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ABSTRACT. Precise measurements of basal melting have been made at a series of 14 sites lying within a
few kilometres of the grounding line of the Ronne Ice Shelf, Antarctica, where the ice thickness ranges
from 1570 to 1940m. The study was conducted over the course of 1 year and included a detailed survey
of the horizontal deformation, as well as phase-sensitive radar measurements of the vertical
displacement of both internal reflecting horizons and the ice-shelf base. Results from the surface
survey show that the long-term viscous strain rate is modulated at tidal frequencies by (probably) elastic
strains of order 10–5 per metre of tidal elevation. The radar measurements show a similar modulation of
the long-term thinning/thickening of the ice shelf, with thickness oscillations up to a few centimetres in
range. The long-term trends in ice thickness determined at points moving with the ice-shelf flow are
consistent with a steady-state thickness profile. Vertical strain rates within the ice shelf were determined
from the relative motion of internal reflectors. At two sites the observations were sufficient to discern
the effect of tidal bending about a neutral surface 60% of the way down the ice column. Coincident
measurements of horizontal and vertical strain imply a Poisson’s ratio of 0.5, and this combined with the
asymmetric bending gives rise to the observed oscillations in thickness. At a number of sites the long-
term viscous strain rates were found to be a linear function of depth. For an ice shelf this is an
unexpected result. It can be attributed to the presence of significant vertical shear stresses set up close
to the grounding line where the ice is still adjusting to flotation. Additional vertical motion arising from
firn compaction was observed within the upper layers of the ice shelf. The additional motion was
consistent with the assumption that firn density is a function only of the time since burial by steady
surface accumulation. With both spatial and temporal fluctuations in the vertical strain rate accurately
quantified it was possible to estimate the vertical motion of the ice-shelf base in response. Differences
between the calculated and observed motion of the basal reflector arise because of basal melting.
Derived melt rates at the 14 sites ranged from –0.11� 0.31 to 2.51� 0.10ma–1, with a mean of
0.85ma–1 and a standard deviation of 0.69ma–1, and showed no signs of significant sub-annual
temporal variability. There was no obvious global correlation with either ice thickness or distance from
the grounding line, although melt rates tended to decrease downstream along each of the flowlines
studied. Previous estimates of basal melting in this region have been obtained indirectly from an
assumption that the ice shelf is locally in equilibrium and have included a broad range of values. Only
those at the lower end of the published range are consistent with the directly measured melt rates
reported here.

INTRODUCTION

Basal melting of Antarctica’s floating ice shelves accounts
for 15–35% of the total mass loss from the ice sheet, with
iceberg calving removing the overwhelming majority of the
remainder (Jacobs and others, 1992, 1996). Despite the
generally frigid oceanic conditions close to the ice shelves,
water temperatures are �18C above the freezing point at
depth (Jacobs and others, 1992). These temperatures are
maintained year-round and, owing to the large specific heat
capacity of water, represent an ample reservoir of heat
available for melting. The addition of meltwater to the sea
water that circulates beneath the ice shelves cools and
freshens it, and one product of this process, Ice Shelf Water,
is an ingredient of Antarctic Bottom Water (Jacobs, 1986;
Foldvik and Gammelsrød, 1988). This latter water mass is
observed at depth throughout most of the world’s oceans,
and its northward flow is a major component of the global

meridional overturning circulation. Despite this pivotal role
in ice-sheet–ocean interactions, there are only a handful of
direct observations of melting at the base of ice shelves.
Almost all published figures are of steady state melt rates;
that is, the melt rate required to maintain the ice shelf in a
state of equilibrium. The steady-state melt rate is deduced
from measurements of the other terms in the mass-balance
equation and an assumption that the thickness of the ice
shelf at a given point in space is temporally constant. Such
calculations have obvious limitations, such as the impossi-
bility of determining the role of basal melting in driving ice-
shelf thinning or retreat, or of diagnosing any change in
basal melting that might be a response to ocean warming or
cooling.

The grounding line separating a marine ice sheet from its
surrounding ice shelves has long been a focus of interest
among glaciologists. Early theories suggested that the
location of a grounding line could be inherently unstable
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(Weertman, 1974; Thomas and Bentley, 1978), making the
marine ice sheet of West Antarctica vulnerable to complete
collapse (Mercer, 1978; Thomas and others, 1979). More
recently, this conclusion has been disputed (Hindmarsh,
1993, 1996; Le Meur and Hindmarsh, 2001), although the
processes that determine the location of the grounding line
are still subject to uncertainty (Hindmarsh and Le Meur,
2001). One process that is rarely considered in analyses of
ice flow in the vicinity of a grounding line is the change in
the basal mass balance of the ice as it goes afloat. Melting
beneath grounded ice is driven by geothermal heat flux and
frictional dissipation and is generally of the order of
centimetres per year or less. The thickest floating ice is
found immediately downstream of the grounding line.
Since the depression of the freezing point of sea water with
depth leads to high melt rates beneath thick ice, melt rates
near grounding lines are typically of the order of metres per
year (Jacobs and others, 1992). This rapid change in the
basal mass balance as ice flows across the grounding line
has interesting implications. Thinning of grounded ice
would allow sea water beneath it, the basal melt rate
would rise, increasing the thinning rate, and the ice would
be unlikely to reground. Conversely, if thickening of
floating ice were to exclude the underlying sea water, the
melt rate would drop, causing the ice to thicken further. In
order to understand the processes that lead to a stable
grounding-line position, we must understand not only the
complexities of ice flow in the transition zone from ice
sheet to ice shelf but also what controls the basal melt rate
near the inland margins of an ice shelf. The work reported
here represents a first step towards gaining an understanding
of the latter.

Over the period from early January to late December
2001 we conducted a series of experiments to measure the
basal melt rate near the grounding line of Rutford Ice
Stream, in the southwestern corner of the Filchner–Ronne
Ice Shelf (Fig. 1). The key to our technique is a precise
measurement of the ice-shelf thinning rate by phase-
sensitive radar. The thinning rate can be partitioned between
vertical strain and melting, given contemporaneous meas-
urements of the vertical strain rate. The advantages of our
technique are its high spatial and temporal resolution and
the fact that we measure the melt rate relatively directly and
need make no assumption about the state of equilibrium of
the ice shelf. Corr and others (2002) described the technique
and its application to a site on the George VI Ice Shelf. Here
we briefly review that description and provide in the
Appendix a detailed derivation of the principal equation
we use to describe the thinning of the ice shelf.

THEORY
Most glaciological observations made from the surface of a
glacier or ice sheet are inherently Lagrangian in nature,
being made at a series of moving points marked by stakes
planted in the surface. We exploit this aspect of our phase-
sensitive radar measurements by considering the mass
balance of the moving column of ice beneath our survey
markers. We use the radar to determine how the thickness of
the column between two radar horizons, typically a strong
internal reflection, assumed to originate from a material
surface within the ice, and the ice-shelf base, evolves in
time. Since the internal reflector may lie within the firn in
the upper part of the column, we cannot assume that the

Fig. 1. (a) Map of the Weddell Sea sector of Antarctica, indicating
the study area near the grounding line of Rutford Ice Stream.
(b) Enlargement of the study area showing survey network (+), radar
sites (�) and the location of a 43 day tidal record obtained by
Stephenson (1984) (*). The black dotted line shows where GPS and
seismic measurements were obtained by Vaughan (1995) and Smith
(1996), respectively. Shading indicates surface elevation (m),
contoured from airborne survey data obtained at locations marked
by white dots. The bold black line indicates the grounding line as
inferred by Doake and others (2001) from satellite radar inter-
ferometry, and ice flow is from left to right. (c) Contours of ice
thickness generated from the same airborne survey data. Vertical
bars at the numbered radar sites indicate the derived basal melt rate.
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entire column is incompressible. We use a more general
form of the mass-balance equation:

r�u� _ms
@

@z
1
�

� �
¼ 0

derived from the assumption that within the firn, vertical
compaction and the viscous response to deviatoric stresses
are independent processes, the effects of which are additive.
In deriving the compaction rate, we have made the
conventional assumption that the density of the firn is a
function only of the time elapsed since its deposition at the
surface and that the accumulation rate has been constant
during the period over which the present firn column was
deposited. The Appendix contains a more detailed presen-
tation of these assumptions and we discuss their validity in a
later section of the paper. In the above expression, u is a
three-dimensional velocity vector with components (u, v, w)
parallel to orthogonal (x, y horizontal and z vertical, positive
upwards) axes, while _ms is the surface mass flux, defined as
negative for a downwards flux, and � is the firn/ice density.

Integrating the above equation between the upper radar
reflector and the ice-shelf base, we obtain an expression for
the conservation of mass in the moving column of ice:
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where He is the effective ice thickness derived from
conversion of the two-way travel time of the radar pulse
transmitted through the firn/ice to a distance using a constant
scale factor equal to half the radar velocity in solid ice. The
unknown basal mass flux is denoted _mb, while t denotes
time and n refractive index, which we have assumed to be
directly proportional to density. The subscript i indicates
values for solid ice, and overbars indicate depth-averaging.
The term �(hu) refers to the density at the depth of the upper
reflecting horizon. If this upper reference horizon is deep
enough to lie within solid ice, the third term on the lefthand
side is zero, and the change in effective thickness is simply
the sum of the contributions from horizontal convergence/
divergence of the ice flow and basal melting/freezing.
Otherwise the size of the third term, which physically
results from compaction beneath the reference depth, must
be estimated. A complete derivation of this expression
appears in the Appendix. Note that we have dropped two
terms associated with the covariance of density and
horizontal velocity over the depth of the ice column. These
are zero either if the horizontal velocity is constant with
depth, or if the upper reflector lies within solid ice.

We can apply this same equation to the thickness of ice
and/or firn, Hei, measured between two internal reflectors.
In this case, the last term on the lefthand side is zero, since
both upper and lower interfaces are material surfaces, and
the rate of change of reflector separation depends only on
strain and compaction. If the internal reflectors are located
within the solid-ice part of the column below the firn layer,
the compaction term drops from the equation describing
temporal changes in their separation. We then arrive at a
simple expression for the horizontal divergence term that
appears above:
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Making use of the above two equations, we can derive the
basal melt rate of an ice shelf directly from repeat radar

sounding. If suitably deep internal reflectors are not
available, the horizontal divergence can be measured
separately by the repeat survey of a pattern of surface
markers. Knowledge of the horizontal divergence also
enables us to extract information on firn compaction from
the relative motion of internal reflectors within the upper
layers of the ice shelf.

METHOD
The practical application of the technique is illustrated in
Figure 2. At the start of the experiment a column of ice was
marked and the thickness between a prominent internal
radar reflector and the ice-shelf base was measured. Each
thickness measurement actually comprised six individual
soundings, spaced at short intervals, to ensure the correct
identification of stable internal reflectors. The radar was a
step-frequency system consisting of a vector network
analyzer (HP8751A) and a pair of identical broadband
antennas, which were separated by a distance of 5m (Corr
and others, 2002). We used 1601 frequency steps with an
interval of 32 kHz, giving a response equivalent to a pulsed
radar system having a centre frequency of 295.6MHz and a
bandwidth of 51.2MHz. The broad bandwidth ensured
good spatial resolution, and since both the amplitude and
phase of the radar signal were recorded, changes in the
range of reflectors could be measured to a small fraction
(�1%) of the wavelength (56.8 cm), giving centimetre-level
accuracy in the ice-thickness changes.

Survey poles were set in the snow surface around the site
of the radar sounding (Fig. 1b), and inter-stake distances were
measured using global positioning system (GPS) techniques.
The stake pattern was triangular to provide measurements of
extension or compression in three directions. Trimble 4000
series GPS receivers were used to record dual-frequency,
carrier-phase data, sampled at 5 s intervals. FastStaticTM

processing techniques then yielded inter-stake distances to
�1 cm or better with observation times as short as 8–10min.
For our experiments the absolute motion of the ice shelf was
of secondary importance, so we adopted a slightly unusual

Fig. 2. Schematic picture of a marked ice column at times t1 and t2.
The distance hu–hb is measured at both times using phase-sensitive
radar. The difference is the result of horizontal divergence and basal
melting. The former is determined from the relative motion of either
survey poles planted in the ice-shelf surface or internal reflectors
identified on the radar record, leaving the latter as the only
unknown.
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survey technique that used no fixed reference stations.
Instead we used multiple roving receivers and designed the
survey such that all the required inter-stake distances were
directly observed GPS baselines, ensuring no degradation of
accuracy through the need to infer distances from the
measured coordinates of the (moving) survey markers.

On subsequent visits all the measurements were re-
peated. The initial and repeat radar soundings provided the
ice thickness and material derivative of thickness that appear
in Equations (1) and (2). Usable internal radar reflectors
appeared from near the surface to at least 600m depth at all
the sites studied, so horizontal divergence and hence basal
melting could be derived from the radar data alone. In this
paper, we also make use of the results of the GPS surveys, as
these provide improved temporal resolution of the hori-
zontal divergence term, albeit an areal average over a region
surrounding the radar site. For calculating the melt rate, we
favoured the value derived from the radar measurements
over a full year, this being a point measurement on the ice
column of interest taken over a timescale long enough to
average out short-term variability.

The sites discussed here (Fig. 1) were established in the
austral summer of 2000/01, with repeat visits being made
that summer over periods ranging from a few days up to
2weeks. These observations provided information on short-
term variability in the ice deformation, dominated by tidal
forcing, and summertime melt rates. All sites were revisited
in 2001/02, giving estimates of long-term strain, compaction
and year-round melting.

STUDY AREA
Rutford Ice Stream is an active outlet glacier that discharges
14–18Gt a–1 of ice into the southwestern corner of the
Filchner–Ronne Ice Shelf (Corr and others, 1996; Rignot
and Jacobs, 2002; Joughin and Padman, 2003). This is just
under 10% of the total inflow from the grounded ice sheet
to the ice shelf (Joughin and Padman, 2003). Doake and
others (2001) give an overview of the ice stream, its
catchment basin and its grounding zone. The latter is
complex (Fig. 1), with a sinuous grounding line and ice
thickness ranging from <1600 to >2000m. Ice velocities
peak at around 400ma–1 near the grounding line, and
decrease steadily downstream (Stephenson and Doake,
1982; Jenkins and Doake, 1991). In the centre of the ice
stream a ridge of grounded ice extends 15–20 km down-
stream. The bed knoll that produces this feature carves out a
channel of thinner ice, so that a surface trough appears
downstream on the ice shelf. Either side are tongues of
thicker ice that produce ridges on the ice shelf. The ridge on
the western side contains the thickest floating ice, but
smaller channels of thinner ice, which are presumably also
formed by bed irregularities upstream of the grounding line,
are apparent within it. Lateral thickness gradients are large
and the ice is not locally in isostatic equilibrium with the
underlying ocean so close to the grounding line. The
surface troughs are more subdued than they would be if
they were in equilibrium, with the channels supported
above their equilibrium level by the surrounding ridges,
which are consequently depressed below their equilibrium
level. The radio-echo sounding profiles used to generate the
maps in Figure 1 are not sufficiently close to define all the
details of this complex structure. In particular, the down-
stream end of the grounding-line promontory has a steeper
surface than is apparent in the contour maps, and the
region immediately downstream is depressed below its
equilibrium level (Stephenson, 1984). The process of
adjustment towards equilibrium over these regions must
be ongoing, and this has implications for some of the
observations we discuss later. The grounding zone of

Fig. 3. Variations in inter-stake distance measured at the upstream
end of the eastern stake network. (a) Continuous record obtained
over 13 hours, showing results derived from kinematic processing
(black line) and static processing of 10min data segments (red dots).
(b) Intermittent record obtained over 12 days (red dots) and
prediction (black line) derived by fitting a linear trend plus a
constant times tidal elevation to the measurements. The box near
day 21 indicates the segment plotted in (a). (c) Record obtained
over 1 year (red dots) and prediction (black line). The box near the
start indicates the segment plotted in (b).
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Rutford Ice Stream has been the subject of much study since
the initial survey of Stephenson and Doake (1982).
Crucially for the work presented here, a 43 day tidal record
was obtained by Stephenson (1984) using a tiltmeter sited
close to the centre of our new network of survey stakes
(Fig. 1b).

RESULTS
GPS surveys
Since all the radar sites were situated close to the grounding
line, in the zone of tidal flexure, we anticipated that there
might be some signature of this tidal forcing in the horizontal
strain field. We therefore adopted a survey strategy in which
we observed baselines for a number of hours, then
processed individual 10min segments as static observations
to produce short time series of inter-stake distances. Relative
motion of the survey poles was small over the timescales of
these individual baseline observations, and we found that
our strategy of static processing accurately reproduced the
baseline lengths we calculated from kinematic processing of
the data (Fig. 3a). We predicted the tidal height (hT) at the
time of each 10min observation using tidal constituents
calculated from analysis of Stephenson’s (1984) data. The
records of baseline length were then fitted to a model of the
form:

L ¼ A0 þ A1t þ A2hTðtÞ,
with the coefficients A0–2 for each leg of the stake network
being found by least squares. Figure 3 shows results for one
leg over a variety of timescales. Clearly the tidal signal
dominates if observations are made only over one summer,
and even in the year-round measurements it could introduce
significant error if it were not correctly removed. From the
least-squares fits for each of the legs, we were able to
calculate the long-term, viscous strain rate:

_" ¼ A1

A0

and the tidal, probably elastic (Vaughan, 1995), strain per
metre of tidal elevation:

"T ¼ A2

A0
:

In both cases, principal components were calculated for
each combination of three legs making up a triangle of the
survey network. Results are plotted in Figure 4.

At all points the steady, viscous strain rates (Fig. 4a) show
longitudinal compression, approximately in the direction of
flow, associated with the deceleration of the ice shelf. The
thicker ice to the west spreads laterally, although at the
upstream end of the stake lines it appears to be constrained
by the grounding-line promontory to the east. The thinner
ice, immediately downstream of the grounding-line prom-
ontory, experiences mainly lateral compression, presumably
due to the spreading of the thicker ice either side. Note that
only at the downstream end of the western line does the sum
of the principal strain rates give a significant net divergence,
although divergence is what we would normally anticipate
on an ice shelf. Elsewhere the sum is either very small or
significantly compressive. An obvious interpretation of this is
that, if it were not for basal melting, the ice shelf would be
thickening in the downstream direction (on the eastern line
it is anyway, even with melting). However, we should

emphasize here, in the light of a later discussion, that we
have measured and plotted the horizontal strain rates at the
ice-shelf surface.

The tidal strains indicate a broad zone of stretching
perpendicular to the grounding line on the high tide. We
also infer that there is a possibly narrower zone of
compression that we have only sampled on the upstream
triangle of the eastern stake line. At low tide the strain
changes sign. This pattern of longitudinal extension and
compression is consistent with bending of the ice shelf
between a region of no vertical motion where the ice is
grounded and a region of uniform rise and fall on the tide at
some distance from the grounding line. A similar picture of
surface strain can be inferred from the vertical deflections
measured by Vaughan (1995) using repeat kinematic GPS
surveys at low and high tide. Line AA0 of Vaughan’s (1995)
study runs through our eastern stake network (Fig. 1b).
Parallel to the grounding line we see compression every-
where on the high tide, for which we do not have an
explanation. Presumably it is some effect of the complex
two-dimensional shape of the grounding line. Once again,
we emphasize that these are observations of strain at the
surface. If the ice shelf is bending as a thin beam, we would
anticipate that these horizontal strains decay linearly with
depth, passing through zero at a neutral surface within the
ice shelf, then growing to be approximately equal in
magnitude but opposite in sign at the ice-shelf base. We
investigate whether this is the case later in the paper.

Fig. 4. (a) Long-term viscous strain rates and (b) short-term
(probably elastic) strains per metre of tidal elevation, determined
from relative displacement of survey poles (+).
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Phase-sensitive radar: long-term observations

Derivation of basal melt rate from displacement of
internal and basal reflectors

Figure 5a shows a typical radar record from site 1. The
received signal fades away after the direct breakthrough

from the transmitter, and we see progressively weaker
internal reflectors, which eventually disappear into the
noise at around 600–700m depth. At 1569m depth, a
strong reflection from the ice-shelf base appears. Our
subsequent analysis assumes that the internal reflectors are
material surfaces, so that the motion of the reflectors

Fig. 5. Radar record (upper sub-panels) and displacement (lower sub-panels) of internal (cyan dots) and basal (red dots) reflectors measured
over periods of around 330days at sites 1–14 (a–n). For site locations see Figure 1. In the lower sub-panels the black line indicates the
vertical strain that would result from the measured horizontal divergence. The (six) blue lines represent linear fits to the displacement of
internal layers between the two vertical dashed lines on the left, while the (six) green lines represent quadratic fits to the same data. The
boxes in (a) indicate the areas shown enlarged for clarity above.
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precisely mirrors the motion of the ice itself. The processing
of the radar data was described by Corr and others (2002).
From the processed record obtained on the initial visit, we
select reflectors with relatively high amplitude and constant
phase. This typically yields in the region of 60–100 suitable
internal horizons and one or more good reflections from the
ice-shelf base. The data obtained from repeat soundings are
then scanned and the phase change at these discrete points
recovered (Fig. 6). Where the reflectors are closely spaced, it

is a simple matter to infer the integer number of wavelengths
that must be added to the phase difference to obtain the
overall change in range. However, once the reflectors vanish
into the noise, we lose track of the phase, and the integer
adjustment for the basal reflector is indeterminate. The best
solution is to obtain a preliminary estimate of the change in
range through cross-correlation of the amplitude of the basal
reflections and use this to estimate the integer ambiguity.
The wide bandwidth of our radar means that the rise time of

Fig. 5 (cont.). For caption, see facing page.

Jenkins and others: Ice–ocean interactions near an Antarctic ice-shelf grounding line 331

https://doi.org/10.3189/172756506781828502 Published online by Cambridge University Press

https://doi.org/10.3189/172756506781828502


a pulse reflected from a near-specular reflector is around 30–
40 ns, equivalent to a few metres in ice (Fig. 7). The
relatively sharp edges of the reflections enable the initial and
repeat soundings to be aligned with a precision better than
plus or minus one wavelength. Thus the cross-correlation
removes the integer ambiguity, and the total change in range
is simply the sum of the correlation delay and the phase
difference. In a few cases, the shape of the return changed
over the course of the year-long observations such that
amplitude correlation was itself ambiguous. In these cases,
we estimated the integer number of wavelengths of move-
ment by extrapolating the changes observed over the shorter
(1–2week) time intervals, during which the shape of the
reflector was sufficiently stable and the total movement was
less than one wavelength anyway. The total year-round
movement was once again obtained by adding in the
observed phase difference. We discuss the extrapolation of
short observations in more detail later.

In the lower sub-panel of Figure 5a we plot as a function of
depth the displacement of the prominent reflectors, meas-
ured as described above, that appear on repeat radar records
obtained over a period of 333 days. The displacement is

referenced to a single, strong reflection, in this case at
107m depth, and data from all six of the closely spaced
soundings are shown. At all points below the reference
level, the range increased over the observation period,
implying that the ice column is thickening at this site. This is
consistent with the observed horizontal convergence noted
above. Nearer the surface the effect of horizontal conver-
gence is offset by firn compaction, completely so for the
near-surface layers where the range remains approximately
constant. In principle, we could calculate the vertical strain
between any two reflectors as DHei/Hei0, but as the original
reflector spacing becomes smaller so the errors in the
reflector displacement are magnified. Instead we assume
that below the firn layer, where compaction is negligible,
the vertical strain rate is a simple function of depth and fit an
appropriate model to the measured layer displacement by
least squares. The strain at any depth can then be calculated
from the gradient of this line.

At site 1, below 100m depth, the displacement of the
internal reflectors appears to be a linear function of depth
(Fig. 5a), as we would anticipate if the vertical strain rate
were constant with depth. Extrapolation of the best-fit, linear

Fig. 6. Phase differences determined over a period of 333 days at
prominent reflectors on one of the six radar records from site 1.
(a) Raw data incorporating whole wavelength ambiguities.
(b) Unwrapped data with the integer ambiguity determined where
there are sufficient good-quality data points. The error estimates are
derived from the signal-to-noise ratio of the individual reflectors,
assuming a background noise level of –120 dB. For clarity the error
bars have been omitted from other figures.

Fig. 7. Basal reflections obtained during initial (black) and repeat
(red) soundings made 333days apart at one of the six closely
spaced points comprising site 1. (a) Raw data showing the increase
in range over the observation period. (b) Processed data, with a
time/range shift obtained by cross-correlation of the two records
applied to the repeat sounding. Dashed red lines indicate the
impact of adding (subtracting) one wavelength to (from) the
calculated shift.
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trend to the depth of the ice-shelf base indicates the
displacement of the basal reflector that would result from
strain of the ice column alone. The fit is a weighted least-
squares estimate based on the data between the limits
indicated in the figure and is done separately for each of the
six repeat soundings. The observed increase in range of the
reflector is less than the value obtained from the extrapo-
lation, implying that some mass has been lost from the base.
The difference (1.17m over 333 days) gives us a melt rate of
1.28� 0.05ma–1 (Table 1). This value is an average of the
six individual measurements, and the error reflects both the
scatter in the estimates of vertical strain as well as the
absolute phase error on the basal reflector. If we were to use
the measured surface convergence to estimate the vertical
strain, a slightly lower melt rate of 1.04�0.04ma–1 would
result. We would generally attribute such differences in the
implied vertical strain rate to the existence of spatial
gradients in the strain rate over the area sampled by the
triangle of stakes surrounding the radar site, and we would
therefore favour the result derived from the direct radar
observation of strain rate on the column of ice under study,
even though the formal error estimate is slightly higher.

Figure 5b–f show results from the remaining five sites on
the eastern network. All show a similar pattern in the
strength of the internal reflectors, such that they vanish into
the noise at around 600–750m depth. In all cases (except
that of site 2), an estimate of the vertical strain rate based on
a linear fit to the measured layer displacement as a function
of depth is consistent with that inferred from the horizontal
convergence within the errors of the respective measure-
ments. This agreement implies either that horizontal
gradients in the strain rate are negligible at these sites, or

that they are nearly linear, such that the spatial averages
sampled by the stake triangles are equal to the point values
at the triangle centres. At site 2 there is a sharp change in the
vertical strain rate at about 150m depth, approximately
coincident with a minimum in the amplitude of the internal
reflections. We do not have an explanation for this
phenomenon. Closure of crevasses would manifest itself in
this way, in that not all of the horizontal compression would
be translated into vertical extension. However, this would
imply very deep-penetrating crevasses, and the measured
surface compression is consistent with the near-surface,
rather than the deep, vertical strain.

Despite the relatively unambiguous results for strain
thickening of the ice at these sites, determination of the melt
rates is complicated by the nature of the radar reflection
from the ice-shelf base. Rather than a single, sharp
reflection, we see a complex, often double-peaked return,
so that determining the depth of the nadir point on the ice-
shelf base is difficult. We would normally pick the leading
edge of the reflection, but this is a less obvious choice in
those cases where later parts of the return are often
significantly stronger. Worse still, at sites 2 and 3 the shape
of the return changes in time, such that after an interval of
1 year it is no longer possible to match the various parts of
the return. In these cases, the basal movement measured
over short intervals of 1–2weeks has been extrapolated over
the longer interval. This procedure is justified in a later
discussion of the short-term records. At site 2, using the
measured horizontal convergence to determine the vertical
strain rate would give us a melt rate of –0.24� 0.15ma–1

(i.e. basal freezing), but the linear fit to internal layer
movement below the break point described above yields

Table 1. Estimates of basal melt rate on Rutford Ice Stream

Site Period of
observation

Depth of
basal

reflector

Melt rates calculated using vertical strain rate derived from: F test for
significance of
quadratic term

Horizontal strain rates Linear fit to internal
layer displacement

Quadratic fit to internal
layer displacement

Value Error Value Error Value Error
days m ma–1 ma–1 ma–1 ma–1 ma–1 ma–1

East
1 333.02 1569 1.04 0.04 1.28 0.05 2.51 0.10 30.0
2 331.98* 1587 –0.24 0.15 2.08 0.17 0.44 0.28 6.7
3 332.98* 1585 –0.51 0.18 –0.36 0.15 0.73 0.21 106.6

332.98* 1597 –0.14 0.18 0.00 0.15 1.11 0.21
4 333.54 1571 0.35 0.06 0.37 0.05 0.17 0.15 2.6

333.54 1598 1.40 0.06 1.42 0.05 1.22 0.15
5 333.55 1592 0.22 0.13 0.23 0.14 0.05 0.19 5.1

333.55* 1610 0.59 0.19 0.60 0.20 0.42 0.24
6 333.54 1594 0.39 0.04 0.36 0.04 0.51 0.24 3.7

333.54* 1617 1.12 0.15 1.08 0.15 1.24 0.28

West
7 326.80 1938 0.49 0.04 –0.05 0.04 0.51 0.17 39.5
8 326.90 1877 1.52 0.03 1.94 0.02 1.59 0.25 28.1
9 330.61* 1940 1.25 0.09 0.69 0.10 1.21 0.22 17.0
10 330.68 1855 –0.13 0.04 0.59 0.03 0.16 0.25 22.4
11 330.03 1817 1.33 0.03 0.80 0.02 0.81 0.06 0.2
12 328.97* 1859 –0.20 0.17 0.38 0.18 0.10 0.51 9.9
13 328.88 1863 0.47 0.05 –0.16 0.04 0.64 0.13 17.7
14 328.74 1711 –1.47 0.07 –1.18 0.05 –0.11 0.31 41.2

*Italics indicate where results are obtained by extrapolation of measurements made over a shorter period of time (see text).
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melting of 2.08�0.17ma–1. At sites 3–6 the basal returns
have two distinct peaks and we have estimated the motion of
both. Calculated melt rates range from –0.51�0.18ma–1 to
1.42� 0.05ma–1 (Table 1). Because of the good agreement
between the two estimates of vertical strain at these latter
sites, it makes little difference which we use.

Where there are two identifiable peaks in the basal
return, the apparent differential motion is up to �1ma–1,
with the more distant peak always showing less motion,
implying a higher melt rate. There are several possible
explanations for this. It could simply reflect an additional
uncertainty of around plus or minus two wavelengths in our
measurement of range changes. However, in the case of site
4, where we see maximum differential motion, both peaks
were identifiable throughout the observation period, so we
used the more reliable amplitude correlation to estimate the
integer number of wavelengths moved by each reflector over
a full year. Another possibility, that the first reflectors could
be internal rather than basal, is suggested by the fact that the
derived melt rates are generally close to zero. Such a strong
internal reflector so deep in the ice column would be
surprising, but Smith (1996) identified seismic reflectors,
possibly englacial debris, 100–250m above the base of the
ice shelf along a 4 km line running approximately parallel to
ice flow within �100m of sites 1 and 2 (Fig. 1b). A final
possibility is that we have simply measured differential
melting of a rough ice-shelf base, with protrusions melting
more rapidly than hollows.

Results for the eight sites on the western stake line are
shown in Figure 5g–n and are summarized in Table 1. In
most cases, the integer ambiguity was removed by the more
accurate method of amplitude correlation of the basal
reflections obtained 1 year apart, but at sites 9 and 12 we
had to rely on extrapolation of the short-term measurements,
as discussed earlier. We find generally larger discrepancies
than on the eastern lines between the vertical strain rates
inferred from the survey of the stake network and those
determined from a linear fit to the displacement of the
internal radar reflections. Once again we assume these
discrepancies arise from spatial gradients in the strain rate,
not surprising given the high lateral thickness gradients

(Fig. 1c), and we therefore put more trust in the values
derived from the radar measurements alone. Most of the
derived melt rates lie between 0 and 1ma–1, but there are
extremes of below –1ma–1 and nearly 2ma–1.

One aspect of the above results that is puzzling is the
apparent occurrence of basal freezing at sites 3, 7, 13 and 14.
We would not anticipate basal freezing so close to areas of
basal melting, unless there were significant basal topography,
which we do not observe. Further, if salty ice were accumu-
lating at the base of the ice shelf, wewould not expect to see a
basal reflection at this range. At sites 3, 7 and 13 the apparent
freezing rates are close to zero, and, although the formal error
estimates suggest that they are in most cases significantly
negative, a slightly larger error, which could result from a
miscalculation of the integer number of wavelengths over
which the base has moved, would permit a zero or slightly
positive melt rate. However, the result at site 14 cannot be
dismissed in this manner and indicates a problem with the
analysis we have discussed so far.

Depth variation of vertical strain rate
A solution to the freezing conundrum is indicated by the
motion of the deeper internal layers. Along the western stake
line, we see a more gradual decline in the amplitude of the
internal reflections and we can determine their motion
down to depths of 800–900m. Since we use a weighted
least-squares technique to estimate the straight-line fit to
these data, the slope of the line is determined primarily by
the stronger near-surface layers, where the phase errors are
smaller. Lower in the ice column, the measured reflector
motion often appears to drift away systematically from the
straight-line fit (particularly at site 14), suggesting that the
vertical strain rate may not be constant with depth. If it is not
constant, our estimate of the basal motion due to strain, and
hence our estimate of basal melting, is incorrect.

A possible reason for depth dependence in the vertical
strain rate is apparent in Figure 1. The sites are close enough
to the grounding line that the ice shelf is not floating in
isostatic equilibrium everywhere. Over the more pro-
nounced variations in ice thickness, presumably generated
by bed irregularities beneath the ice stream, the surface is
still in the process of adjustment towards flotation. Vertical
shear stresses must therefore be present in the ice shelf, as
illustrated in Figure 8, to balance the gravitational forces
acting to push the thin ice down and the thick ice up. The
net effect of the vertical shear stresses is to induce relative
horizontal compression at the top of the ice column and
relative extension at the bottom where the ice is supported
above its equilibrium level and is thus sinking (Casassa and
Whillans, 1994). The converse is true where the ice is
depressed below its equilibrium level and is thus rising. If we
assumed the ice to be uniform and the shear stress to be
constant with depth, the horizontal divergence would be a
linear function of depth. The relative displacement of two
internal layers is simply the integral of the vertical strain
between them. Thus, with the vertical strain varying linearly
with depth, we would expect to see layer displacements that
are a quadratic function of depth. Adding a quadratic term to
the least-squares fits to the data in Figure 5 also gives us a
means of investigating the significance of the apparent non-
linearity while introducing minimal complexity to our
model of layer movement.

The quadratic fits to the data are shown in Figure 5 and
the implied melt rates are given in Table 1, along with the

Fig. 8. Deformation of neighbouring columns of ice that are not
freely floating in isostatic equilibrium with the underlying sea
water. Buoyancy forces are balanced by horizontal gradients in the
vertical shear stress, which give rise to differential horizontal
compression and extension over the depth of the ice column. If the
horizontal divergence varies linearly with depth, the effect is the
same as when the ice shelf is bent about a neutral surface.
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estimated uncertainties based on the standard errors of the
regression coefficients and the scatter of the six independent
lines fitted through the individual repeat soundings at each
site. Although the quadratic terms are generally small,
introducing them can alter the derived melt rate by >1ma–1,
because of the great thickness of the ice. At the sites where
the internal reflections remain strong enough to determine
phase changes down to 800–900m depth, the quadratic
lines give visually better fits to the deeper data even beyond
the depth range used for the curve fitting. However, given
the importance of the quadratic terms for our results, we also
investigated their significance using an F test. For any model
that we fit to our data we can evaluate the sum of squares of
the deviations explained by the model:

Se ¼
Xn
i¼1

yest
i � �yi

� �2
and the sum of squares of the residual, unexplained
deviations:

Su ¼
Xn
i¼1

yi � yest
i

� �2,
where the yi are our individual measurements, �y is their
mean, yest

i are the corresponding estimates from the fitted
model, and n is the number of data points used in the fit.
Assuming any particular model is correct, the unexplained
deviations provide us with our best estimate of the true
variance in the data arising from observational errors:

s2 ¼ Su
n �m

,

where m is the number of model parameters. We test for the
significance of the higher-order term in the quadratic model
by comparing the increase in the value of Se resulting from
the inclusion of the extra model parameter with the
remaining variance about the new fit:

F ¼ Squade � Sline
s2

:

If the value of F is significantly greater than 1, we can be
confident that the higher-order model does a better job at
explaining the total variance of the data about their mean
value. Since the numerator has only one degree of freedom,
we are effectively comparing the increase in the explained
variance with our estimate of the true variance. For a
denominator with 60–100 degrees of freedom, as we have
here, F of around 7 indicates 99% confidence that the extra
variance explained by the more complex model is signifi-
cantly larger than the residual variance due to observational
errors and any remaining unmodelled variance. F values for
all sites are given in Table 1.

The F test gives us a very high level of confidence that at
10 out of our 14 sites the apparent non-linearity in the layer
displacements is a genuine feature of the data that is well
modelled by a second-order polynomial. In the remaining
four cases, the non-linearity is weak, such that the difference
between the melt rates derived from the two models is
barely significant anyway. We find that allowing for a linear
variation in the vertical strain rate with depth eliminates the
apparent freezing rates described above at all but one site,
and here the uncertainty in our model parameters now
permits zero freezing or a small melt rate. The quadratic fits
themselves also appear physically reasonable, in that the
curvature (Fig. 5) generally fits with what we would expect

from our simple picture of the shear stresses (Fig. 8) and the
expected sign of the isostatic anomalies at each site.

Vertical shear stresses in the ice shelf
As a final check on this initially unexpected result, we
estimate the likely magnitude of the vertical shear stresses
induced by deviations from isostatic equilibrium and their
impact on the vertical strain rate. For simplicity we assume
that the thickness variations that give rise to the shear
stresses and the associated bending of the ice are purely two-
dimensional. If the deviations of the surface elevation from
equilibrium, dh, are entirely supported by vertical shear
stresses, we can express the horizontal stress gradient as:

@�xz
@x

¼ �wg
@ dhð Þ
@x

, ð3Þ

where the z axis is vertical and the x axis is chosen to lie in
the bending plane. The shear stress is related to the shear
strain rate by the flow law:

�xz ¼ _"xz

A1=n _"1�1=n : ð4Þ

The rate factor, A�10–18 Pa–3 a–1 (Jenkins and Doake, 1991),
the exponent n ¼ 3, and the effective strain rate is �10–3 a–1

(Fig. 4a). Deviations from the equilibrium elevation are
typically up to �10m (Doake and others, 1987), and the
length scale of the anomalies is �1–10 km. Thus we would
expect to see horizontal gradients in the vertical shear strain
rate of up to 10–7–10–6m–1 a–1.

Rewriting Equation (2), such that we retain the depth-
varying horizontal velocities, we can express the layer
movement over time interval Dt as:

�Hei

�t
¼ �

Z hu

hl

@u
@x

þ @v
@y

� �
dz,

the vertical gradient of which gives us our estimate of the
horizontal convergence or divergence as a function of
depth:

@

@z
�Hei

�t

� �
¼ � @u

@x
þ @v
@y

� �
:

Taking the second derivative, and using the assumption that
the bending that gives rise to velocity variations with depth is
purely in the x direction, we arrive at:

@2

@z2

�Hei

�t

� �
¼ � @

@x
@u
@z

� �
:

We have described the layer displacement as a quadratic
function of depth:

�Hei ¼ A0 þ A1z þ A2z2,

so the quadratic coefficient gives us an order-of-magnitude
estimate of the horizontal gradient of the vertical shear
strain rate:

2A2

�t
� @ _"xz

@x
:

The quadratic fits to our year-round (Dt� 1 year) obser-
vations on internal layer displacement (Fig. 5) give values of
A2 lying in the range 6� 10–9 to 9� 10–7m–1, and are thus
entirely consistent with our simple theory of their origin.
Although it was a surprise to find a depth variation in the
vertical strain rate on an ice shelf, in hindsight, we should
perhaps have anticipated it at this particular location.
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Final results
The third column of melt-rate values given in Table 1,
including the quadratic term, thus represents our best
estimate of the true rates (also shown graphically in
Fig. 1). We obtain values that range from near 0 to
2.5ma–1. Melting is generally higher on the eastern stake
line, where the ice is thinner. Along both lines the melt rates
generally decline with distance from the grounding line. The
numbers are consistent with several earlier estimates of
spatially averaged steady-state melt rates (Table 2), but they
appear inconsistent with the more recent estimates. The
remote-sensing techniques employed by Rignot and Jacobs
(2002) and Joughin and Padman (2003) afford more uniform
sampling of the ice velocity field than allowed by the earlier
ground-based measurements, so the later results might be
considered more robust. However, if melt rates of �10ma–1

are required for steady state, the ice shelf must be thickening
rapidly. We discuss the state of equilibrium of the ice shelf in
a later section.

Phase-sensitive radar: short-term observations

Temporal variability of basal reflector motion
At all sites, we made repeated measurements over the course
of the initial 2week visit in January 2001, then again over the
course of the 1week revisit in December 2001. The aim was
to investigate whether we could detect any short-term
variability in the melt rate. The nearest oceanographic data
have been obtained at a site that is some 300 km distant from
the Rutford Ice Stream grounding line, on the western coast
of Korff Ice Rise (Fig. 1). Despite the fact that this site is over
500 km from the open water, the data show a strong
seasonality (Nicholls and Makinson, 1998), and our current
understanding of the circulation within the cavity beneath
the Filchner–Ronne Ice Shelf is that the inflowing waters that
carry this seasonal signal to Korff Ice Rise are the primary
source of heat for melting at the Rutford grounding line
(Nicholls and others, 1997; Jenkins and Holland, 2002a, b).
We might therefore expect that year-long measurements of
melting would differ from those obtained over a short
timescale, unless that time was coincidentally one with
melting near the average of the seasonal extremes. At Korff
Ice Rise a rapid warming occurs in September–October each
year, with relatively high temperatures persisting until early
winter (Jenkins and others, 2004), and we would not expect
this signature to be more than a couple of months delayed in
its progress to Rutford Ice Stream. Our January measurements

should therefore pick up the maximum of any seasonal cycle.
Established theory suggests that tidal mixing is likely to play a
role in regulating heat transfer to an ice-shelf base in the
vicinity of a grounding line (MacAyeal, 1984). We therefore
also anticipated the possibility of melt rates changing over
the fortnightly spring/neap tidal cycle.

The most intensively studied of our sites was site 1, where
we made a series of ten measurements over a 15 day period
in January 2001. The depth of the basal reflector is plotted in
Figure 9a as a function of time. The thickening trend of about
13 cm over the 15 days is clearly visible and a simple linear
fit to the data yields a rate of 2.95� 0.02ma–1. This is lower
than the 3.09�0.02ma–1 apparent from the year-long
measurement, which would suggest a slightly higher-than-
average melt rate during the summer. Although the six
measurements made at each time appear to be well
clustered, the scatter of the groups about the straight line
indicates significant deviations from the linear trend. A clue
as to the cause of these deviations is given by the data from
the eighth and ninth observations, which were made close to
consecutive low and high tides on day 29. The implication is
that the ice thickness undergoes a tidal oscillation,
presumably as a result of net horizontal compression/
extension induced by tidal bending of the ice shelf. We
were also interested to see if these data can tell us anything
about changes in melt rate over the spring/neap tidal cycle.
Our hypothesis was that the melt rate should scale with the
square of the tidal amplitude. We therefore fitted a model of
the form:

He ¼ A0 þ A1t þ A2hTðtÞ þ A3

Z t

t0
hT t 0ð Þj j2 dt 0

to our thickness data and used an F test to determine the
significance of the last two terms. We found that introducing
the third term (F of 208) accounted for most of the observed
variance about the straight line, while adding the fourth term
(F of 1) provided no demonstrable improvement in the fit.
The fit obtained using the first three terms only is shown in
Figure 9a along with the underlying linear trend. Our best
estimate of A1 gives us a thickening rate of 3.05�0.02ma–1,
which is indistinguishable from the year-long trend, given
the magnitude of the errors in our measurements. We
therefore conclude that, at the level of certainty we can
measure, the melt rate is steady, with no significant seasonal
or fortnightly variation.

This finding enables us to use the short-term observations
of thickness change to determine the year-round changes by
simple extrapolation, as discussed in the previous section.
The advantage of the short-term measurements is that we
can unambiguously track the basal motion. The disadvan-
tage is that on these timescales that motion is subject to
considerable tidal contamination.

At site 9 we made five measurements over a period of
10 days in January 2001 (Fig. 9c), so we can undertake a
similar analysis to that described above for site 1. The overall
thinning we observed is only about 3.5 cm, and a simple
linear fit to the thickness data yields a trend of –1.23�
0.05ma–1. Once again there is scatter about the straight
line, and the inclusion of a term that is proportional to tidal
elevation in our model improves the fit dramatically (F of 15,
compared with a value of around 8 for 99% confidence with
fewer degrees of freedom in this case). The underlying linear
trend in the more complex model is –1.46�0.10ma–1. This
knowledge makes it possible to identify the weak return in

Table 2. Estimates of melt rate required for equilibrium on Rutford
Ice Stream

Source Data used in
calculation

Approximate
area covered

Melt
rate

km2 ma–1

Stephenson and Doake (1982) Ground-based 600 1.7
Jenkins and Doake (1991) Ground-based 12.5 1.2�0.5
Corr and others (1996) Ground-based

and airborne
400 1.5�1.6

Smith (1996) Ground-based 2 3.1�2.4
Rignot and Jacobs (2002) Remote-sensing 785 11� 3
Joughin and Padman (2003) Remote-sensing �400� >5*

�Estimated from shaded contour plot.
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the December 2001 data and apply an appropriate integer
wavelength correction to each of the six shots. Then adding
the phase difference measured between the initial and
repeat soundings yields an overall thickness change of
–1.43�0.04ma–1 (Fig. 5i), and this is the value we use in
deriving the melt rate.

At sites 2, 3 and 12 we have only the minimal set of two
measurements of thickness in January 2001 and two
measurements in December 2001. However, with two
independent determinations of thickness change it is in
principle possible to separate the component caused by
steady thickening/thinning from that due to the difference in
tidal elevation. We consider this procedure to be less precise
and we have incorporated an additional half-wavelength
into the error estimates. The same technique has been
applied to the secondary basal reflections at sites 5 and 6.

Ice-shelf deformation at tidal frequencies
The series of observations made at sites 1 and 9 provide, in
addition to the results discussed above, a wealth of
information on the response of the ice shelf to tidal bending.
We have already shown the effect of net compression at
site 1 and net extension at site 9 on the high tide (Fig. 9). In
the case of site 1, the net horizontal strain is of the same sign
as that measured at the surface (Fig. 4), while at site 9 it is of
the opposite sign. This could suggest that the neutral surface
is found at different levels in the two ice columns, but it is

more likely to be a result of uncertainty in the sign of the
much smaller surface divergence at site 9. We have seen that
the response to a steady bending force is a vertical strain rate
that is a linear function of depth (Fig. 8), so we might
anticipate seeing a signature of this in the internal layer
motion over the tidal cycle. Figure 10 shows layer motion as
a function of depth between visits 8 and 9 and visits 9 and 10
at site 1. We have removed the steady motion of the internal
layers as a result of the long-term strain, and that of the basal
reflector as a result of both strain and melting. The residual
displacements of the internal reflectors show the expected
quadratic dependence on depth. Although noise in the
internal layer displacements means that the quadratic terms
are not well constrained by these data alone, the higher-
order terms are nevertheless highly significant, with F values
of 33 and 21 respectively. However, assuming that the
motion we see in Figure 10 is due entirely to tidal bending,
we can fit the basal reflector motion to the same model, and
this procedure yields the lines shown in the figure.

When normalized by tidal height difference, the two sets
of observations give a consistent picture of the response to
bending (Fig. 10). The neutral surface is at about 1000m
depth. Above that level, the ice column extends by about
10mm per metre of tidal elevation, while beneath that level it
contracts by about 4mm. The tidal range at the Rutford Ice
Stream grounding line is nearly 6m (Fig. 9b), so that overall
the tidally induced thickness change can be as much

Fig. 9. Variations in ice thickness over a 2week period at sites 1 (a)
and 9 (c). Black crosses indicate measurements, while red lines
indicate predictions derived by fitting a linear trend plus a constant
times tidal elevation (b) to the measurements. The blue lines in (a)
and (c) indicate the underlying linear trends in thickness.

Fig. 10. Displacement of internal (cyan dots) and basal (red dots)
reflectors measured over opposite halves of the tidal cycle at site 1.
The (six) blue lines indicate quadratic fits to the individual records.
Black lines indicate the mean of the individual fits (solid)
normalized by tidal elevation difference (dashed).
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as 35mm. Note that the full amplitude of the thickness
oscillations is not apparent in Figure 9, because the depth of
the basal reflector is plotted relative to the reference internal
at 107m, whereas about 25% of the extension above the
neutral surface occurs in the upper 100m of the ice column
(Fig. 10). The vertical strain can be obtained from the gradient
of the curves in Figure 10, and is plotted, normalized by tidal
elevation difference, in Figure 11a. Included in Figure 11a
are results from all nine time intervals between the ten visits
to site 1. The uncertainty in these results rises as the tidal
elevation difference falls, but there is a high degree of
consistency between the observations. The only real outlier is
that calculated over the time interval between visits 4 and 5.
Visit 5 was made at mid-tide when the elevation was
changing rapidly, so the most likely cause of the discrepancy
is timing errors. Since our primary aim was the measurement
of weekly to annual melt rates, we simply did not anticipate
the need to time the observations with sufficient accuracy to
place them precisely within the tidal cycle.

A weighted mean value (with the outlier removed) of
the vertical strain at the ice-shelf surface is (2.04�0.01)�
10–5m–1 of tidal elevation. This compares remarkably well

with a horizontal divergence of (–2.14�0.15)� 10–5m–1

determined from the survey network (Fig. 4). An ice shelf’s
response to tidal loading is normally considered to be
elastic, and the generally accepted value of Poisson’s ratio is
0.3 (Vaughan, 1995). Using this value and the measured
vertical strain, we would infer a horizontal divergence of
(–4.77� 0.03)�10–5m–1. Our measurements show that, at
least at the ice-shelf surface and when the loading is applied
at tidal frequencies, Poisson’s ratio is close to 0.5. From its
surface value the vertical strain falls linearly to a value of
zero (the neutral surface) at a depth of 960� 40m, or
61�3% of the way down the ice column. It is more than
likely that the horizontal strain, which is the direct product
of the bending, falls linearly with depth, implying that
Poisson’s ratio must be 0.5 everywhere. From the gradient of
the strain with depth we can determine the radius of
curvature of the bend imposed on the ice shelf by the tide.
On the extremes of the tidal excursion the radius reaches a
minimum of about 15�106m, four orders of magnitude
greater than the ice thickness, so the conventional assump-
tion that the ice shelf can be treated as a thin beam is clearly
valid.

A similar analysis of the data from site 9 yields the vertical
strains shown in Figure 11b. Once again there is one outlier,
which is the result of a clearly noisy radar record. With this
outlier removed, the mean strain at the surface of the ice
shelf is (–5.8� 0.4)�10–6m–1 of tidal elevation. The meas-
ured horizontal divergence is (–1� 5)�10–6m–1. Given that
we found discrepancies along the western line in our
measurements of the long-term strain rate between spatially
averaged values derived from the survey network and point
measurements derived from the radar records, we consider
these results to be consistent with the Poisson’s ratio of 0.5
determined at site 1. In this case, the neutral surface lies at
1140� 70m depth, slightly deeper than at site 1, but at a
remarkably similar relative depth of 59� 4% of the total ice
thickness, while the minimum bending radius is about
65�106m.

In principle, we could undertake a similar analysis on any
of the short-term records. However, individual observations
can clearly suffer from excessive noise if the difference in
tidal height is small and/or the measurements were made at
a time of rapidly changing tidal elevation. A dedicated pair
of measurements timed to coincide with high and low tides
would be sufficient, provided the steady long-term reflector
motion were known.

Phase-sensitive radar: near-surface observations
Thus far we have considered the behaviour of the ice
column at depth, where the density can be considered
constant and the compaction term in Equation (1) is zero. To
complete our discussion of the radar data, we now return to
the long-term observations (Fig. 5) to investigate what the
measured displacement of the near-surface layers can tell us
about the compaction process. In Figure 12a the displace-
ment is plotted relative to that at 150m for all sites. The
different trends reflect the differing horizontal convergences
and divergences at each site, and this is the dominant
signature through much of the firn layer. Clearly the firn
layer does expand and contract in thickness in response to
the horizontal compression and extension of the ice shelf.
Our assumption in deriving Equation (1) (see Appendix) was
that this process was volume-conserving, with firn densifica-
tion proceeding independently as a function only of the rate

Fig. 11. Vertical strain, normalized by tidal elevation difference, as
a function of depth at sites 1 (a) and 9 (b). Colour coding indicates
separate observations with tidal elevation differences as indicated.
Solid lines show the best fit, and dashed lines the 95% confidence
intervals.
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of burial by new snowfall. Under this assumption, the
residual layer displacement, after removal of the effect of
horizontal divergence, gives us the rate of firn compaction
(third term in Equation (1)), which should be similar at all
sites. This is indeed the case (Fig. 12b), with the striking
exception of site 2 where we have already noted that the
vertical strain in the upper 150m does not fit well with that
inferred lower in the ice column.

We can estimate the theoretical size of the compaction
term from knowledge of the surface accumulation rate and
density profile. Jenkins and Doake (1991) measured an
accumulation rate of 450�65 kgm–2 a–1 at the location of
site 1 and estimated a density–depth profile based on
measurements of firn density in the upper 2–5m at seven
sites on the Ronne Ice Shelf. The compaction rate inferred
from these data is also shown in Figure 12b. The agreement
between these entirely independent determinations of
compaction is remarkably good. Clearly, had we been
unable to identify a reference layer deep enough to lie
within solid ice, using a shallower reflector and an estimate
of compaction beneath it based on the earlier observations
of Jenkins and Doake (1991), i.e. the solid black line in
Figure 11b, would have introduced additional errors of no
more than a few centimetres per year to our estimates of
basal melting. From this we conclude that the density profile
appears to be in near equilibrium with a relatively steady
surface accumulation rate.

The good agreement between observation and theory at
sites where the net horizontal divergence ranges from
–2.8� 10–3 to 1.1� 10–3 a–1 supports our assumption that
horizontal strain has no impact on the firn density, at least at
the depths of our measurements. This result can be
explained by the fact that firn compaction is driven by the
isotropic stress:

P ¼ 1
3

�xx þ �yy þ �zz
� �

which is dominated by the hydrostatic pressure. We would
only expect densification to be influenced by other stresses if
they were large enough to significantly alter the isotropic
stress. Within the solid ice, longitudinal deviatoric stresses
( _"xx
�

A1=n _"1�1=n� �
) are typically �105 Pa or less, but they are

smaller in the firn layer because the effective shear viscosity,
(2A1=n _"1�1=n)–1, is a strong function of density (Ambach and
others, 1995). In the near-surface layers, where the density is
around 500 kgm–3 or less (Jenkins and Doake, 1991), the
effective viscosity, and hence the deviatoric stress, is likely
to be an order of magnitude smaller than in the solid ice.
Thus at a few metres depth the hydrostatic pressure will
already have exceeded the longitudinal deviatoric stresses,
and beyond that the latter will make an ever smaller
contribution to the isotropic stress. At the depth of our
measurements it is therefore safe to assume that horizontal
strain is volume-conserving, while firn compaction is driven
by the hydrostatic pressure.

Of course the hydrostatic pressure is itself modified by
the vertical strain of the firn column. If the maximum strain
rates we have observed were sustained over the entire
period of the snow–firn–ice transition (around 150 years),
the pressure exerted on firn of any particular density could
have been altered by up to 25% as a result of the
cumulative strain. Assuming that the compaction rate is a
cubic function of the isotropic stress (Ambach and others,
1995), this extreme case would lead to almost a factor 2

change in the compaction rate. However, these numbers
are appropriate to �100m depth where the compaction
rate is near zero anyway. At 50m depth the maximum
observed strain rate (acting over about 75 years in this case)
would give a 10% change in the hydrostatic pressure and
hence a 30% change in the compaction rate, while at 20m
(firn age around 25 years) the limits are 3% and <10%
respectively. Thus even these unrealistic upper limits on the
changes in compaction rate caused by the net strain of the
firn column lie well within the errors of our observations
(Fig. 12).

The curious behaviour at site 2 defies simple explanation.
If we assume that the horizontal convergence is constant in
the upper 125m and equal to that measured at the surface,
the residual layer motion is consistent with that at the other
sites. This would appear to discount the closure of deep
crevasses as an explanation of the anomalous behaviour in
the upper 150m, since we see no volume change other than
that due to vertical compaction. However, this leaves us
with an observation of a rapid change in the horizontal
convergence at mid-depth in an apparently solid ice

Fig. 12. Reflector displacement measured in the upper 175m at all
14 radar sites. (a) Total displacement referenced to 150m depth.
(b) Residual displacement after removal of the vertical strain
determined from the relative motion of deeper reflectors (+).
Orange circles indicate the residual after removal of vertical strain
derived from measured surface convergence at site 2. The solid
black line indicates the theoretical displacement derived from
Equation (1) using the surface accumulation and density data of
Jenkins and Doake (1991), with 95% confidence intervals given by
the dashed lines.
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column. One possibility is that we are seeing the impact of
crevasses that lie outside the stake network, but it is difficult
to see why such a far-field influence should not similarly
affect other sites.

We note that within the firn column, the last term in
Equation (A22) of the Appendix, involving the covariance of
density and horizontal velocity, is formally non-zero,
because of the depth variation in the velocity we discussed
earlier. However, we found that the vertical gradient of the
horizontal divergence was at most �10–6m–1 a–1, so vari-
ations over the 100m firn column are at least an order of
magnitude, and are typically two orders of magnitude, lower
than the mean divergence. Thus the covariance terms, while
non-zero, are generally negligible.

STATE OF EQUILIBRIUM OF THE ICE SHELF
Our analysis thus far has exploited the inherently Lagrangian
nature of our observations, and we have therefore avoided
the need to make any assumptions about the state of
equilibrium of the ice shelf. Taking a more conventional,
Eulerian view of our observations, we can investigate to
what extent an assumption of steady state would be valid.
The survey lines were set up approximately parallel to ice

flow, so choosing a local x axis along this line allows a
simple decomposition of the measured total derivative of ice
thickness:

DHe

Dt
¼ @He

@t
þ �u

@He

@x
:

If the ice shelf is in a steady state, the first term on the
righthand side is zero, and the steady-state thickness profile
along a flowline can be calculated from

He ¼ He0 þ
Z X

0

1
�u
DHe

Dt
dx

and compared with the measured thicknesses.
The ice velocity is available as a by-product of our GPS

survey, even though we have not needed it in our previous
analyses. We used no fixed reference station for the survey,
but stand-alone point positioning, despite contamination
from the vertical motion of the GPS antennas on the tide
(King, 2004), is accurate to a few tens of centimetres. Our
year-long observations of the displacement of the survey
markers therefore give us ice velocity to a few per cent, and
we have interpolated these data onto the lines of our radar
sites (Fig. 13a). The derived steady-state thicknesses are
compared with the observed thicknesses in Figure 13b.

On the eastern lines we see very good agreement
between observation and calculation, implying that the
ice-shelf thickness distribution is in equilibrium even on
these relatively short spatial scales. On the western lines the
measured thicknesses tend to be smaller than the steady-
state values. Discrepancies are as large as 150m, but this
may not signify a departure from steady state. There are
pronounced thickness gradients perpendicular to flow,
clearly shown up by the difference in thickness between
the two western lines, which are <1 km apart. It appears that
the lines may have drifted slightly east of the true flowlines,
such that the further west line has overlapped the nearer
one, and the nearer one has drifted towards the narrow
channel of thinner ice to its east (Fig. 1). Recall that the site
furthest downstream that appears to be too thin in
Figure 13b was the one most affected by vertical shear
stresses, suggesting close proximity to a thickness anomaly.

We therefore find no strong evidence for a significant
departure from steady state, a finding that is consistent with
the observed steadiness of the grounding-line position
(Rignot, 1998). Derived steady-state melt rates should
therefore be consistent with our directly measured melt
rates. This places the numbers in Table 2 in a different light.
While the earlier estimates, based on ground-based and
airborne measurements, are entirely consistent with our new
data, the more recent estimates, based primarily on satellite
remote sensing, appear to be anomalously high.

SUMMARY AND CONCLUSIONS
We have described the application of an experimental
technique, whereby the melt rate at the base of an ice shelf
can be measured at high spatial and temporal resolution, to
the region immediately downstream of the grounding line
on Rutford Ice Stream. The study area is around 800 km from
the open ocean and contains some of the thickest floating
ice to be found anywhere on the planet. We find melt rates
ranging from –0.11�0.31 to 2.51� 0.10ma–1, with an
overall mean of 0.85ma–1 and a standard deviation of
0.69ma–1. There is no obvious global correlation with ice

Fig. 13. (a) Velocity (interpolated from measurements made at the
survey poles shown in Fig. 1) as a function of distance along the
four lines of radar sites. (b) Measured (+) and calculated (lines)
thickness as a function of distance along the lines of the radar sites.
The calculated thicknesses were derived from interpolations of
velocity (a) and thinning/thickening rate (Fig. 5) measurements and
an assumption of steady state.
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thickness or with distance from the grounding line, although
there is a general downstream decrease in melting along
each of our survey lines. We found no significant variation of
the melt rate with season or with tidal range, suggesting that
melting might be driven by relatively steady upwelling from
a pool of dense water that is topped up, rather than
completely replenished, by the seasonal inflow of new High
Salinity Shelf Water from the ice front. Seismic soundings
(Smith and Doake, 1994) reveal a deep trough to the south
of the survey area that presumably acts as a channel for any
dense inflow. Within this trough the water column is about
500m thick, so the vertical heat flux there is likely to be
small. Heat is presumably delivered to the ice–ocean
boundary layer closer to the grounding line, where the
water column pinches out, and is gradually used up as the
water within the boundary layer flows away from the source
of upwelling. Although tidal forcing undoubtedly provides
energy for vertical mixing, we see no evidence at this
location that it influences the rate at which heat is delivered
to the ice–ocean boundary layer. Perhaps the input of kinetic
energy is always sufficient to keep the water column well
mixed. Another possibility is that tidal mixing maintains a
variable mixed-layer thickness, but there is steady diver-
gence of the mixed-layer flow such that a near-constant
entrainment rate is required to maintain that thickness.

Our observations of melting compare well with several
earlier estimates of the melt rate required for steady state,
and this close agreement is consistent with our observation
that the ice-shelf thickness distribution is presently close to a
steady state. However, our numbers are significantly lower
than some more recent estimates of melting that are also
based on the assumption of steady state. We consider it
unlikely that the discrepancy is simply a result of comparing
point measurements (the radius of the first Fresnel zone of
our radar at the range of the ice-shelf base is 21–24m) with
spatial averages. Our measurements are fairly well spread,
sample a wide range of ice thicknesses, and cover distances
from the grounding line that vary from <3 to around 20 km,
measured along flow. All our results are of a consistent
magnitude and show no signs of under-sampled spatial
variability, which we would not expect on theoretical
grounds. The earlier estimates, with which our results
compare well, are also averaged over a wide range of
spatial scales (Table 2). We therefore conclude that the
discrepancy results from errors in the more recent estimates.

The advantages of using satellite-derived data in the
estimation of melt rates are the continent-wide coverage and
uniform sampling. The major disadvantage is that ice
thickness cannot, as yet, be directly measured from space.
On ice shelves the thickness is commonly derived from
surface elevation, measured by satellite altimetry, and an
assumption that the ice is freely floating. However,
altimeters do not perform well at the ice-shelf margins,
where the slope of the ice surface introduces an error
(Brenner and others, 1983) and, as we have already
discussed, the assumption of free flotation is not uniformly
valid. Figure 14 shows how the observed thickness (Fig. 1)
along the Rutford Ice Stream grounding line compares with
that derived from three pan-Antarctic digital elevation
models, based primarily on satellite altimetry (Bamber and
Bindschadler, 1997; Liu and others, 1999, 2001). There are
considerable errors, with mean deviations of up to 25%, in
the derived ice thickness, and we note that even if the
measured elevations were perfect, the thickness would be

overestimated by nearly 10% because the ice at the
grounding line is far from freely floating. Downstream of
the grounding line, the ice is closer to flotation and its
surface is flatter, so errors in the derived thickness will be
smaller. Melt rate estimates are based on the change in ice
flux over a given distance, so such non-systematic errors in
the thickness data give large errors in the calculated melt
rate, and could be a generic problem in the vicinity of a
grounding line. Another possible source of error is the tidal
modulation of ice-shelf motion that could introduce bias
into measurements of displacement made over a short
period of time.

Almost as a by-product of our melt rate measurements,
we have gained unprecedented insight into the response of
the ice shelf to tidal forcing. As far as we can tell, the strain
of the ice is directly proportional to the tidal elevation, and
thus presumably the applied stress, suggesting an elastic
response. The bending radius is very large, implying that the
application of thin-beam theory to the problem is valid, but
we also see evidence for the complex, two-dimensional
nature of the bending. Our measurements have allowed us
to evaluate a Poisson’s ratio of 0.5, to identify a neutral
surface at a depth equivalent to 60% of the total ice-shelf
thickness and to observe the resulting tidally induced
thickness oscillations. We have also made high-resolution
measurements of the impacts of horizontal strain and
compaction on the firn column and shown that the two
are essentially independent, at least below 10–20m depth
(firn density above 650–700 kgm–3) and at the level of
accuracy of our observations (a few cma–1 of layer motion).
Finally, the precision and detail of our radar measurements
have enabled us to observe directly the impact of vertical
shear stresses that are present within an ice shelf that is not
freely floating. We have found variations of the vertical strain

Fig. 14. Surface and basal elevation of Rutford Ice Stream along the
grounding line indicated in Figure 1. The distance axis runs from
east to west (top to bottom of Fig. 1). Note the break in scale at sea
level. Dark shading indicates the surface and base observed by
airborne radar sounding. Lighter shading indicates the base that
would be inferred from the observed surface elevation and an
assumption that the ice is freely floating. Surface elevation
extracted from three commonly used Antarctic digital elevation
models (Bamber and Bindschadler, 1997; Liu and others, 1999,
2001) is also shown along with the inferred basal elevation
associated with each. ERS-1: European Remote-sensing Satellite 1;
RAMP: RADARSAT Antarctic Mapping Project.
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rate of up to �10–3 a–1 over the depth of the ice shelf,
enough to have a significant impact on our calculations of
the melt rate.

The experimental technique we have discussed is the first,
to our knowledge, that provides a direct measure of the melt
rate at the ice-shelf base without the need to penetrate the
ice shelf. As a result, the method offers unprecedented
spatial and temporal resolution. Compared with traditional
techniques used to estimate steady-state melt rates, such
observations can provide entirely new insight into the
processes operating in the ocean beneath Antarctica’s ice
shelves.

EPILOGUE
In January 2001 we set up what we anticipated would be a
simple experiment to measure the basal melt rate of the
Ronne Ice Shelf near the grounding line of Rutford Ice
Stream. Our pilot study on the George VI Ice Shelf (Corr and
others, 2002) had yielded a model dataset, from which we
could easily extract the basal melt rate. However, on Rutford
Ice Stream the melt rates proved to be much more elusive.
To get at them we had to measure not just the oscillations in
vertical strain rate and ice thickness caused by the rise and
fall of the ice shelf on the tide, but also the depth variation of
the long-term strain rate caused by deviations of the ice-shelf
surface from the level of isostatic equilibrium. When we
were designing the experiment we had no idea that these
effects would be of an order of magnitude that would bother
us, or that we would have to measure them. The fact that we
have been able to measure them is a testament to the
immense potential of the phase-sensitive radar as a tool in
glaciology.

Although we have described Lagrangian measurements of
thickness change, modern GPS techniques allow precise
reoccupation of a geographically fixed point and make
Eulerian measurements of thickness change equally feasible.
Hence, the original application of phase-sensitive radar
envisaged by Nye and others (1972), Nye (1975) and
Walford and others (1977) to measure the thickness change
of an ice sheet is readily achievable with off-the-shelf
instrumentation. Although the geographical coverage attain-
able with such a technique will never rival that provided by
satellite altimeters, as a complementary measurement it
would be immensely powerful. Not only is it a direct
measure of the thickness change, rather than the change in
surface elevation, but it is also possible to measure
independently the long-term thickness evolution below the
firn layer as well as the shorter-term effects of firn
compaction. In addition to thickness changes, phase-
sensitive radar observations provide a wealth of detail on
the internal deformation of an ice mass. Our identification of
depth dependence in the strain rate of an ice shelf, in
particular the curious behaviour observed at site 2, provides
a hint of the new insight that could result if such
observations were routinely made on glaciers and ice sheets.

ACKNOWLEDGEMENTS
We gratefully acknowledge the invaluable assistance pro-
vided by C. Day and D. Routledge in collecting the data
presented above. A lively and informative discussion with
S. Evans and J. Nye helped us to clarify the assumptions we
made in deriving Equation (1).

REFERENCES

Ambach, W., J. Huber, H. Eisner and H. Schneider. 1995. Depth
profiles of effective viscosities of temperate firn following from
strain rate measurements at two firn pits (Kesselwandferner,
Oetztal Alps, 1967–89). Cold Reg. Sci. Technol., 23(3), 257–264.

Bader, H. 1954. Sorge’s Law of densification of snow on high polar
glaciers. J. Glaciol., 2(15), 319–323.

Bamber, J.L. and R.A. Bindschadler. 1997. An improved elevation
dataset for climate and ice-sheet modelling: validation with
satellite imagery. Ann. Glaciol., 25, 439–444.

Brenner, A.C., R.A. Bindschadler, R.H. Thomas and H.J. Zwally.
1983. Slope-induced errors in radar altimetry over continental
ice sheets. J. Geophys. Res., 88(C3), 1617–1623.

Casassa, G. and I.M. Whillans. 1994. Decay of surface topography
on the Ross Ice Shelf, Antarctica. Ann. Glaciol., 20, 249–253.

Corr, H.F.J and 6 others. 1996. Basal melt rates along the Rutford Ice
Stream. FRISP Rep. 10, 11–15.

Corr, H.F.J., A. Jenkins, K.W. Nicholls and C.S.M. Doake. 2002.
Precise measurement of changes in ice-shelf thickness by phase-
sensitive radar to determine basal melt rates. Geophys. Res.
Lett., 29(8), 1232. (10.1029/2001GL014618.)

Doake, C.S.M., R.M. Frolich, D.R. Mantripp, A.M. Smith and
D.G. Vaughan. 1987. Glaciological studies on Rutford Ice
Stream, Antarctica. J. Geophys. Res., 92(B9), 8951–8960.

Doake, C.S.M. and 7 others. 2001. Rutford Ice Stream, Antarctica.
In Alley, R.B. and R.A. Bindschadler, eds. The West Antarctic ice
sheet: behavior and environment. Washington, DC, American
Geophysical Union, 221–235. (Antarctic Research Series 77.)

Foldvik, A. and T. Gammelsrød. 1988. Notes on Southern Ocean
hydrography, sea-ice and bottom water formation. Palaeogeogr.,
Palaeoclimatol., Palaeoecol., 67(1–2), 3–17.

Hindmarsh, R.C.A. 1993. Qualitative dynamics of marine ice
sheets. In Peltier, W.R., ed. Ice in the climate system. Berlin, etc.,
Springer-Verlag, 67–99. (NATO ASI Series I: Global Environ-
mental Change 12.)

Hindmarsh, R.C.A. 1996. Stability of ice rises and uncoupled
marine ice sheets. Ann. Glaciol., 23, 105–115.

Hindmarsh, R.C.A. and E. Le Meur. 2001. Dynamical processes
involved in the retreat of marine ice sheets. J. Glaciol., 47(157),
271–282.

Jacobs, S.S. 1986. Injecting ice-shelf water and air into deep
Antarctic oceans. Nature, 321(6067), 196–197.

Jacobs, S.S., H.H. Hellmer, C.S.M. Doake, A. Jenkins and
R.M. Frolich. 1992. Melting of ice shelves and the mass balance
of Antarctica. J. Glaciol., 38(130), 375–387.

Jacobs, S.S., H.H. Hellmer and A. Jenkins. 1996. Antarctic ice sheet
melting in the southeast Pacific. Geophys. Res. Lett., 23(9),
957–960.

Jenkins, A. and C.S.M. Doake. 1991. Ice–ocean interaction on
Ronne Ice Shelf, Antarctica. J. Geophys. Res., 96(C1), 791–813.

Jenkins, A. and D.M. Holland. 2002a. Correction to ‘A model study
of ocean circulation beneath Filchner–Ronne Ice Shelf, Ant-
arctica: implications for bottom water formation’ by Adrian
Jenkins and David M. Holland. Geophys. Res. Lett., 29(13),
1634. (10.1029/2002GL015647.)

Jenkins, A. and D.M. Holland. 2002b. A model study of ocean
circulation beneath Filchner–Ronne Ice Shelf, Antarctica: impli-
cations for bottom water formation. Geophys. Res. Lett., 29(8),
1193. (10.1029/2001GL014589.)

Jenkins, A., D.M. Holland, K.W. Nicholls, M. Schröder and
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APPENDIX

TRUE AND OBSERVED MOTION OF RADAR
HORIZONS IN AN ICE BODY
The observations we make with our phase-sensitive radar
system yield a precise record of the temporal evolution of

the two-way travel time to a series of reflecting horizons
in the ice. We wish to relate these observations to changes in
the mass of the ice body. To do this we make three basic
assumptions:

1. The internal reflecting horizons we see in the radar
record are material surfaces.

2. The rate of surface accumulation has been steady for at
least as long as it has taken to form the present firn
column, and firn compaction rates are such that the
density–depth profile in any particular column would be
steady if there were no divergence or convergence in the
horizontal flow.

3. The volume, and hence the density, of any material
element of ice or firn is unaffected by divergence or
convergence in the horizontal flow, so the otherwise
steady depth–density profile of a firn column is subject to
vertical strain in the presence of a non-uniform hori-
zontal velocity field.

The first of these will be true so long as the reflections we see
arise from discrete discontinuities in the ice. We maximize
the chance of this being the case through careful selection of
the most prominent internal reflections. The latter two
assumptions will not be true in detail, but are convenient
approximations that greatly simplify the problem. Assump-
tion (2) is equivalent to ‘Sorge’s law’ of densification (Bader,
1954), while assumption (3) allows us to apply Sorge’s law to
an ice mass experiencing divergent or convergent horizontal
flow. Making assumption (2) restricts our analysis to dry
accumulation zones, but these encompass most of the
Antarctic ice sheet, including the majority of the ice shelves.
Under assumptions (2) and (3) combined, the viscous
response of the firn to horizontal stresses and its compaction
under the weight of the overlying material are independent
processes, the effects of which can simply be added together
to give the net vertical strain of the firn. If the strain rate is
steady, a steady depth–density profile will still result at any
particular geographical point, but its precise form will
depend on the strain rate. In the paper, we justify assump-
tion (3) on theoretical grounds and show that our data are
consistent with its implications.

We consider the evolution of a column of ice and firn
experiencing arbitrary surface accumulation, horizontal
flow and basal melt. Its location is defined with respect to
a space-fixed Cartesian coordinate system (x, y, z), with the
(x, y) axes horizontal and the z axis vertical and positive
upwards. Particle motion with respect to these axes is
denoted by velocity components (u, v, w) respectively. We
identify three types of surface within the column (Fig. 15):
the upper and lower boundaries, z ¼ hs and hb; isochrones,
z ¼ ht, which link all material particles that were on the
upper surface at the same instant in time; and isopycnals,
z ¼ h�, which link all material particles having the same
density. We can only identify discrete isopycnal surfaces
within the firn. The solid ice beneath is assumed to be of
uniform density, �i, throughout.

For an arbitrary surface, z ¼ h, we can write a kinematic
boundary condition:

@h
@t

þ u hð Þ @h
@x

þ v hð Þ @h
@y

�w hð Þ ¼ � _m hð Þ
� hð Þ ðA1Þ

which expresses the rate at which material particles cross the
surface (righthand side) as the difference between the
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vertical velocity of the surface (first three terms on the
lefthand side) and the vertical velocity of the material
particles that are instantaneously on the surface. The vertical
component of the mass flux across the surface is _m and it has
the same sign as w. For the upper and lower boundaries of
the ice column z ¼ hs and hb the mass flux across the
surface is simply (minus) the surface accumulation rate and
(minus) the basal melt rate respectively. For the isochrones
the mass flux across the surface is zero. The vertical velocity
of the isochrones is equal to that of the material particles that
lie on them, and hence those same particles lie on the
isochrones for all time. This is our definition of a material
surface.

The isopycnal surfaces require special consideration. Any
process that leaves the density of material particles unaltered
will by definition leave those material particles on the same
isopycnal surface. The isopycnal will then be a material
surface. In contrast, any process that alters the density of
material particles causes them to move from one isopycnal
surface to another. There will then be a mass flux across the
isopycnal surfaces, which will no longer be material
surfaces. Assumption (2) allows us to write a simple
expression for the mass flux across an isopycnal surface. If
the density–depth profile is to be unchanged by accumu-
lation, compaction or indeed any other process that alters
the density of material particles, then the physical separation
of two isopycnal surfaces must not be altered by flow across
them. The physical separation is simply the mass between
the surfaces divided by the density. Since the latter is fixed

by definition, the total mass between any two isopycnals
must remain unaltered by the mass fluxes across them. The
only way to ensure this is for the mass flux across every
isopycnal surface to be equal. The upper surface of the ice
mass, z ¼ hs, is an isopycnal surface, with density �s, and
the mass flux across this surface is _ms. Therefore, the mass
flux across all isopycnal surfaces must equal _ms, and we can
write down the kinematic boundary condition that must
hold at each and every one:

@h�
@t

þ u h�
� � @h�

@x
þ v h�

� � @h�
@y

�w h�
� � ¼ � _ms

�
: ðA2Þ

Under assumption (3), there must be no additional mass flux
across the isopycnal surfaces in response to convergence or
divergence in the horizontal velocity field. Equation (A2) has
the desired properties in that it places no restriction on the
vertical motion of the isopycnal surface, which is free to
move anywhere in (x, y, z) space with the ice flow, but
ensures that the mass flux across it is always consistent
with assumption (2). Further, when the surface accumulation
rate is zero, the isopycnal surface is a material surface.
Isopycnals and isochrones would then remain parallel and
would move apart or come together in unison under the
influence of the vertical strain rate. Hence, Equation (A2) is a
general statement of assumptions (2) and (3).

Note that there is no requirement that the vertical mass
flux be constant with depth in the ice column. All we have
stated is that the mass flux across isopycnal surfaces, which
are free to move relative to the upper boundary of the ice
mass, is constant. However, Equation (A2) does imply that
the motion of the isopycnal surfaces relative to the material
particles (and thus relative to isochrones) is a function of
density and accumulation rate only. Thus, if the accumu-
lation rate is constant, each material particle undergoes the
same history of densification, so firn of any given density
will always be of the same age, although that density can
occur at different depths below the upper surface at different
horizontal locations.

The spatial or temporal gradient of a constant-density
(isopycnal) surface is related to the density gradient along a
geopotential (constant z) surface as follows:

@�

@ x, y, tð Þ
� �

z
¼ � @�

@z

� �
@h�

@ x, y, tð Þ : ðA3Þ

Multiplying Equation (A2) by � @�=@zð Þ and substituting
from Equation (A3), the expression for the kinematic
boundary condition can be rewritten as:

@�

@t
þ u�r� ¼ _ms

�

@�

@z

� �
: ðA4Þ

This is our generalized version of Sorge’s law that in-
corporates assumptions (2) and (3).

We now use the principle of mass conservation,

@�

@t
þ u�r�þ �r�u ¼ 0, ðA5Þ

to derive an expression for the true relative motion of two
arbitrary radar horizons, z ¼ hu and hl. In general, these
could be either internal reflectors or the air–ice and ice–
water boundaries at the top and bottom of the ice shelf.
Using Equation (A4) we can rewrite the mass conservation
equation (A5) as:

r�uþ _ms

�2
@�

@z

� �
¼ 0 ðA6Þ

Fig. 15. Motion of surfaces within a column of ice and firn subject
to arbitrary surface accumulation, basal melt and vertical strain.
Mass is added to or removed from the column through the upper
and lower surfaces, hs and hb. Isochrones, ht, are material surfaces
connecting particles that were on the upper surface at the same
instant in time, t. They sink lower in the column as mass is added at
the upper surface and come closer together as the firn density
increases. Vertical strain modifies the rate at which isochrones
approach each other, but does not alter the rate at which the firn
density increases. The isopycnal surfaces, h�, also converge or
diverge as the ice column strains. We assume that this is the only
process that affects the depth–density profile. In particular, firn
compaction causes no change in the profile, thus leaving the depth
of the isopycnal surfaces unaltered, and this implies that the mass
flux across all isopycnals is the same.
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which simplifies to:

r�u� _ms
@

@z
1
�

� �
¼ 0: ðA7Þ

We integrate Equation (A7) between our arbitrary upper
z ¼ huð Þ and lower z ¼ hlð Þ surfaces to obtain:

@

@x

Z hu

hl
u dz

 !
� u huð Þ @hu

@x
þ u hlð Þ @hl

@x
þ @

@y

Z hu

hl
v dz

 !

� v huð Þ @hu
@y

þ v hlð Þ @hl
@y

þw huð Þ �w hlð Þ

� _ms
1

� huð Þ �
1

� hlð Þ
� �

¼ 0: ðA8Þ

Note that, although our primary focus in this paper is the
study of ice shelves, we have made no assumption about the
constancy of the horizontal velocity with depth. Our
equations are thus generally applicable to any ice body.
We now use the kinematic boundary conditions at the upper
and lower surfaces:

@hu
@t

þ u huð Þ @hu
@x

þ v huð Þ @hu
@y

�w huð Þ ¼ � _mu

� huð Þ ðA9Þ

@hl
@t

þ u hlð Þ @hl
@x

þ v hlð Þ @hl
@y

�w hlð Þ ¼ � _ml

� hlð Þ ðA10Þ

to rewrite Equation (A8) as:

@

@t
hu � hlð Þ þ @

@x

Z hu

hl
u dz

 !
þ @

@y

Z hu

hl
v dz

 !

� _ms
1

� huð Þ �
1

� hlð Þ
� �

þ _mu

� huð Þ �
_ml

� hlð Þ ¼ 0: ðA11Þ

We next decompose the horizontal velocities into depth-
mean and depth-varying components, such that:

u ¼ �u þ u0

v ¼ �v þ v 0

and the depth-varying (primed) components, by definition,
integrate to zero between the upper and lower surfaces. This
yields the desired expression for the temporal evolution of
the true vertical separation of two surfaces in a moving
column of ice:

D
Dt

hu � hlð Þ þ @ �u
@x

þ @�v
@y

� �
hu � hlð Þ � _ms

1
� huð Þ �

1
� hlð Þ

� �

þ _mu

� huð Þ �
_ml

� hlð Þ ¼ 0: ðA12Þ

The second and third terms on the lefthand side represent
the contributions from vertical strain and densification
respectively, while the final terms give the contributions
resulting from the net gain or loss of mass.

In order to make use of Equation (A12) we must relate the
true separation of the upper and lower surfaces hu � hlð Þ to
the two-way radar travel time we observe. The travel time is
twice the integral of the radar velocity over the distance
between the reflectors:

T ¼ 2
c

Z hu

hl
n dz, ðA13Þ

where n is the refractive index of the firn and ice the radar
signal passes through and c is the speed of light in vacuo. In
dry firn we assume that the effective refractive index is

simply related to the porosity, �, by:

n ¼ �na þ 1� �ð Þni, ðA14Þ
where na and ni are the refractive indices of air and solid ice
respectively (Kovacs and others, 1995). Since the density of
the firn is given by an analogous expression,

� ¼ ��a þ 1� �ð Þ�i, ðA15Þ
and to a good approximation we can take na ¼ 1 and
�a ¼ 0, we can combine Equations (A14) and (A15) to give:

n ¼ 1þ �

�i
ni � 1ð Þ: ðA16Þ

Now if we introduce a decomposition of the density into
depth-mean and depth-varying components, analogous to
the treatment of the velocities above, then substitute the
expression (A16) for the refractive index into Equation (A13)
and perform the integration, we arrive at:

T ¼ 2
c

hu � hlð Þ þ 2
c

ni � 1ð Þ
�i

hu � hlð Þ ��: ðA17Þ

This expression gives us the observed two-way travel time of
a radar pulse travelling between two reflectors in terms of the
true separation of the reflectors plus a correction term related
to the total mass of ice and firn between them. The quantities
that we measure with the phase-sensitive radar system are
the travel time, T, and its temporal evolution, DT=Dt .

We now need an expression for the temporal evolution of
the total mass between the upper and lower surfaces. To
obtain this, we return to the mass conservation equation in
its original form (A5) and depth-integrate:Z hu

hl

@�

@t
þ @

@x
�uð Þ þ @

@y
�vð Þ

� �
dz þw huð Þ� huð Þ

�w hlð Þ� hlð Þ ¼ 0: ðA18Þ
Applying the kinematic boundary conditions, (A9) and
(A10), we can rewrite this expression as:

@

@t

Z hu

hl
� dz

 !
þ @

@x

Z hu

hl
�u dz

 !
þ @

@y

Z hu

hl
�v dz

 !

þ _mu � _ml ¼ 0, ðA19Þ
and decomposing the velocities and density into their depth-
mean and depth-varying components we arrive at:

D
Dt

�� hu � hlð Þ½ � þ @ �u
@x

þ @�v
@y

� �
�� hu � hlð Þ þ @

@x

Z hu

hl
�0u0 dz

 !

þ @

@y

Z hu

hl
�0v 0 dz

 !
þ _mu � _ml ¼ 0: ðA20Þ

Using (A17) to combine (A12) and (A20), we can form an
equation for the mass balance of a column of ice in terms of
the quantities that we measure with the radar plus some
additional terms related to the variation of density with
depth:

DT
Dt

þ @ �u
@x

þ @�v
@y

� �
T

þ 2
c

_mu

� huð Þ �
_ml

� hlð Þ � _ms
1

� huð Þ �
1

� hlð Þ
� �� 	

þ 2
c
ni � 1
�i

� @

@x

Z hu

hl
�0u0 dz

 !
þ @

@y

Z hu

hl
�0v 0 dz

 !
þ _mu � _ml

" #

¼ 0: ðA21Þ

Jenkins and others: Ice–ocean interactions near an Antarctic ice-shelf grounding line 345

https://doi.org/10.3189/172756506781828502 Published online by Cambridge University Press

https://doi.org/10.3189/172756506781828502


It is common practice to scale the measured travel time by
half the radar velocity in solid ice to yield an equivalent ice
thickness, He ¼ Tc=2ni. Introducing this scaling, we arrive
at our final expression for the temporal evolution of the
observed thickness:

DHe

Dt
þ @ �u

@x
þ @�v
@y

� �
He þ 1

ni
_mu

1
� huð Þ �

1
�i

� ��

� _ml
1

� hlð Þ �
1
�i

� �
� _ms

1
� huð Þ �

1
� hlð Þ

� �	
þ _mu

�i
� _ml

�i

þ ni � 1ð Þ
ni�i

@

@x

Z hu

hl
�0u0 dz

 !
þ @

@y

Z hu

hl
�0v 0 dz

 !" #
¼ 0:

ðA22Þ

This expression is valid for a completely arbitrary choice of
upper and lower surfaces and arbitrary density–depth and
velocity–depth profiles. For an ice column of constant
density the only terms that would survive would be the first
two (total derivative of thickness and contribution from
horizontal divergence) and the fourth and fifth (net gain or
loss of mass at the upper and lower surfaces). For the general
case considered here, there are corrections to the observed
thickness change for the case when the mass gained or lost
at the upper and lower surfaces is not fully compacted solid
ice (first two terms in the braces), densification of the firn
between the reflectors by compaction (last term in the
braces), and a correction for the case when depth variation
of the horizontal velocity field leads to uneven expansion or
contraction of parts of the ice column having different

density, thus causing a change in the mean density of the
column (last term on the lefthand side).

In most situations of practical importance, the above
expression simplifies somewhat. For example, if the hori-
zontal velocity is constant with depth, as is usually the case
on an ice shelf, the last term on the lefthand side vanishes.
The lower surface will normally be deep enough that the
density there is that of solid ice, in which case the second
term in the braces is zero. Conventional determinations of
the mass balance use the top surface of the ice shelf as the
upper reference surface, in which case the other two terms
in the braces cancel. No correction is then required for the
varying radar velocity in the firn, because the mean density
of the ice and firn column remains unchanged. If the upper
reference surface is an internal radar reflector, the mass flux
across it is zero, and the first term in the braces and the
fourth term (immediately following the braces) vanish. Then
if the bottom surface lies in solid ice and there are no
variations of velocity with depth, the equation is the same
as that presented by Corr and others (2002), except for the
small correction factor 1=ni in front of the compaction
term. If both upper and lower surfaces are internal
horizons, the first two terms in the braces and the two
terms following the braces are all zero. Temporal evolution
of the observed thickness then only depends on vertical
strain and compaction, provided there are no variations of
velocity with depth. If all the internal reflectors used are
deep enough that they lie in solid ice, all correction terms
for varying density and varying velocity vanish, and we
arrive at the simple version of the equation generally used
in this paper.
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