PLURIHARMONIC SYMBOLS OF COMMUTING TOEPLITZ TYPE OPERATORS ON THE WEIGHTED BERGMAN SPACES

YOUNG JOO LEE

Abstract

A class of Toeplitz type operators acting on the weighted Bergman spaces of the unit ball in the n-dimensional complex space is considered and two pluriharmonic symbols of commuting Toeplitz type operators are completely characterized.

1. Introduction and result. Let B be the unit ball of the n-dimensional complex space \mathbb{C}^{n} and V denote the Lebesgue volume measure on B normalized to have total mass 1. For $\alpha>-1$, define a measure $d V_{\alpha}$ on B by $d V_{\alpha}(z)=c_{\alpha}\left(1-|z|^{2}\right)^{\alpha} d V(z)$ where the constant c_{α} is a normalizing constant so that $d V_{\alpha}$ is a probability measure. The weighted Bergman space $A_{\alpha}^{p}(1 \leq p<\infty)$ is the closed subspace of the usual Lebesgue space $L_{\alpha}^{p}=L^{p}\left(B, V_{\alpha}\right)$ consisting of holomorphic functions on B.

Corresponding to each $\sigma>-1$, we define an integral operator

$$
P_{\sigma}(\psi)(z)=\lambda_{\sigma} \int_{B} \frac{\left(1-|w|^{2}\right)^{\sigma}}{(1-\langle z, w\rangle)^{n+1+\sigma}} \psi(w) d V(w) \quad(z \in B)
$$

where $1 / \lambda_{\sigma}=\int_{B}\left(1-|w|^{2}\right)^{\sigma} d V(w)$ and $\langle z, w\rangle$ is the ordinary Hermitian inner product for points $z, w \in \mathbb{C}^{n}$. It is known [2, Theorem 1] that for $p \geq 1$ and $\alpha, \sigma>-1, P_{\sigma}$ is a bounded operator from L_{α}^{p} onto A_{α}^{p} if and only if $p(1+\sigma)>1+\alpha$. Moreover, if $p(1+\sigma)>1+\alpha$, then P_{σ} has the following reproducing properties:

$$
\begin{equation*}
P_{\sigma} f=f \quad \text { and } \quad P_{\sigma} \bar{f}=\bar{f}(0) \tag{1}
\end{equation*}
$$

for every functions $f \in A_{\alpha}^{p}$. See [2] for more informations on P_{σ} and related facts.
Let $p \geq 1$ and $\alpha, \sigma>-1$ be such that $p(1+\sigma)>1+\alpha$. For $u \in L^{\infty}$, the Toeplitz type operator T_{u}^{σ} with symbol u is the linear operator acting on A_{α}^{p} defined by

$$
T_{u}^{\sigma}(f)=P_{\sigma}(u f)
$$

for functions $f \in A_{\alpha}^{p}$. Then, T_{u}^{σ} is a bounded operator on A_{α}^{p}.
In this paper, we study the commuting problem of Toeplitz type operators, acting on the weighted Bergman spaces, with pluriharmonic symbols. A function $u \in C^{2}(B)$ is said

[^0]to be pluriharmonic if its restriction to an arbitrary complex line that intersects the ball is harmonic as a function of single complex variable. As is well known [6, Theorem 4.4.9], every pluriharmonic function on B can be expressed, uniquely up to an additive constant, as the sum of a holomorphic function and an antiholomorphic function.

On the unweighted L^{2}-Bergman space, a characterization problem for pluriharmonic symbols of commuting Toeplitz operators induced by the Bergman projection was first solved by Axler and C̆učković [1] on the disk. Later, on the setting of the ball, some partial results on this problem were obtained by Choe and Lee [3]. In [9], Zheng solved the problem completely by using the \mathscr{M}-harmonic function theory. Also, the same problem was considered for certain Toeplitz type operator. In a recent paper, the author [5] solved the problem for the certain Toeplitz type operator acting on the unweighted L^{1}-Bergman space of the ball.

In the present paper, we consider the same characterization problem for a class of Toeplitz type operators acting on the weighted Bergman spaces and completely characterize two pluriharmonic symbols for which the associate Toeplitz type operators commute. The following is the main theorem of the paper.

THEOREM 1. Let $p \geq 1$ and $\alpha, \sigma>-1$ be such that $p(1+\sigma)>1+\alpha$ and $p(n+1+\sigma)=$ $2(n+1+\alpha)$. Suppose that u and v are two bounded pluriharmonic symbols on B. Then $T_{u}^{\sigma} T_{v}^{\sigma}=T_{v}^{\sigma} T_{u}^{\sigma}$ on A_{α}^{p} if and only if one of the following properties holds:
(a) u and v are both holomorphic on B.
(b) u and v are both antiholomorphic on B.
(c) There exist constants c and d, not both 0 , such that $c u+d v$ is constant on B.

In the unweighted case of $p=2, \alpha=0$ and $\sigma=0$, the above theorem was obtained in [1] on the disk and then, on the ball, in [3] partially and [9] completely. Recently, a certain weighted case was considered. In [5], the author obtained Theorem 1 in the weighted case $p=1, \alpha=0$ and $\sigma=n+1$.

In Section 2, we collect some basic facts and preliminary results on \mathcal{M}-harmonic and pluriharmonic functions needed in the proof. In Section 3, we prove Theorem 1 and give an application (see Corollary 9).
2. Preliminaries. For $z, w \in B, z \neq 0$, define

$$
\varphi_{z}(w)=\frac{z-|z|^{-2}\langle w, z\rangle z-\sqrt{1-|z|^{2}}\left(w-|z|^{-2}\langle w, z\rangle z\right)}{1-\langle w, z\rangle}
$$

and $\varphi_{0}(w)=-w$. Then $\varphi_{z} \in \mathcal{A}$, the group of all automorphisms (= biholomorphic selfmaps) of B and φ_{z} is an involution. That is, $\varphi_{z} \circ \varphi_{z}$ is the identity on B. Furthermore, each $\varphi \in \mathcal{A}$ has a unique representation $\varphi=\varphi_{z} \circ U$ for some $z \in B$ and $U \in \mathcal{U}$, the group of all unitary operators on \mathbb{C}^{n}. For $u \in C^{2}(B)$ and $z \in B$, we define

$$
(\tilde{\Delta} u)(z)=\Delta\left(u \circ \varphi_{z}\right)(0)
$$

where Δ denotes the ordinary Laplacian. The operator $\tilde{\Delta}$ is called the invariant Laplacian because it commutes with automorphisms of B in the sense that $\tilde{\Delta}(u \circ \varphi)=(\tilde{\Delta} u) \circ \varphi$ for
$\varphi \in \mathcal{A}$. We say that a function $u \in C^{2}(B)$ is \mathcal{M}-harmonic on B if it is annihilated on B by the invariant Laplacian $\tilde{\Delta}$. \mathcal{M}-harmonic functions are characterized by a certain mean value property. To be more precise, for a continuous function F on B, let $\mathcal{R}(F)$ denote the radialization of F defined by the formula

$$
\mathcal{R}(F)(z)=\int_{\mathcal{U}} F(U z) d U \quad(z \in B)
$$

where $d U$ denotes the Haar measure on \mathcal{U}.
It is not hard to see that if F is \mathcal{M}-harmonic on B and $\varphi \in \mathcal{A}$, then the radialization $\mathcal{R}(F \circ \varphi)$ is constant on B and hence extends to a continuous function on \bar{B}. The following proposition shows that this property, together with a certain mean value property, conversely characterizes the \mathcal{M}-harmonicity. The following characterization of \mathcal{M} harmonicity given by the weighted area version of invariant mean value property will be useful in the proof of Theorem 1.

Proposition 2. Let $t>-1$ and suppose $F \in L_{t}^{1}$ is a continuous function on B. Then F is \mathfrak{M}-harmonic on B if and only if

$$
(F \circ \varphi)(0)=\lambda_{t} \int_{B}(F \circ \varphi)(w)\left(1-|w|^{2}\right)^{t} d V(w)
$$

and $\mathcal{R}(F \circ \varphi)$ has a continuous extension on \bar{B} for every $\varphi \in \mathcal{A}$.
Proof. See Proposition 3 of [5].
To characterize the symbols, we also need a recent result of D. Zheng [9] on \mathcal{M} harmonic products (the original statement in [9, Theorem 2] is in a slightly different form).

Lemma 3. Let $u=f+\bar{g}$ and $v=h+\bar{k}$ be two bounded pluriharmonic functions on B. If $f \bar{k}-h \bar{g}$ is \mathcal{M}-harmonic on B, then u and v are all holomorphic or antiholomorphic or there exist constants c and d, not both 0 , such that $c u+d v$ is constant on B.

Let $1 \leq s<\infty$. The Hardy space H^{s} is the space of all functions f holomorphic on B for which

$$
\|f\|_{s}=\left(\sup _{0<r<1} \int_{S}|f(r \zeta)|^{s} d \sigma(\zeta)\right)^{1 / s}<\infty .
$$

Here the measure σ denotes the rotation invariant probability measure on S, the boundary of B. It is well known (see [6, Theorem 5.6.4]) that if $f \in H^{s}$, then $f^{*}(\zeta)=\lim _{r \rightarrow 1} f(r \zeta)$ exists for $[\sigma]$ a.e. $\zeta \in S$. The space BMOA consists of all $f \in H^{2}$ whose boundary functions f^{*} are functions of bounded mean oscillations with respect to the nonisotropic metric on S that corresponds to the Korányi approach regions. See [4] for details. Note that BMOA functions are closed under composition with automorphisms and BMOA \subset H^{s} for all s. Also, it turns out (see, for example, [7]) that $f \in$ BMOA if and only if

$$
\sup _{a \in B}\left\|f \circ \varphi_{a}-f(a)\right\|_{2}<\infty .
$$

Before turning to the proof, we prove several simple results which will be used in the proof of Theorem 1. The following proposition was obtained in [8, Proposition 3] on the disk.

PROPOSITION 4. Let $f+\bar{g}$ be a bounded pluriharmonic function on B. Then f and g are all in BMOA.

Proof. Put $u=f+\bar{g}$ for notational simplicity. By the mean value property for holomorphic functions, we see that

$$
\int_{S}(f(r \zeta)-f(0))(g(r \zeta)-g(0)) d \sigma(\zeta)=0
$$

for all $0<r<1$. It follows from a simple manipulation that

$$
\begin{aligned}
\int_{S}|f(r \zeta)-f(0)|^{2} d \sigma(\zeta)+\int_{S}|g(r \zeta)-f(0)|^{2} d \sigma(\zeta) & =\int_{S}|u(r \zeta)-u(0)|^{2} d \sigma(\zeta) \\
& \leq 4\|u\|_{\infty}^{2} \quad(0<r<1)
\end{aligned}
$$

and hence $\|f-f(0)\|_{2}^{2}+\|g-g(0)\|_{2}^{2} \leq 4\|u\|_{\infty}^{2}$. Now, for $a \in B$, replace u by $u \circ \varphi_{a}$ to get

$$
\left\|f \circ \varphi_{a}-f(a)\right\|_{2}^{2}+\left\|g \circ \varphi_{a}-g(a)\right\|_{2}^{2} \leq 4\|u\|_{\infty}^{2}
$$

Therefore, taking the supremum over all $a \in B$, we have $f, g \in$ BMOA, as desired. The proof is complete.

It is not hard to see that by an integration in polar coordinates, $H^{s} \subset A_{t}^{s}$ for all $s \geq 1$ and $t>-1$. Hence, the following corollary is an immediate consequence of Proposition 4 because BMOA $\subset H^{s}$ for all $s<\infty$.

COROLLARY 5. Let $f+\bar{g}$ be a bounded pluriharmonic function on B. Then f and g are all in A_{t}^{s} for all $s \geq 1$ and $t>-1$.

It is shown in [3] that if $F, G \in H^{2}$, then the radialization $\mathcal{R}(F \bar{G})$ has a continuous extension on \bar{B}. Since BMOA is invariant under composition with automorphisms, we have the following.

Lemma 6. Let $F, G \in \mathrm{BMOA}$. Then $\mathcal{R}(F \circ \varphi \bar{G} \circ \varphi)$ extends to a continuous function on \bar{B} for every $\varphi \in \mathcal{A}$.
3. Proof. In this section we will prove Theorem 1 and give a simple application. We first need some elementary properties of canonical automorphisms. The real Jacobian $J_{R} \varphi_{z}$ of φ_{z} is given by

$$
\begin{equation*}
J_{R} \varphi_{z}(w)=\left(\frac{1-|z|^{2}}{|1-\langle w, z\rangle|^{2}}\right)^{n+1} \quad(w \in B) \tag{2}
\end{equation*}
$$

and the identity

$$
\begin{equation*}
1-\left\langle\varphi_{z}(a), \varphi_{z}(b)\right\rangle=\frac{\left(1-|z|^{2}\right)(1-\langle a, b\rangle)}{(1-\langle a, z\rangle)(1-\langle z, b\rangle)} \tag{3}
\end{equation*}
$$

holds for every $a, b \in B$. See [6, Chapter 2] for details. For $\alpha>-1$ and $a \in B$, we let

$$
k_{a}^{\alpha}(z)=\left(\frac{\sqrt{1-|a|^{2}}}{1-\langle z, a\rangle}\right)^{n+1+\alpha} \quad(z \in B)
$$

for notational simplicity. Then, by (2) and (3), we have a useful change-of-variable formula:

$$
\begin{equation*}
\int_{B} F d V_{\alpha}=\int_{B} F \circ \varphi_{a}\left|k_{a}^{\alpha}\right|^{2} d V_{\alpha} \quad(a \in B) \tag{4}
\end{equation*}
$$

for all measurable F on B whenever the integrals make sense.
Let $p \geq 1$ and $\alpha>-1$. For $a \in B$, let U_{a} denote the linear operator on L_{α}^{p} defined by

$$
U_{a} f=\left(f \circ \varphi_{a}\right)\left(k_{a}^{\alpha}\right)^{2 / p}
$$

Then, by the change-of-variable formula (4), one can easily see that

$$
\int_{B}\left|U_{a} f\right|^{p} d V_{\alpha}=\int_{B}\left|f \circ \varphi_{a}\right|^{p}\left|k_{a}^{\alpha}\right|^{2} d V_{\alpha}=\int_{B}|f|^{p} d V_{\alpha}
$$

for every $f \in L_{\alpha}^{p}$. Hence U_{a} is an isometry of L_{α}^{p} into L_{α}^{p}. Using (3), one can easily show that $k_{a}^{\alpha}\left(\varphi_{a}\right) k_{a}^{\alpha}=1$ on B. It follows that $U_{a} U_{a}$ is the identity operator on L_{α}^{p} and hence U_{a} takes A_{α}^{p} onto A_{α}^{p}.

Before proving Theorem 1, we have a couple of lemmas. The following lemma says that P_{σ} and U_{a} commute on L_{α}^{p} in certain cases.

LEMMA 7. Let $p \geq 1$ and $\alpha, \sigma>-1$ be such that $p(1+\sigma)>1+\alpha$ and $p(n+1+\sigma)=$ $2(n+1+\alpha)$. For $a \in B$, we have $P_{\sigma} U_{a}=U_{a} P_{\sigma}$ on L_{α}^{p}.

Proof. Let $f \in L_{\alpha}^{p}$ and $z \in B$. By the change-of-variable formula (4) and simple manipulations using (3), one can see

$$
\begin{aligned}
P_{\sigma} U_{a} f(z)= & \lambda_{\sigma} \int_{B} \frac{\left(1-|w|^{2}\right)^{\sigma} f\left(\varphi_{a}(w)\right)\left(k_{a}^{\alpha}(w)\right)^{2 / p}}{(1-\langle z, w\rangle)^{n+1+\sigma}} d V(w) \\
= & \lambda_{\sigma} \int_{B} \frac{\left(1-\left|\varphi_{a}(w)\right|^{2}\right)^{\sigma} f(w)\left(k_{a}^{\alpha}\left(\varphi_{a}(w)\right)\right)^{2 / p}}{\left(1-\left\langle z, \varphi_{a}(w)\right\rangle\right)^{n+1+\sigma}}\left(\frac{1-|a|^{2}}{|1-\langle w, a\rangle|^{2}}\right)^{n+1} d V(w) \\
= & \frac{\left(1-|a|^{2}\right)^{(n+1+\sigma)-\frac{n+1+\alpha}{p}}}{(1-\langle z, a\rangle)^{n+1+\sigma}} \\
& \times \lambda_{\sigma} \int_{B} \frac{\left(1-|w|^{2}\right)^{\sigma} f(w)(1-\langle w, a\rangle)^{\frac{2(n+1+\alpha)}{p}-(n+1+\sigma)}}{\left(1-\left\langle\varphi_{a}(z), w\right\rangle\right)^{n+1+\sigma}} d V(w)
\end{aligned}
$$

On the other hand, since $p(n+1+\sigma)=2(n+1+\alpha)$ by the assumption, the last expression of the above turns into

$$
\left(\frac{\sqrt{1-|a|^{2}}}{1-\langle z, a\rangle}\right)^{\frac{2(n+1+\alpha)}{p}} \lambda_{\sigma} \int_{B} \frac{\left(1-|w|^{2}\right)^{\sigma}}{\left(1-\left\langle\varphi_{a}(z), w\right\rangle\right)^{n+1+\sigma}} f(w) d V(w)=\left(k_{a}^{\alpha}(z)\right)^{2 / p} P_{\sigma} f\left(\varphi_{a}(z)\right)
$$

which is exactly $U_{a} P_{\sigma} f(z)$. Hence $P_{\sigma} U_{a}=U_{a} P_{\sigma}$ on L_{α}^{p}, as desired. The proof is complete.

LEMMA 8. Let $p \geq 1$ and $\alpha, \sigma>-1$ be such that $p(1+\sigma)>1+\alpha$ and $p(n+1+\sigma)=$ $2(n+1+\alpha)$. For $a \in B$ and $u \in L^{\infty}$, we have $U_{a} T_{u}^{\sigma} U_{a}=T_{u \circ \varphi_{a}}^{\sigma}$ on A_{α}^{p}.

Proof. Let $f \in A_{\alpha}^{p}$. By Lemma 7, one obtains

$$
\begin{aligned}
T_{u \circ \varphi_{a}}^{\sigma} U_{a} f & =T_{u \circ \varphi_{a}}^{\sigma}\left[\left(f \circ \varphi_{a}\right)\left(k_{a}^{\alpha}\right)^{2 / p}\right] \\
& =P_{\sigma}\left[\left(u \circ \varphi_{a}\right)\left(f \circ \varphi_{a}\right)\left(k_{a}^{\alpha}\right)^{2 / p}\right] \\
& =P_{\sigma} U_{a}(u f) \\
& =U_{a} P_{\sigma}(u f) \\
& =U_{a} T_{u}^{\sigma} f .
\end{aligned}
$$

Thus $T_{u \circ \varphi_{a}}^{\sigma} U_{a}=U_{a} T_{u}^{\sigma}$ on A_{α}^{p}. Now, use the fact $U_{a} U_{a}$ is the identity operator on A_{α}^{p} to get the desired result. This completes the proof.

We are now ready to prove Theorem 1.
Proof of Theorem 1. We begin with easy direction. First suppose that (a) holds, so that u and v are holomorphic on B. Then, by (1), we can see that T_{u}^{σ} and T_{v}^{σ} are, respectively, the operators on A_{α}^{p} of multiplication by u and v. Thus $T_{u}^{\sigma} T_{v}^{\sigma}=T_{v}^{\sigma} T_{u}^{\sigma}$ on A_{α}^{p}. Now assume (b), so that \bar{u} and \bar{v} are holomorphic on B. Using the explicit formula for P_{σ}, an application of Fubini's theorem and (1), one can see that $T_{u}^{\sigma} T_{v}^{\sigma} f=P_{\sigma}(u v f)$ for every bounded functions f in A_{α}^{p}. Note that the set of all bounded functions in A_{α}^{p} forms a dense subset of A_{α}^{p}. It follows from the continuity that T_{u}^{σ} and T_{v}^{σ} commute, as desired. Finally, suppose (c) holds and assume $c \neq 0$ (the other case is in a similar fashion). Then $u=c_{1} v+c_{2}$ for some constants c_{1} and c_{2}, which implies $T_{u}^{\sigma}=c_{1} T_{v}^{\sigma}+c_{2}$, so that $T_{u}^{\sigma} T_{v}^{\sigma}=c_{1} T_{v}^{\sigma} T_{v}^{\sigma}+c_{2} T_{v}^{\sigma}=T_{v}^{\sigma} T_{u}^{\sigma}$ on A_{α}^{p}. Hence T_{v}^{σ} and T_{u}^{σ} commute on A_{α}^{p}.

Now we prove the converse implication. Write $u=f+\bar{g}$ and $v=h+\bar{k}$ for some holomorphic f, g, h and k. Then, by Corollary 5, the functions f, g, h and k are all in A_{α}^{p}. Moreover, $f h, h \bar{g}$ and $f \bar{k}$ are all in L_{α}^{p} by Corollary 5 again. Let 1 denote the constant function 1 on B. Then, by the reproducing properties (1), we have

$$
\begin{aligned}
T_{u}^{\sigma} T_{v}^{\sigma} 1 & =T_{u}^{\sigma}\left(P_{\sigma} v\right) \\
& =T_{u}^{\sigma}(h+\bar{k}(0)) \\
& =P_{\sigma}(f h+\bar{k}(0) f+h \bar{g}+\bar{g} \bar{k}(0)) \\
& =f h+\bar{k}(0) f+P_{\sigma}(h \bar{g})+\bar{g}(0) \bar{k}(0) .
\end{aligned}
$$

Note that $\int_{B} F d V_{\alpha}=F(0)$ for holomorphic functions $F \in L_{\alpha}^{1}$. It follows that (5)

$$
\begin{aligned}
\int_{B}\left(T_{u}^{\sigma} T_{v}^{\sigma} 1\right) d V_{\alpha} & =\left(T_{u}^{\sigma} T_{v}^{\sigma} 1\right)(0) \\
& =f(0) h(0)+f(0) \bar{k}(0)+\bar{g}(0) \bar{k}(0)+P_{\sigma}(h \bar{g})(0) \\
& =f(0) h(0)+f(0) \bar{k}(0)+\bar{g}(0) \bar{k}(0)+\lambda_{\sigma} \int_{B} h(w) \bar{g}(w)\left(1-|w|^{2}\right)^{\sigma} d V(w) .
\end{aligned}
$$

Similarly,
(6) $\int_{B}\left(T_{v}^{\sigma} T_{u}^{\sigma} 1\right) d V_{\alpha}=f(0) h(0)+h(0) \bar{g}(0)+\bar{g}(0) \bar{k}(0)+\lambda_{\sigma} \int_{B} f(w) \bar{k}(w)\left(1-|w|^{2}\right)^{\sigma} d V(w)$.

Since $T_{u}^{\sigma} T_{v}^{\sigma}=T_{v}^{\sigma} T_{u}^{\sigma}$ by the assumption, letting $\Lambda=f \bar{k}-h \bar{g}$, we have by (5) and (6) that

$$
\begin{equation*}
\lambda_{\sigma} \int_{B} \Lambda(w)\left(1-|w|^{2}\right)^{\sigma} d V(w)=\Lambda(0) \tag{7}
\end{equation*}
$$

Let $a \in B$. Multiplying both sides of the equation $T_{u}^{\sigma} T_{v}^{\sigma}=T_{v}^{\sigma} T_{u}^{\sigma}$ by U_{a} on the left and by U_{a} on the right, we obtain since $U_{a} U_{a}$ is the identity operator

$$
U_{a} T_{u}^{\sigma} U_{a} U_{a} T_{v}^{\sigma} U_{a}=U_{a} T_{v}^{\sigma} U_{a} U_{a} T_{u}^{\sigma} U_{a}
$$

and therefore by Lemma 8

$$
\begin{equation*}
T_{u \odot \varphi_{a}}^{\sigma} T_{v \circ \varphi_{a}}^{\sigma}=T_{v \circ \varphi_{a}}^{\sigma} T_{u \odot \varphi_{a}}^{\sigma} \tag{8}
\end{equation*}
$$

Equation (7) was derived under the assumption that $T_{u}^{\sigma} T_{v}^{\sigma}=T_{v}^{\sigma} T_{u}^{\sigma}$. Thus (8) says that (7) remains valid with $\Lambda \circ \varphi_{a}$ in place of Λ. That is,

$$
\begin{equation*}
\lambda_{\sigma} \int_{B}\left(\Lambda \circ \varphi_{a}\right)(w)\left(1-|w|^{2}\right)^{\sigma} d V(w)=\Lambda(a) \tag{9}
\end{equation*}
$$

for any $a \in B$. Let $\varphi \in \mathcal{A}$ and suppose φ has the representation $\varphi=\varphi_{a} \circ U$ for some $a \in B$ and $U \in \mathcal{U}$. Then, by the rotation-invariance of the measure $d V$ and (9), we have the weighted area version of the invariant mean value property for Λ :

$$
\begin{aligned}
\lambda_{\sigma} \int_{B}(\Lambda \circ \varphi)(w)\left(1-|w|^{2}\right)^{\sigma} d V(w) & =\lambda_{\sigma} \int_{B}\left(\Lambda \circ \varphi_{a}\right)(w)\left(1-|w|^{2}\right)^{\sigma} d V(w) \\
& =\Lambda(a) \\
& =(\Lambda \circ \varphi)(0)
\end{aligned}
$$

because $\varphi(0)=a$. On the other hand, since f, g, h and k are all in BMOA by Proposition 4 , the function $\mathcal{R}(\Lambda \circ \varphi)$ has a continuous extension on \bar{B} for any $\varphi \in \mathcal{A}$ by Lemma 6. Note from Corollary 5 that $\Lambda \in L_{\sigma}^{1}$. It follows from Proposition 2 with $t=\sigma$ that $\Lambda=f \bar{k}-h \bar{g}$ is \mathcal{M}-harmonic on B. Now, the characterization follows from Lemma 3 . This completes the proof.

We conclude this paper with a simple application. We note that pluriharmonic functions are closed under complex conjugation.

COROLLARY 9. Let $p \geq 1$ and $\alpha, \sigma>-1$ be such that $p(1+\sigma)>1+\alpha$ and $p(n+1+\sigma)=2(n+1+\alpha)$. Suppose u is a bounded pluriharmonic symbol on B. Then $T_{u}^{\sigma} T_{\bar{u}}^{\sigma}=T_{\bar{u}}^{\sigma} T_{u}^{\sigma}$ on A_{α}^{p} if and only if the image of B under u lies on some line in \mathbb{C}.

Proof. If $u(B)$ lies on some line in \mathbb{C}, a rotation and a translation show that there exist constants $c(|c|=1)$ and d such that $c u+d$ is real valued on B. It follows that

$$
T_{\bar{u}}^{\sigma}=\frac{1}{\bar{c}}\left(T_{\frac{\sigma}{c u+d}}^{\sigma}-\bar{d}\right)=\frac{1}{\bar{c}}\left(T_{c u+d}^{\sigma}-\bar{d}\right) .
$$

Now, since $T_{u}^{\sigma}=\frac{1}{c}\left(T_{c u+d}^{\sigma}-d\right)$, we see that T_{u}^{σ} and $T_{\bar{u}}^{\sigma}$ commute. Conversely, assume $T_{u}^{\sigma} T_{\bar{u}}^{\sigma}=T_{\bar{u}}^{\sigma} T_{u}^{\sigma}$ on A_{α}^{p}. Then, by Theorem $1, u$ and \bar{u} are holomorphic on B or a nontrivial linear combination of u and \bar{u} is constant on B. The first case implies u is constant on B, so we are done. Also, a simple manipulation shows that the latter case implies $u(B)$ lies on some line in \mathbb{C}. This completes the proof.

REFERENCES

1. S. Axler and \breve{Z}. $\breve{C} u c ̆ k o v i c ́, ~ C o m m u t i n g ~ T o e p l i t z ~ O p e r a t o r s ~ w i t h ~ H a r m o n i c ~ S y m b o l s . ~ I n t e g r a l ~ E q u a t i o n s ~$ Operator Theory 14(1991), 1-11.
2. B. R. Choe, Projections, the Weighted Bergman Spaces, and the Bloch Space. Proc. Amer. Math. Soc. 108(1990), 127-136.
3. B. R. Choe and Y. J. Lee, Pluriharmonic Symbols of Commuting Toeplitz Operators. Illinois J. Math. 37(1993), 424-436.
4. R. Coifman, R. Rochberg and G. Weiss, Factorizations Theorems for Hardy Spaces in Several Variables. Ann. of Math. 103(1976), 611-635.
5. Y. J. Lee, Pluriharmonic Symbols of Commuting Toeplitz Type Operators. Bull. Austral. Math. Soc. 54 (1996), 67-77.
6. W. Rudin, Function Theory in the Unit Ball of \mathbb{C}^{n}. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
7. J. Shapiro, Cluster Sets, Essential Range, and Distance Estimates in BMO. Michigan Math. J. 34(1987), 323-335.
8. K. Stroethoff, Essentially Commuting Toeplitz Operators with Harmonic Symbols. Canad. J. Math. 45 (1993), 1080-1093.
9. D. Zheng, Commuting Toeplitz Opetators with Pluriharmonic Symbols. preprint.

Department of Mathematics
Mokpo National University
Chonnam 534-729
Korea
e-mail: yjlee@chungkye.mokpo.ac.kr

[^0]: Received by the editors November 20, 1996.
 This paper was supported by Non Directed Research Fund, Korea Research Foundation, 1996.
 AMS subject classification: Primary: 47B38; secondary: 32A37.
 Key words and phrases: Pluriharmonic functions, Weighted Bergman spaces, Toeplitz type operators. (c) Canadian Mathematical Society 1998.

