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CONVERGENCE OF AVERAGED OCCUPATION TIMES 

BY 

CHARLES W. LAMBf 

1. Introduction. Let X={Xt9 t>0} be a stationary Markov process with values 
in a measurable space (S, SS), transition function p, and initial distribution con­
centrated at a point x e S. The occupation times of a set A G SS are defined for 
t>0by 

KO = lA(Xs) ds 
Jo 

where \A is the indicator function of A. The expected occupation times are given 
by 

£{M0}=J p(s,x9A)ds. 

If l i m ^ ^ E{n(t)}= oo and u(t)~E{ti(fj] as t->co, then it is natural to study the 
asymptotic properties of /i(t)u(t')r1. Kallianpur and Robbins [6] studied the case 
where Xis Brownian motion in one or two dimensions. Darling and Kac [4] gave 
an elegant treatment for more general processes. These authors dealt entirely with 
convergence in distribution. It is clear from the case of Brownian motion that 
the convergence cannot be strengthened to almost everywhere convergence, or 
even convergence in measure. 

Recently Brosamler [2] studied the pathwise asymptotic properties of additive 
functionals of Brownian motion. By using the idea of averaging with respect to 
certain log-scales he showed how to obtain almost everywhere convergence. 
Brosamler's results, specialized to the case of occupation times of a set A of finite 
strictly positive Lebesgue measure, imply that in dimension one u(t)=c^Jt and 

(1) lim [log f]-1 ^(s)w(s)-1 d[log s] = 1 a.e., 

and in dimension two u(t)=c log t and 

(2) lim [log log t]"1
 jw(s)w(s)~1 d[log log s] = 1 a.e. 

£-•00 Je 

The purpose of this paper is to generalize some of Brosamler's results to a 
wider class of Markov processes and to show how his log-averaging corresponds 
to the extreme case of a whole family of limit theorems for occupation times. 
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To see how this is done, first note that if u is modified in a neighborhood of 
the origin so that w(0)=l, then (1) and (2) may be written in the form 

lim [log u(t)] * fj,(s)u(s) * d[log u(s)] = 1 a.e. 
£->oo JO 

As Brosamler has observed 

ia(s)w(s)_1 d[log u(s)] = //(s)w(s)~V(s) ds 
Jo Jo 

= /u(s) d[—w(s)-1] 
Jo 

= w(s)-1 dft(s)—fji(i)u(ty'1 

Jo 

= u{s)~HA{X^ ds-/j,(t)u(t) 
Jo 

If iA(t)u(t)~1 converges in distribution, then we might hope that 

(3) lim [log w(0]~V(0w(0~1 = 0 a.e. 
t-+CG 

Our problem would then be reduced to studying 

(4) [log uit)]-1 Çu(s)-1 dp(s). 
Jo 

More generally, we consider expressions of the form 

(5) Ma-1(s) du(s)I u*-1^) d[i(s). 
Jo J Jo 

We obtain (4) when a = 0 and ^(XMO""1 when a = l . If a < 0 , then Jo wa_1(X) dp(s) 
is bounded and there are no interesting limit theorems as t-^oo. 

Chung and Erdôs [3, P. 16] have obtained the convergence of the discrete 
analogue of (4) for integer-valued random walks. 

2. The convergence theorems. Recall that a function L is said to be slowly 
varying (see [5]) if L > 0 in a neighborhood of infinity and 

(6) lim L(<50L(0-1 = 1 

for all (5>0. It follows that (6) holds uniformly in ô when ô is restricted to a com­
pact subset of (0, oo). A function of the form L(t)tfi is said to be regularly varying 
of exponent /5. 

Darling and Kac proved convergence in distribution of ^(r)w(O"*1 under the 
assumptions that u is regularly varying of exponent /? with 0<jS<l and 

(7) p(s, y, A) ds ~ w(0 
Jo 
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uniformly îoxy e A. Their argument, which involved Karamata's Tauberian theo­
rem, does not carry over to expressions of the form (5) and we must strengthen 
(7) slightly. 

THEOREM 1. Let x e S and A G âïï be fixed. Assume that the function t->p(t, x, A) 
is regularly varying with exponent /?--l where 0< /?< l and write p(t, x, A)= 
L(f)t^~x. Assume further that 

(8) lim p(t, y, A)p(t, x, A)-1 = 1 
£-•00 

uniformly for y G A. Define 

(9) u(t) = l+\ p(s,x,A)ds 

and assume (in case /?=0) that u is unbounded. If OL>0 andP{X0=x}=l9 then 

f" f *fi-a(s) dii(s)l \ua-\s) dfi(s) 

converges in distribution as t->co. In the extreme case where a = 0 , the limiting 
distribution is the unit mass at 1. 

Proof. The proof is a direct application of the method of moments. We will 
outline the main steps and leave several routine verifications to the reader. We 
writep(t)—pit, x, A) in what follows. The second moment is given by 

E{{[U*~1(S) d/Â(s))) = E[([^s)ljPC;) dS)) 
= E^y-\r)lJXr) drjy-\s)lA(Xs) ds} 

= 2 u«-\r) dr p(r, x, dy) ua-\s)p(s-r9 y, A) ds 
JO JA Jr 

~ 2 I ii-1(r)pW dr UW^-r) ds 
JO Jr 

= 2 f I I - 1 ^ ) ds [Su«-\r)p(s-r)p(r) dr 
Jo Jo 

= 2fu*-1(s)f2(s)ds 

where the asymptotic relation follows from (8). An elementary induction argument 
shows that 

(10) £ { ( J0 "
a"1(s) 4"(S))"} ~ "! J/_ 1( s)/»( s) ds 
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where fx(s) —pis) and 

(H) fn+i(s) =§y-\r)p(s-r)fn(r) dr. 

Now 

, . , , . lcnp(s)[log uis)]"-1 if a = 0, 
U ; M J \cnp(syn-^(s) if a > 0 
where q = l and 

( V 1 if a = 0, 

(13) c^c-1 = hr^Tinoi^T^+n^r1 if a > 0, £ > 0, 

U + Oia)-1 if a > 0 , /3 = 0. 

The proof of these facts breaks up naturally into several cases, depending on 
whether a and /? are positive or zero. If /?=0, then w is slowly varying with L(t) = 
o(u(t)), and if /3>Q, then w is regularly varying of exponent ft with u^r^^L^)^ 
(see [5, p. 281 [). Using these facts and (11), we now obtain by induction the asymp­
totic behavior of the functions {fn}. If oc=0 and 0<<5<1, then 

fn+1(s) ~ cn t rV)p(s-r)p(r)[ log uir)]"-1 dr 

V M s - r M O I l o g i i C r ) ] » - 1 ^ 

^ f V1(r)L(s~r)(s-r)^-1
jp(r)[log w(r)]n"1 Jr. 

If ô is chosen sufficiently small, then the above expression may be replaced by 

cMs)^jy~\r)p(r)\log u(f)T-' dr = cnrTxp{s)\iog u(ôs)]n 

~ c ^ - ^ t l o g u(s)]n. 
If oc>0, 0=yS and 0<(5< | , then 

fn+M ~ c w J V a - V ) p ( s - r ) K r ) dr 

~c(f\r ) 
\J0 J(l-Ô)s/ 

~cn{
 Si/w a-1(r)L(s-r)(s-r)-1p(0 <fr+cn P tt^VMs-W')'''"1 Jr. 
Jo Ja-ô)s 

Again choosing ô sufficiently small, we obtain 

/»<5s ps 

fn+i(s) ~ cnL(s)s~1 unx-\r)p(r) dr+c„I<s)5rltt—1(s) K s - r ) <*r 
JO J(l-5)s 
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In the final case where a > 0 and /?>0 we have 

/n+iW ~ <n^un*-\r)v{s-r)j){r) dr 

~ cn^~na ÇLiry^^Lis-rXs-ry-1 dr 

~ cJ^LisY^1 Hs-rY^r»**-1 dr 

= cj1-™^)»**-^-1*""' f (l-vY-iv™*-1 dv 

= cjr(^T(n^T(P+na^p(s)u^s). 

It follows from (10), (12) and (13) that 

E\( f ' t t -1^) 4M(S))W) ~ dn( fwa_1(5) dtt(s))n 

where dn=l if a = 0 and dn=0Ln~1(n— l)lcn if a>0 . In either case it follows that 
lim^oo sup(dn)

1/nn~~1<co and our theorem follows from a standard result on the 
unique determination of a distribution by its moments [1, p. 182]. 

Further identification of the limiting distribution is possible in certain cases. 
If a > 0 and /?=0, then the limiting distribution is a Gamma distribution with 
density 

[a1/T(l/a)]-1^aj /ax (1-a) /a. 

If a > 0 and /?=1, then the limiting distribution is the unit mass at 1. The case 
a = l involves the Mittag-Leffier distributions as in [4]. 

THEOREM 2. Let x e S and A e S3 be fixed. Assume that p(t, x, A)>0 for suf­
ficiently large t and 

sup p(t9 y, A)p(t, x, A) x 
< 1 . (14) lim sup 

*->oo \jyeA 

Let 

s(t) = sup [p(t, y, A)-p(t, x, A)]+. 
veA 

Define u by (9) and assume 

(15) Çs&uisT1 ds = 0([log u(t)f) 

for some A<1. IfP{X0=x}=l, then 

(16) lim [log uii)]-1 f ir\s) d/*(s) = 1 a.e. 
*-*oo J o 

Proof. Write 

Ell I w(s)-1 d^(s)j | = 2 J w(r)-1 dr J p(r, x, dy) j u^fis-r, y, A) ds 

= h+I2+IB 
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where 

I± = 2 w(r)-V(r) dr i^s) - 1]^) dsy 

I2 = 2 uiry^pif) dr J «(^[pCs- iO-pCs)] ds, 

73 = 2 w(r)-1 J r p(r, x, dy) «(s^ljpfs—r, y, ^ ) - p ( s - r ) ] ds. 
J0 J j . Jr 

Now Ix= [log w(0]2
5 and according to the second mean value theorem for integrals, 

I2 can be dominated by 

2 d[log w(r)]w(r)-1 sup [p(s—r)—p(s)] ds 
Jo r<v<tjr 

< 2 d[log w(r)]w(r)-1 sup [w(u—r)^-w(iO+u(r)] 
Jo r<v<t 

< 2 f d[log ii(r)] 

= 2 log w(0 

where the second inequality follows from the fact that u(v—r)—u(v)<0. If (15) 
holds, then Iz is dominated by 

2 w(r)_1p(r) dr t^s)"1^—r) ds < 2 w(r)^p(0 dr M(s)_1e(s) ds 
Jo Jr Jo Jo 

= O([logW(0]1+A). 
Hence 

(17) var{[log KO]"1 j V ( r ) d^(s)j = 0([log t^)]*"1). 

For « > 1 let 

^ = inf{f: logW(0>n2 / ( 1-A )}. 

It follows from (17) that (16) holds along the sequence {tn}. Using the fact that 

log u(tn) = n2/(1"A) — log u(tn+1), 

and 

u(s) dfj>(s) < w(s) d^(s) < u(s) d[x{s) 
Jo Jo Jo 

for tn<t<tn+1, we obtain the almost everywhere convergence in (16) and the proof 
is complete. 

COROLLARY 1. If (14) but not (15) holds in Theorem 2, then the convergence in 
(16) holds in ZA 

Proof. If only (14) holds, then s(t)=o(p(t)) and 73=o([log u(t)]2). Hence the 
left side of (17) is o(l) and the proof is complete. 
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3. Examples and discussion. For many processes X the hypotheses of Theorem 
2 are easy to verify. In fact, (8) implies (14) and if for some rj>0 

(18) p(t9 y, A) - p(t, x, A) = 6>([log u(t)rP(ij) 

uniformly for y eA, then (15) holds. For example, let A ^R be a compact set of 
strictly positive Lebesgue measure and let X be a symmetric stable process with 
index a e [1, 1]. The density of Z i s known (see [5]) and 

p(t,y,A) = cr1,«+0(fv*) 

uniformly for y e A. Hence (8) holds and (18) holds for all rj>0. For two dimen­
sional Brownian motion we have 

p(t,y,A) = cr1+0(r2) 

and (18) holds for all rj>0. 
We now show that Brosamler's log-averaging follows under the hypotheses 

of Theorem 2. If suffices to verify (3). If (14) holds, then 

E{p(tf} = o ( J [W) dr^p(s-r) ds^j 

= 0(u{tf). 

Thus the Z2-convergence of (3) follows. Chebyshev's inequality implies that for 

(i9) p{[iog ncorxottW1 > *} = o([e log W(or2). 
For n>\ let 

tn = inf{*:log u(t) > n}. 

It follows from (19) that (3) holds along the sequence {tn}. If tn<t<tn+1, then 

[W(oiog w(orxo < [«(oiogiicory^i) 
< 2e[u(tn+1) log u(tn+1)]-^(tn+1) 

and our result follows. 
In conclusion we remark that it is certainly possible to try to prove theorems 

like Theorems 1 and 2 for processes other than occupation times. A trivial example 
is given by a standard one dimensional Brownian motion process X. Let 

u(t) = l+(E{X(t2)})1/2 = l + t1/2. 

It follows from the time-change property of the Ito integral that 

(20) f ua-\s) dX(s) = X*( f Ma(-1}(s) ds\ 

where X* is a standard Brownian motion process. If a > 0 , then (20) implies that 

f f uis)"-1 du(s)] f w(s)"-1 dX(s) 
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converges to a normal distribution of mean zero and variance a. If oc=0, then the 

strong law of large numbers implies that 

lim 
t~* GO 

u(r) * du(r) I» (r)-1 dX(r) = 0 a.e. 

For a further refinement in this case, note that if £(t) = tlllos l o g * for sufficiently 

large t, then the law of the iterated logarithm and some straight forward asymptotic 

estimates imply that the quantity 

f tr\sy(s) du(s)\ f u-\sy(s) dX(s) 
Jo J Jo 

converges to zero in distribution but has the cluster set [—2, 2] on a.e. path. 
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