satisfying: πY f = πX .

Let (X,π) be a K-space.
ΔX denotes the (R,Kop) complex for which ΔX(K) = Δ∗(X;R). For each

σ ∈ K, (ΔX)p(σ) is the submodule generated by oriented p-simplices in Δp(X;R)
whose underlying p-simplex, S ∈ X, satisfies σ = π(S) ∈ K.

By definition, Δ∗X = (ΔX)∗. Therefore Δ∗X(K) = HomR(Δ∗(X;R), R) =
Δ∗(X;R), the simplicial cochain complex of X. For each σ ∈ K, (Δ∗X)−p(σ) is
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6 F. Connolly

therefore the submodule spanned by all S∗ for which S ∈ Δp(X;R) is an oriented
simplex and σ = π(S) ∈ K.

A map f : X → Y of K-spaces induces an (R,K) chain map f∗ : Δ∗Y → Δ∗X
and an (R,Kop) chain map f∗ : ΔY → ΔX.

The next lemma will be used in § 6.

Lemma 4.2. Suppose S ∈ K and there is no τ ∈ K for which S < τ . The K-space
(S, inclusion) specifies the (R,K) complex Δ∗S. Then Δ∗S(st(σ)) is a contractible
R-complex for all σ ∈ K such that σ �= S. Also Δ∗S(st(S)) = RS∗.

Proof. It is obvious that Δ∗S(st(S)) = RS∗ (after orienting S) and that
Δ∗S(st(σ)) = 0 if σ is not a face of S. So we assume σ < S. Let τ be the comple-
mentary face of σ in S. Then the joins, S = σ ∗ τ and ∂σ ∗ τ are contractible sim-
plicial complexes. Note st(σ) = S − ∂σ ∗ τ . Consequently, Δ∗S(st(σ)) = Δ∗(σ ∗ τ,
∂σ ∗ τ ;R) is a contractible chain complex. �

5. C ⊗K D and the isomorphism Hom(R,K)(D, C∗) ∼= (C ⊗K D)∗

Throughout this section, C denotes an (R,Kop) complex and D denotes an (R,K)
complex.

We will first define two (R,K) complexes: C ⊗R D and a quotient of this,
C ⊗K D.

In K, the star of any simplex , st(σ), as well as K − st(σ) are full in K. Moreover
the chain complex C(K − st(σ)) is a subcomplex of C(K) and C(st(σ)) is a quotient
complex. These fit into a short exact sequence of chain maps in BR:

0 → C(K − st(σ)) iσ−→C(K)
pst(σ)−→ C(st(σ)) → 0

Here C(K)
pst(σ)−→ C(st(σ)) is defined by: pst(σ)|Cq(st(σ)) = 1Cq(st(σ)); and

pst(σ)|C(K−st(σ)) = 0.
(For the (R,K) complex D, we get 0 → D(st(σ)) → D(K) → D(K − st(σ))→ 0).

Definition 5.1. (C ⊗K D, C ⊗R D, and C ⊗R D
πC,D−→ C ⊗K D).

Let C be an (R,Kop) complex and D be an (R,K) complex.

(1) Let C ⊗R D be the (R,K) complex for which:

(C ⊗R D)(K) = C(K) ⊗R D(K);

(C ⊗R D)q(ρ) = (C(K) ⊗R D(ρ))q ∀ρ ∈ K, q ∈ Z

(2) Let C ⊗K D be the (R,K) complex for which:
(a) (C ⊗K D)q(K) =

∑
ρ∈K(C(st(ρ)) ⊗R D(ρ))q ∀q ∈ Z

(b) (C ⊗K D)(ρ) = C(st(ρ)) ⊗R D(ρ) ∀ ρ ∈ K

(c) The map C ⊗R D
πC,D−→ C ⊗K D is an (R,K) chain epimorphism, if we

define πC,D by requiring that πC,D(σ, ρ) = 0 for σ �= ρ and:

πC,D(ρ, ρ) = pst(ρ) ⊗R 1D(ρ) : C(K) ⊗R D(ρ) −→ C(st(τ)) ⊗R D(ρ).
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Expicitly, for any ρ � τ and x ⊗R y ∈ Cr(τ) ⊗R Dq−r(ρ) ⊂ (C ⊗K D)q(ρ), we have

dC⊗KD(x ⊗ y) =
∑

{σ|ρ�σ�τ}
dC(σ, τ)x ⊗ y + (−1)rx ⊗ dD(σ, ρ)y. (5.1)

We now show that (C ⊗K D)∗ is a convenient expression for Hom(R,K)(D,C∗):

Lemma 5.2. There is a natural isomorphism Ψ of functors, denoted,

ΨC,D : Hom(R,K)(D,C∗) ∼= (C ⊗K D)∗ (5.2)

for any (C,D) ∈ Ob(BRKop × BRK).

Proof. Suppose f is in Hom(R,K)(D,C∗)q(σ) for some σ ∈ K and q ∈ Z. Define an
R-map, Ψ(f) : C(st(σ)) ⊗ D(σ)−q → R, by the formula:

Ψ(f)(x ⊗ y) = (−1)|x||y|f(y)(x) for x ⊗ y ∈ (C ⊗K D)−q(σ).

The same formula yields 0, if x ⊗ y is in (C ⊗K D)(τ)−q for τ �= σ. One easily sees
that this rule (i.e. f �→ Ψ(f) gives an isomorphism,

ΨC,D : Hom(R,K)(D,C∗)
∼=−→(C ⊗K D)∗

of (R,Kop) complexes for all (C,D) ∈ Ob(BRKop × BRK). Naturality is obvious.
�

6. Ranicki Duality and the (R, K) chain equivalence e : T 2 → 1BRK

Definition 6.1. Ranicki Duality is the contravariant functor BRK
T−→BRK

defined for a chain complex C ∈ Ob(BRK) and a (R,K) chain map, f : C → D
by:

TC = C∗ ⊗K Δ∗K Tf = f∗ ⊗K 1Δ∗K

Δ∗K comes from the K-space, (K, 1K). After examining [16], p. 75 and p. 26,
lines -6 to -4 one can see that this is in agreement with the definition indicated
there, up to isomorphism and differences in sign conventions. In particular compare
our formula for dC⊗KD with that on p.26, line -5 of [16].

Corollary 6.2. T is an exact homotopy functor.

Proof. By lemma 5.2, TC = C∗ ⊗K Δ∗K is isomorphic to Hom(R,K)(Δ∗K,C)∗

(since εC : C∗∗ ∼= C for all C). But C �→ C∗ and C �→ Hom(Δ∗K,C) are both exact
homotopy functors. The result follows. �

We now want to show that T 2C and C are (R,K)-chain equivalent. See 6.5.

Definition 6.3. (of EC : Hom(R,K)(Δ∗K,C) ⊗K Δ∗K → C).
Let C be an (R,K) complex.

https://doi.org/10.1017/prm.2022.89 Published online by Cambridge University Press
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8 F. Connolly

Consider the evaluation chain map, evalA,B : HomR(A,B) ⊗R A → B, when
A = Δ∗K(K) and B = C(K). Its restriction to (Hom(R,K)(Δ∗K,C) ⊗R Δ∗K)(K),
denoted E′

C , is an (R,K) chain map,

E′
C : Hom(R,K)(Δ∗K,C) ⊗R Δ∗K → C

(by definition of an (R,K) map). Moreover, for each σ ∈ K, E′
C annihilates

Hom(R,K)(Δ∗K,C)(K − st(σ)) ⊗R Δ∗K(σ). Therefore E′
C descends uniquely to

an (R,K) chain map,

EC : Hom(R,K)(Δ∗K,C) ⊗K Δ∗K → C, EC(f ⊗ σ∗) = f(σ∗).

satisfying: E′
C = EC ◦ πH, Δ∗K . Here H = Hom(R,K)(Δ∗K,C) (see 5.1).

E is obviously natural in C.

For each (R,K) complex C, define

ΨC∗ = ΨC∗,Δ∗K : Hom(R,K)(Δ∗K,C∗∗)
∼=−→(C∗ ⊗K Δ∗K)∗

In view of lemma 5.2. we have an (R,K) chain isomorphism:

ΨC∗ ⊗ 1Δ∗K : Hom(R,K)(Δ∗K,C∗∗) ⊗K Δ∗K
∼=−→(C∗ ⊗K Δ∗K)∗ ⊗K Δ∗K = T 2C.

Definition 6.4. For each (R,K) complex C define eC : T 2C → C by

eC = εC ◦ EC∗∗ ◦ (ΨC∗ ⊗ 1Δ∗K)−1 :

(C∗ ⊗K Δ∗K)∗ ⊗K Δ∗K → Hom(R,K)(Δ∗K,C∗∗) ⊗K Δ∗K → C∗∗ → C.

Note eC is an (R,K) chain epimorphism and e is a natural transformation.

Theorem 6.5. eC : T 2C −→ C is an (R,K) chain equivalence, for each (R,K)
complex C.

Proof. By [16] (proposition 4.7), we need only prove that eC(σ, σ) : T 2C(σ) → C(σ)
is an R-chain equivalence, for all σ ∈ K. (No proof of this proposition appears in
[16]. A brief proof appears in Appendix 2).

Case I: Assume there is a simplex S ∈ K for which: C(σ) = 0 ∀ σ �= S.
We need only show eC(S, S) is a chain isomorphism, and T 2C(σ) is contractible

for σ �= S. We compute, for all σ ∈ K, in view of the restriction on C:

TC(st(σ)) = (C∗ ⊗K Δ∗K)(st(σ)) = (C∗ ⊗R Δ∗S)(st(σ))

= C∗(S) ⊗R Δ∗S(st(σ))

So: T 2C(σ) ∼=C∗∗(S) ⊗R Δ∗∗S(st(σ)) ⊗R Rσ∗

So for σ �= S, T 2C(σ) is contractible because Δ∗∗S(st(σ)) is contractible by 4.2.
Next we prove that the map

eC(S, S) = εC(S, S) ◦ EC∗∗(S, S) ◦ (Ψ∗
C ⊗ 1Δ∗K)−1(S, S)

is an isomorphism, or equivalently that EC(S, S) is an isomorphism.
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Assume S has been oriented. Because C(σ) = 0 for σ �= S,

EC(S, S) : [Hom(R,K)(Δ∗K,C) ⊗K Δ∗K](S) → C(S)

is simply: evalRS∗,C(S) : HomR(RS∗, C(S)) ⊗R RS∗ → C(S).
This is a chain isomorphism as observed in § 2. So eC(σ, σ) is a chain isomorphism

for σ = S and a chain equivalence for σ �= S. This completes the proof in Case I.
Case II (the general case): For any C �= 0 in BRK one can choose some S ∈ K

for which C(S) �= 0, and an exact sequence 0 → C ′ i−→C
j−→C ′′ → 0 for which

i(S, S) : C ′(S) → C(S) is an isomorphism, and C ′(σ) = 0 for σ �= S. For example,
choose S to be of maximum dimension among {σ ∈ K | C(σ) �= 0}).

The argument is by induction on the number n, of σ ∈ K, for which C(σ) �= 0.
If n = 1, Case I applies. If n > 1, by induction, eC′′(σ, σ) and eC′(σ, σ) are R

chain equivalences. Also the commuting diagram below has exact rows.

0 −−−−→ T 2C ′(σ) −−−−→ T 2C(σ) −−−−→ T 2C ′′(σ) −−−−→ 0

eC′ (σ,σ)

⏐⏐� eC(σ,σ)

⏐⏐�
⏐⏐�eC′′ (σ,σ)

0 −−−−→ C ′(σ) −−−−→ C(σ) −−−−→ C ′′(σ) −−−−→ 0

Therefore eC(σ, σ) is an R-chain equivalence for all σ. This completes the proof. �

Note: The first proof of the above theorem appeared in [1].

7. Construction of the ball complex XK

The purpose of this section is to construct the complex XK advertised in the
introduction and establish its properties.

Definition 7.1. (of X ′): Let X be a finite simplicial complex in a euclidean space,
with vertex set VX . Its underlying polyhedron is: |X| = ∪{σ | σ ∈ X}. For each
p � 0, Xp denotes the set of p-simplices of X.

If |X| is pl-homeomorphic to In we say |X| or X is a pl n-ball and write ∂X for
the subcomplex for which |∂X| = ∂|X|.

Each p-simplex σ ∈ X is the convex hull, [v0, v1, . . . , vp], of its vertices in VX . Its
barycenter is σ̂ := 1

p+1

∑p
i=0 vi ∈ σ◦.

Choose a point bσ ∈ σ◦, the interior of σ, for each σ ∈ X.
The derived complex X ′ is defined as the unique simplicial subdivision of X

for which VX′ = {bσ | σ ∈ X}. X ′ has one p-simplex, [bσ0, bσ1 . . . bσp], for each
decreasing sequence of simplices σ0 > · · · > σp of X.

If σ0 > · · · > σp, the ordered p + 1 tuple (bσ0, bσ1, . . . , bσp) then specifies an ori-
ented p-simplex in Δp(X ′;R) which we denote 〈σ0, σ1 . . . , σp〉 (suppressing the
barycenters for concision).

These form a canonical basis for Δp(X ′;R) (in contrast to Δp(X;R)).

Because we want to use the McCrory cap product, we follow the orderings of [13]
regarding simplices of X ′.
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10 F. Connolly

Definition 7.2. (of ΔX ′): Let (X,π) be a K-space. The derived complexes of
(X,π) are the simplicial subdivisions X ′ of X, and K ′ of K whose vertex sets
{bσ | σ ∈ K} and {bS | S ∈ X} are chosen as follows:

If σ ∈ K, bσ := σ̂ ∈ σ◦;

If S ∈ X and σ = π(S), bS := centroid of (S ∩ π−1(σ̂)) ∈ S◦.

By construction, π(VX′) ⊂ VK′ . So π is also a simplicial map from X ′ to K ′, because
π is linear on each simplex of X ′.

X ′ provides a second geometric example, ΔX ′, of an (R,K) complex:
We define ΔX ′ by,

(1) ΔX ′(K) = Δ∗(X ′;R).

(2) For each σ ∈ K, p ∈ Z, (ΔX ′)p(σ) is the submodule of Δp(X ′;R) spanned
by all 〈Q0, . . . Qp〉 in X ′ for which σ = π(Qp).

It is straightforward to see that ΔX ′ is an (R,K) complex.

The dual cone of a simplex σ ∈ K, denoted D(σ,K), is a subcomplex of K ′ first
defined in [15], § 7. It is a pl ball if K is a pl-manifold). It gives rise to several
‘dual’ subcomplexes in K ′ and X ′ which we define now.

Definition 7.3. Let (X,π) be a K-space. Suppose σ, τ ∈ K, T ∈ X.

(1) D(σ,K) := {〈σ0, σ1, . . . , σp〉 ∈ K ′ | σp � σ}
(2) D(σ, τ) := {〈σ0, σ1, . . . , σp〉 ∈ K ′ | σp � σ, τ � σ0}, the dual cell of σ in τ .

(3) DσT := {〈S0, S1, . . . , Sp〉 ∈ X ′ | σ � π(Sp), S0 � T}
(4) Tσ := |DσT |. (Therefore, Tσ = (π | T )−1|D(σ, π(T ))|).

Of course, D(σ, τ) = ∅ unless σ � τ , and DσT = ∅ unless σ � π(T ).
DσT is a subcomplex of X ′. D(σ,K) and D(σ, τ) are subcomplexes of K ′.

Lemma 7.4. Let (X,π) be a K-space. Suppose σ ∈ K, T ∈ X, and σ � π(T ).

(1) Tσ = |DσT | is a pl ball. dim(Tσ) = dim(T ) − dim(σ).

(2) ∂DσT = ∂iDσT ∪ ∂oDσT , (the inner and outer boundaries) where:

∂iDσT = ∪{DρT | σ < ρ}; ∂oDσT = ∪{DσS | S < T}

(3) Suppose σ < π(T ). Then |∂iDσT | and |∂oDσT | are pl balls of dimension
dim(DσT ) − 1, and

∂(∂iDσT ) = ∂(∂oDσT ) = ∂iDσT ∩ ∂oDσT .
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Proof. of (1): For each vertex v of τ note that,

|D(v, τ)| = {x ∈ τ | av(x) � aw(x), for all vertices w of τ}.

where av : |K| → [0, 1] denotes the barycentric coordinate function defined by the
vertex v. This is a convex subset of τ . So

|D(σ, τ)| = ∩v∈V (K)|D(v, τ)|

is also convex. Therefore Tσ = (π|T )−1(|D(σ, τ)|) is also convex since π|T : T → τ
is simplicial. So Tσ is a compact convex polyhedron and therefore a pl ball.

Since |D(σ, τ)| ∩ τ◦ �= ∅, this operator (π|T )−1 preserves codimension:

dim(τ) − dim(D(σ, τ)) = dim(T ) − dim(DσT ).

Since dim(D(σ, τ)) = dim(τ) − dim(σ), we get: dim(DσT ) = dim(T ) − dim(σ).
�

Proof. of (2): See [3], proposition 5.6(2), applied to π|T : T → π(T ). �

Proof. of (3): The equation in (3), and the fact that |∂iDσT | and |∂oDσT | are both
pl manifolds, are proved in [3] [proposition 5.6 (3),(4)]. To show |∂iDσT | is a pl
ball, it suffices to note that it collapses to the vertex bT , and so |∂iDσT | is a regular
neighbourhood of bT in |∂DσT | (by 3.30 of [14]). Then by 3.13 of [14], ∂oDσT is
also a pl ball. �

Definition 7.5. ([14] p.27) A ball complex is a finite collection Z = {Bi}i∈I of pl
balls in a euclidean space, such that each point of |Z| := ∪{B | B ∈ Z} lies in the
interior of precisely one ball of Z, and the boundary of each B ∈ Z is a union of
balls of lesser dimension of Z. Therefore (|Z|, Z) is a regular CW-complex.

Let Z and Y be ball complexes A pl map f : |Z| → |Y | is a map of ball complexes
if for each ball B of Z, f(B) is a ball of Y .

Definition 7.6. Let (X,π) be a K-space. We define

XK = {Tσ | σ ∈ K, T ∈ X, σ � π(T )}

Theorem 7.7. Let (X,π) be a K-space. Then XK is a ball complex. Moreover X ′

is a simplicial subdivision of XK . Also, XK is a subdivision of X.
Let f : (X,πX) → (Y, πY ) is a map of K-spaces. The induced map f ′ : X ′ → Y ′

of derived complexes is then a map of ball complexes, fK : XK → YK .

Proof. (The induced map f ′ means the simplicial map f ′ : X ′ → Y ′ for which
f ′(bS) = b(f(S)) for each S ∈ X.) By lemma 7.4 the boundary of each Tσ is a
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union of balls of XK with smaller dimension and

T ◦
σ=

∐
{A◦ | A = 〈S0, . . . , Sp〉 ∈ DσT, A /∈ ∂iDσT, A /∈ ∂oDσT}.

This can be rewritten as:

T ◦
σ=

∐
{A◦ | A = 〈S0, . . . , Sp〉 ∈ X ′, σ = π(Sp), T = S0}, (7.1)

By equation (7.1), for each A ∈ X ′ there is a unique Tσ ∈ XK for which A◦ ⊂ T ◦
σ .

Therefore : |X ′| =
∐{T ◦

σ | Tσ ∈ XK} = |XK |.
This proves that XK is a ball complex and that X ′ is a subdivision of XK .

Because Tσ ⊂ T , we see XK is a subdivision of X.
Now let f : (X,πX) → (Y, πY ) be a map of K-spaces. For each simplex S ∈ X

we see f(S) ∈ Y because f is simplicial. For each face σ of πX(S) in K, we see
from the definitions that f ′(DσS) = Dσf(S). So f ′ is a map of ball complexes,
fK : XK → YK . �

8. The isomorphism ΦX : TΔ∗X ∼= C(XK)

Our main theorem is:

Theorem 8.1. For each K-space (X,π) the cellular chain complex of XK with R
coefficients, denoted C(XK), comes with a natural (R,K)complex structure. There
is defined (below) an isomorphism of (R,K) chain complexes:

ΦX : TΔ∗X ∼= C(XK) .

For each map f : (X,πX) → (Y, πY ) of K-spaces, the square below commutes.

T (Δ∗X)
T (f∗)−−−−→ T (Δ∗Y )

ΦX

⏐⏐�
⏐⏐�ΦY

C(XK)
fK−−−−→ C(YK)

Proof. Choose a basis bK of oriented cells for Δ∗(K;R). Choose next, a basis b∗X
of oriented cells for Δ∗(X;R). But choose the orientations in b∗X so that if T ∈ b∗X
and σ ∈ bK are both q-cells, and if π∗(T ) = ±σ ∈ Δq(K;R), then:

π∗(T ) = (−1)dim(σ)σ ∈ Δq(K;R).

We call such a pair, (bK, b∗X) an orientation for (X,π).
Our first task is to construct the cellular chain complex C∗(XK ;R) as the

underlying R-complex of an (R,K) complex C(XK). Define

C(XK) = ΔX ⊗K Δ∗K; C∗(XK ;R) = (ΔX ⊗K Δ∗K)(K)

For each oriented simplex ρ ∈ bK and oriented simplex T ∈ b∗X, define

[Tρ] = T ⊗K ρ∗ ∈ C|T |−|σ|(XK ;R) (where |σ| = dim(σ)).

(The geometric intuition for this definition is the fact that, the map CX , of corollary
9.3, takes T ⊗K ρ∗ to a fundamental cycle, in ΔX ′, for the cell DρT , whose
underlying space is Tρ).
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Define bXK = {[Tρ] | T ∈ b∗X, ρ ∈ bK, Tρ � π(T )}. Then bXK is an R-basis for
C∗(XK ;R) in bicorrespondence with the cells of XK . Write ∂q for the boundary
map in C∗(XK ;R), namely: ∂q = (dΔX⊗KΔ∗K)q.

But to justify these definitions, we must check that C∗(XK ;R) does compute the
cellular homology of XK . It suffices to check, for any [Tρ] ∈ bXK , that ∂q([Tρ]) is
a sum with ±1 coefficients of those [Sσ] ∈ bXK which are (q − 1)-faces of Tρ. (See
[7], for example.)

All proper faces of Tρ have the form Tσ, for ρ < σ, or Sρ, for S < T .
Suppose [Tρ] ∈ bXK . So T ∈ b∗X, ρ ∈ bK. Set τ = π(T ) ∈ K. By (5.1):

∂q[Tρ] = dΔX⊗KΔ∗K(T ⊗K ρ∗)

=
∑

{σ|ρ�σ�τ}
{(dΔX(σ, τ)T ) ⊗ ρ∗ + (−1)|T |T ⊗ dΔ∗K(σ, ρ)ρ∗}

=
∑

S<T

[T, S][Sρ] + (−1)1+|Tρ|
∑

ρ<σ

[σ, ρ][Tσ]

which is as required.
This completes the construction of the cellular chain complex of XK , as an (R,K)

complex, C(XK).
The (R,K) isomorphism, ΦX : TΔ∗X ∼= C(XK) is simply:

ΦX := (εΔX ⊗K 1Δ∗K) : TΔ∗X = Δ∗∗X ⊗K Δ∗K −→ ΔX ⊗K Δ∗K = C(XK).

Naturality of Φ is obvious from the naturality of ε. �

9. The McCrory cap product, Δ∗X and ΔX′

We now use the work of McCrory [13] to construct, for any K-space, (X,π), an
(R,K) chain monomorphism C(XK) CX−→ΔX ′. serving two purposes.

First, it defines an (R,K) chain homotopy equivalence, TΔ∗X � ΔX ′.
Second, CX identifies C(XK) with that (R,K) subcomplex of ΔX ′ which admits

a basis consisting of one fundamental q-cycle, in Δq(DσT, ∂DσT ) ⊂ Δq(X ′), for
each q-cell Tσ of XK . (This will complete our geometric interpretation of T ).

Let K be a finite simplicial complex. McCrory (see [13], and also [11]) defines a
map, c′ : Δ∗(K;R) ⊗R Δ∗(K;R) → Δ∗(K ′;R) which he shows is chain homotopic
to the composite,

Δ∗(K;R) ⊗R Δ∗(K;R) ∩−→Δ∗(K;R) Sd−→Δ∗(K ′;R)

where ∩ denotes the Whitney-Cech cap product. We will write cK for c′. We
repeat his definition here with appropriate sign changes because McCrory’s sign
conventions differ slightly from ours.

For any q-simplex, Q = 〈Q0, Q1, . . . Qq〉 of K ′ in which each Qi is oriented,
McCrory then defines

ε(Q) = [Q0, Q1][Q1, Q2] . . . [Qq−1, Qq].

This is independent of the orientations on Q1, Q2, . . . Qq−1. If q = 0, set ε(Q) = 0.
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For any n-simplex τ and (n − q)-simplex σ of K, each simplex Q =
〈Q0, Q1, . . . Qq〉 of D(σ, τ)q satisfies: Q0 = τ ; Qq = σ. Therefore, ε(Q) makes sense
if τ and σ are oriented simplices chosen from some basis bK of oriented simplices
for Δ∗(K;R) (but not if σ = −τ).

The McCrory Cap Product, Δ∗(K;R) ⊗R Δ∗(K;R) cK−→Δ∗(K ′;R) is the map
defined by:

cK(τ ⊗ σ∗) =
∑

Q∈D(σ,τ)q

(−1)dim(σ)ε(Q)Q

for any oriented simplices σ, τ in some basis bK. Here q = dim(τ) − dim(σ). Note
this is zero unless σ � τ . Note that cK does not change if we change the basis.

cK is a chain map. We reprove this in Appendix I, § A, because of the sign
changes and because McCrory’s proof, [13] p.155 lines 7-8, is only a sketch.

Now suppose (X,π) is a K-space.
Note that if T and σ are oriented simplices of X and K and q = dim(T ) −

dim(σ) �= 0:

cX(T ⊗R π∗σ∗) =
∑

Q∈(Dσ,T )q

(−1)dim(σ)ε(Q)Q ∈ ΔqX
′(σ)

(because DσT = ∪{D(S, T ) | S ∈ X, dim(S) = dim(σ), π(S) = σ}). This formula
still makes sense and is true if q = 0 and π∗(T ) �= −σ).

In this way, cX ◦ (1 ⊗ π∗) defines an (R,K) chain map,

cX ◦ (1 ⊗ π∗) : ΔX ⊗R Δ∗K −→ ΔX ′

Proposition 9.1. There is a unique (R,K) chain map

CX : C(XK) = ΔX ⊗K Δ∗K −→ ΔX ′

satisfying:

cX ◦ (1 ⊗ π∗) = CX ◦ πΔX,Δ∗K

CX is an (R,K) monomorphism. For all q-cells Tσ of XK , with q �= 0,

CX(T ⊗K σ∗) =
∑

Q∈(DσT )q

(−1)dim(σ)ε(Q)Q.

For a 0-cell Tσ, of XK , with T ∈ Δn(X;R), σ ∈ Δn(K;R) oriented so that π∗(T ) =
σ, then

CX(T ⊗K σ∗) = (−1)dim(T )〈T 〉, (〈T 〉 is the barycenter bT of T ).

Proof. Note that cX(T ⊗R π∗σ∗) = 0 unless π(T ) � σ. Also cX(T ⊗R π∗σ∗) ∈
ΔX ′(σ) for all σ ∈ K and T ∈ X because each q-cell Q ∈ DσT is in ΔqX

′(σ) if
q = dim(Tσ).

So cX ◦ (1 ⊗ π∗) : ΔX ⊗R Δ∗K → ΔX ′ is an (R,K) chain map annihilating
each ΔX(K − st(σ)) ⊗R Δ∗K(σ). Hence there is a unique (R,K) chain map
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monomorphism, ΔX ⊗K Δ∗K CX−→ΔX ′ such that cX ◦ (1 ⊗ π∗) = CX ◦ πΔX,Δ∗K .
The calculation follows if q �= 0. If q = 0, then (π|T )∗σ∗ = T ∗, so

CX(T ⊗K σ∗) = cX(T ⊗ T ∗) = (−1)dim(T )
∑

Q∈D(T,T )0

Q = (−1)dim(T )〈T 〉

Clearly CX is natural in (X,π). �

Remark 9.2. If we choose an orientation (bK, b∗X) for XK , then for each 0-cell
Tσ = Tπ(T ) of XK , with [Tσ] ∈ bXK , we have CX([Tσ]) = 〈T 〉 ∈ Δ0(X ′;R).

Corollary 9.3. For each q-cell Tσ of XK , CX(T ⊗ σ∗) is a fundamental cycle, in
Δq(DσT, ∂DσT ;R) for the q-manifold DσT .

Proof. CX(T ⊗K σ∗) is a fundamental cycle in Δq(DσT, ∂DσT ;R) since CX is a
chain map and since each Q ∈ (DσT )q appears with coefficient ±1 in CX(T ⊗K

σ∗). �

Theorem 9.4. For each K-space (X,π), the map C(XK) CX−→ΔX ′ is an (R,K)
chain homotopy equivalence.

Proof. By 9.3, for all Tσ, CX restricts to a homotopy equivalence,

C∗(Tσ, ∂Tσ;R) → Δ∗(Dσ(T ), ∂Dσ(T );R)

and it takes chains on any subcomplex of XK to chains on its subdivision. By an
induction-excision argument on the number of cells in the subcomplex one sees CX

yields a homology equivalence and then a chain homotopy equivalence on each such
subcomplex. So CX(σ, σ) is an R-chain equivalence for each σ. Therefore CX is an
(R,K) chain equivalence. �

Together, 9.4 and 8.1 clearly prove:

Corollary 9.5. TΔ∗X CXΦX−→ ΔX ′ is an (R,K) chain homotopy equivalence.
Consequently eΔ∗X ◦ T (CXΦX) is an explicit (R,K) chain homotopy equivalence,

TΔX ′ � Δ∗X.

Appendix A.

We must prove:

Proposition A.1. Δ∗(K;R) ⊗R Δ∗(K;R) cK−→Δ∗(K ′;R) is a chain map. That is
to say, for any oriented simplices σ, τ in some basis bK for ΔK, with p = dim(τ) −
dim(σ),

dK′
cK(τ ⊗ σ∗) = cK{dKτ ⊗ σ∗ + (−1)dim(τ)τ ⊗ dΔ∗(K)σ∗}
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where, by the definitions,

dKτ =
∑

ρ∈bK

[τ, ρ]ρ, dΔ∗(K)σ∗ = (−1)dim(σ)+1
∑

ρ∈bK

[ρ, σ]ρ∗

and for any p-simplex Q = 〈Q0, Q1, . . . Qp〉 of K ′,

dK′
Q =

p∑

i=0

(−1)idi(Q); di(Q) = 〈Q0, Q1, . . . Q̂i . . . Qp〉

Proof. We first prove: doc(τ ⊗ σ∗) = c(dKτ ⊗ σ∗), where c = cK .

d0c(τ ⊗ σ) = (−1)dim(σ)
∑

Q∈D(σ,τ)p

ε(Q)〈Q1, . . . Qp〉

= (−1)dim(σ)
∑

ρ∈bK

[τ, ρ]
∑

P∈D(σ,ρ)

ε(P )P

= c(
∑

ρ∈bK

[τ, ρ]ρ ⊗ σ∗) = c(dKτ ⊗ σ∗).

Next we show: (−1)pdpc(τ ⊗ σ∗) = (−1)dim(τ)c(τ ⊗ dΔ∗(K)σ∗):

(−1)pdpc(τ ⊗ σ∗) = (−1)p+dim(σ)
∑

Q∈D(σ,τ)p

ε(Q)〈τ,Q1 . . . Qp−1〉

= (−1)p+1c(τ ⊗
∑

ρ∈bK

[ρ, σ]ρ∗) = (−1)dim(τ)c(τ ⊗ dΔ∗(K)σ∗)

Finally we prove dic(τ ⊗ σ∗) = 0 for 0 < i < p.
For such i and for Q ∈ D(σ, τ) note diQ = 〈τ, . . . σ〉 ∈ D(σ, τ) − ∂D(σ, τ). So

suppose P is a p − 1 simplex of the form diQ in the p manifold D(σ, τ). Then
there is exactly one other S ∈ D(σ, τ)p having Q as a face. We can identify S
by listing the vertices of τ as v0, . . . vn so that Qj = [vj , . . . vn] for all j. Define
Si = [v0 . . . vi−1, vi+1 . . . vn] and define Sj = Qj for j �= i. Then S := 〈S0, S1, . . . Sp〉
in D(σ, τ)p satisfies diS = P ; ε(S) = −ε(Q) so P must appear with zero coefficient
in dic(τ ⊗ σ∗) for all p − 1 simplices P . So dic(τ ⊗ σ∗) = 0. �

Appendix B.

We must prove the following result of Ranicki and Weiss:

Proposition B.1. Let i : A → B be an (R,K) chain map in BRK for some finite
poset K. Then i is a chain equivalence in BRK if and only if i(σ, σ) is a chain
equivalence in BR for all σ ∈ K.
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Lemma B.2. [(The Contraction Principle)]: For any additive category A, with the
split exact structure, and any exact sequence of chain complexes in BA,

0 → C ′ f→C
g→C ′′ → 0

C ′′ is contractible if and only if f has a left inverse r : C → C ′ which is a chain
homotopy inverse of f.

Proof. For any h′′ ∈ HomA(C ′′, C ′′)1 there is an h ∈ HomA(C,C)1 such that gh =
h′′g and hf = 0. Then h′′ is a contraction of C ′′ iff h is a chain homotopy from
1C to a chain map ρ : C → C for which ρ = fr for some chain map r : C → C ′. r
satisfies rf = 1C′ . So r is a left inverse of f and fr is chain homotopic to 1C . �

Proof. of B.1: First assume i is a chain equivalence. Note, for each σ ∈ K, the
functor B → B(σ) is an additive functor ARK → AR. So it induces a homotopy
functor BRK → BR. Therefore i(σ, σ) is a chain equivalence for each σ ∈ K.

Conversely suppose i(σ, σ) is a chain equivalence in BR for all σ ∈ K. We prove
that i is a chain equivalence in BRK . Replacing B by the mapping cylinder of i if
necessary, we can assume i fits into an exact sequence, 0 → A

i→B
j→C → 0.

By B.2 then, each C(σ) is contractible, and we have only to prove the claim
that C is contractible. The proof is by induction on the number, n(C), of σ ∈ K
for which C(σ) �= 0. If n = 0 we are done. We can assume this claim is proved for
complexes C ′ for which 0 � n(C ′) < n(C).

There is some ρ ∈ K for which C(ρ) �= 0, and an exact sequence of the form:

0 → C ′ f→C
g→C ′′ → 0

for which f(ρ, ρ) is an isomorphism, and g(σ, σ) is an isomorphism for all σ �= ρ. (For
example pick ρ to be maximal in {σ ∈ K | C(σ) �= 0}). C ′ is contractible because
C(ρ) is contractible. But C ′′ is contractible by induction, so that f is a chain
equivalence, by B.2. So C is contractible as claimed. �
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