ON GROUPS GENERATED BY THREE-DIMENSIONAL SPECIAL UNITARY GROUPS I

KOK-WEE PHAN

(Received 19 November 1974; revised 30 October 1975)

Introduction

This paper is the result of our attempt to carry over the method of our characterization of the linear groups $\operatorname{PSL}(n, q)$ (Phan (1972)) to that of the unitary groups $\operatorname{PSU}(n, q)$. It appears desirable to have available a result on the generation of the unitary groups more closely related to the splitting of the underlying hermitian spaces of these groups into orthogonal direct sum of anisotropic lines. Another motivation comes also from our work on the unitary groups in which we obtained a fusion pattern different from that of the unitary group when the dimension of the underlying space is eight. This fusion pattern produces a group whose structure is not immediately apparent. In order to identify this group, the result of this paper appears to be a necessary step.

To discuss the type of problems that we shall consider, it is convenient to introduce the language of graphs. A graph Γ on a set Δ is the couple (Δ, E) where E is a set of 2-element subsets of Δ. The elements of Δ (resp. E) are called vertices (resp. edges). An ordered subset Δ^{\prime} of Δ is a chain if the consecutive members of Δ^{\prime} are the only edges in Γ. We shall also use pictorial representation of a graph with points corresponding to vertices and line segment joining two points if the corresponding vertices form an edge. We are interested in graphs whose pictorial representations are the Dynkin diagrams of types $A_{n}, D_{n}, E_{6}, E_{7}, E_{8}$. We say a graph is of type X if its pictorial representation is a Dynkin diagram of type X.

Let $\Gamma=(\Delta, E)$ be a graph of type X on a finite set Δ. We want to investigate the structure of groups G such that there is a mapping which takes i in Δ to a pair of subgroups (L_{i}, H_{i}) of G where L_{i} is isomorphic to $S U(2, q)$ and H_{i} is a subgroup of order $q+1$ in L_{i} (q finite). Furthermore these subgroups satisfy the following conditions
(a) $G=\left\langle L_{i} \mid \forall i \in \Delta\right\rangle$;
(b) $\left[L_{i}, L_{i}\right]=1$ if $\{i, j\} \notin E$;
(c) $\left\langle L_{i}, L_{j}\right\rangle \cong S U(3, q)$ and $\left\langle L_{i}, H_{j}\right\rangle \cong G U(2, q) \cong\left\langle H_{i}, L_{i}\right\rangle$ if $\{i, j\} \in E$;
(d) $\left\langle H_{i}, H_{j}\right\rangle=H_{i} \times H_{j} \quad i \neq j, \quad \forall i, j \in \Delta$.

Defintion. A group G together with a mapping from a graph Γ of type X into pairs of subgroups of G satisfying the above conditions is called a group generated by $\operatorname{SU}(3, q)$'s of type X.

Our aim is to prove the following
Theorem. Let G be a group generated by $S U(3, q)$'s of type A_{n}. Assume that q is greater than 4. Then G is a homomorphic image of $\operatorname{SU}(n+1, q)$.

The result holds trivially when $n=1$ or 2 . We may assume that $n>2$. Among the groups of the same type, we show that there is a 'universal' group G such that every group of the same type is a homomorphic image of G. Then we prove that $S U(n+1, q)$ is of type A_{n}. Consequently there exists a homomorphism $\theta: G \rightarrow S U(n+1, q)$. The theorem then follows at once because the kernel of θ is 1 . This fact results from a factorization of G involving the subgroups L_{i}. We are able to obtain this factorization because of the identity $\left\langle L_{i}, L_{i}\right\rangle=L_{i} L_{j} L_{i} L_{i}$ for any edge $\{i, j\}$.

1. $S U(n+1, q)$ as group of type A_{n}

Let V be a vector space of dimension m over the field $F_{q^{2}}$ of q^{2} elements equipped with a non degenerate hermitian form (,). Throughout this paper we shall assume $q>4$. The space V has an orthonormal basis $B=\left\{v_{i} \mid 1 \leqq i \leqq\right.$ $m\}$. The set of all non singular linear transformations x of V which are isometries (i.e. $\left(x(v), x\left(v^{\prime}\right)\right)=\left(v, v^{\prime}\right) \forall v, v^{\prime} \in V$) forms a group $G U(V)$, the general unitary group of V. The special unitary group $S U(V)$ of V is the subgroup of determinant 1 in $G U(V)$. We note that for a linear transformation x to belong to $G U(V)$, it is necessary and sufficient that the matrix $[x]$ of x relative to the basis B satisfies $[x]^{\prime}[\bar{x}]=1$ where $[\bar{x}]$ is the matrix obtained from $[x]$ by replacing each of its entry $x_{i j}$ by $\overline{x_{i j}}=x_{i j}^{q}$.

For $1 \leqq i \leqq m-1$, let L_{i}^{*} be the elements of $S U(V)$ which fix all $v_{j} j \neq i$, $i+1$. Since $V_{i}=\left\langle v_{i}, v_{i+1}\right\rangle=\left\langle v_{j} \mid j \neq i, i+1\right\rangle^{\perp}, L_{i}^{*}$ leaves V_{i} invariant and hence $L_{i}^{*} \cong S U(2, q)$. We compute that each element in L_{i}^{*} when restricted to V_{i} has a matrix of the form

$$
\left(\begin{array}{rr}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right)
$$

where $\alpha, \beta \in F_{q^{2}}$ and $\alpha \bar{\alpha}+\beta \bar{\beta}=1$. We shall denote such an element by $(\alpha, \beta)_{i}^{*}$. The set $(\alpha, 0)_{i}^{*}$ forms a diagonal subgroup H_{i}^{*} of order $q+1$.

We want to show that $S U(V)$ is generated by L_{i}^{*}. First we note the following elementary facts. The set of elements in $F_{q^{2}}$ fixed by the map $x \mapsto \bar{x}$ is a subfield of order q and for each non zero element α of this subfield, there are exactly $q+1$ elements x such that $x \bar{x}=\alpha$.

Lemma 1.1. Let α, β, γ be in $F_{q^{2}}$ such that $\beta \gamma \neq 0$ and $\alpha \bar{\alpha}+\beta \bar{\beta}=0$. Then there are at least $\left(q^{2}-2 q-1\right)(q+1)$ ordered pairs (ξ, η) in $F_{q^{2}}$ such that $\xi \bar{\xi}+$ $\eta \bar{\eta}=1$ and

$$
\alpha \bar{\alpha}+(\beta \xi+\gamma \eta) \overline{(\beta \xi+\gamma \eta)} \neq 0
$$

Proof. Any pair (ξ, η) such that $\xi \bar{\xi}=1$ and $\eta=0$ clearly does not have the required property. We may suppose $\eta \neq 0$ and set $\xi=x \eta$. We required that

$$
\begin{equation*}
\eta \bar{\eta}(1+x \bar{x})=1 . \tag{*}
\end{equation*}
$$

Now suppose

$$
\alpha \bar{\alpha}+(\beta \xi+\gamma \eta) \overline{(\beta \xi+\gamma \eta)}=0
$$

This implies that

$$
\begin{equation*}
\alpha \bar{\alpha}+\gamma \bar{\gamma}+\beta \bar{\gamma} x+\bar{\beta} \gamma \bar{x}=0 \tag{}
\end{equation*}
$$

Equation (**) has at most q solutions in x. For (*) to hold, we have to exclude the $(q+1)$ members x of $F_{q^{2}}$ such that $x \bar{x}=-1$. Hence there are $q^{2}-2 q-1$ possible choices of x not satisfying (**) and $x \bar{x}=-1$. For each of these x 's, we can choose $q+1$ different η 's satisfying (*). So there are altogether $\left(q^{2}-2 q-1\right)(q+1)$ ordered pairs (ξ, η) with the required properties.

Proposition 1.2. We have
(a) $\left\langle L_{i}^{*}, L_{i+1}^{*}\right\rangle=L_{i}^{*} L_{i+1}^{*} L_{i}^{*} L_{i+1}^{*}=L_{i+1}^{*} L_{i}^{*} L_{i+1}^{*} L_{i}^{*} \cong S U(3, q)$.
(b) $S U(V)=\left\langle L_{i}^{*} \mid 1 \leqq i \leqq m-1\right\rangle$.

Proof. (a) We may assume $\operatorname{dim} V=3$ and $i=1$. It suffices by symmetry to show that $S U(V)=L_{2}^{*} L_{1}^{*} L_{2}^{*} L_{1}^{*}$.

Let $g \in S U(V)$. Then $g\left(v_{3}\right)=\alpha v_{1}+\beta v_{2}+\gamma v_{3}$. If $\alpha=\beta=0$ or if $\alpha v_{1}+\beta v_{2}$ is a non-isotropic vector, set $g_{2}=1$. Otherwise we use (1.1) to find an element $g_{2}=(\xi, \eta)_{2}^{*} \in L_{2}^{*}$ such that the projection of $g_{2} g\left(v_{3}\right)$ into $\left\langle v_{1}, v_{2}\right\rangle$ is not a non zero isotropic vector. In all cases we can now find $g_{1} \in L_{1}^{*}$ such that

$$
g_{1} g_{2} g\left(v_{3}\right)=\beta^{\prime} v_{2}+\gamma v_{3}
$$

since L_{1}^{*} is transitive on non isotropic vector of the same length and the subspace contains non isotropic vector of any length as well as the zero vector. For the same reason, there exists $h_{2} \in L_{2}^{*}$ such that

$$
h_{2} g_{1} g_{2} g\left(v_{3}\right)=v_{3}
$$

The assertion now follows because the stabilizer of v_{3} in $S U(V)$ is L_{1}^{*}.
(b) We may assume $m \geqq 4$. Let $V_{1}=\left\langle v_{i} \mid 1 \leqq i \leqq m-1\right\rangle$, and $V_{2}=$ $\left\langle v_{m-2}, v_{m-1}, v_{m}\right\rangle$. Set $S=\left\langle L_{i}^{*} \mid 1 \leqq i \leqq m-2\right\rangle ; T=\left\langle L_{m-2}^{*}, L_{m-1}^{*}\right\rangle$. By induction, $S \cong S U\left(V_{1}\right)$ and $T \cong S U\left(V_{3}\right)$.

Let $g \in S U(V)$. Then $g\left(v_{m}\right)=v+v^{\prime}$ where $v \in V_{1}$ and $v^{\prime} \in\left\langle v_{m}\right\rangle$. Since v_{2} contains non zero isotropic vectors and $\operatorname{dim} V_{1} \geqq 3$, we can apply Witt's Theorem (Dieudonné (1955)) to obtain an element $s \in S$ and $t \in T$ such that $\operatorname{sg}\left(v_{m}\right) \in V_{2}$ and $\operatorname{tsg}\left(v_{m}\right)=v_{m}$. The result follows since the stabilizer of v_{m} in $S U(V)$ is S.

We next investigate the embedding of L_{i}, L_{i} in $\left\langle L_{i}, L_{i}\right\rangle$ if $\{i, j\}$ is an edge.
Lemma 1.3. Suppose $\operatorname{dim} V=3$. Let $\{i, j\}$ be an edge and θ the isomorphism from $\left\langle L_{i}, L_{j}\right\rangle$ onto $S U(V)$. Then replacing θ by its composition with an inner automorphism of $S U(V)$ we may assume $\theta\left(L_{i}\right)=L_{1}^{*} ; \theta\left(H_{i}\right)=H_{1}^{*}$; $\theta\left(L_{j}\right)=L_{2}^{*}$ and $\theta\left(H_{j}\right)=H_{2}^{*}$.

Proof. We shall regard $S U(V)$ as the set of fixed points of a suitable algebraic endomorphism σ on the algebraic group $S L(\bar{V})$ where \bar{V} is an extension of V by an algebraically closed field (Steinberg and Springer (1970) §2). Then $\theta\left(H_{i} H_{j}\right)$ is a set of commuting semisimple elements and hence lie in a maximal torus of $S L(\bar{V})$ which is fixed by σ (II.5.10(a) of Springer-Steinberg). Since any two σ-fixed maximal tori are conjugate by an element of $S L(\bar{V})$, we conclude that $\theta\left(H_{i} H_{j}\right)=H_{1}^{*} H_{2}^{*}$ after adjusting θ by an inner automorphism (Steinberg and Springer (1970); II.5.8; I.2.9).

Since $\left\langle L_{i}, H_{j}\right\rangle \cong G U(2, q)$ by (c) and $q>4$, we have $\left\langle L_{i}, H_{j}\right\rangle^{\prime}=L_{i}$ as L_{i} is perfect. So $\left\langle L_{i}, H_{j}\right\rangle=L_{i} H_{j}$ and $C_{L_{i} H_{i}}\left(H_{i}\right)=H_{i} H_{j}$. Therefore $Z\left(L_{i} H_{j}\right)$ which has order $q+1$ is contained in $H_{i} H_{j}$. An easy computation shows that every subgroup in $H_{1}^{*} H_{2}^{*}$ of order $q+1$ has its centralizer in $S U(V)$ equal to $H_{1}^{*} H_{2}^{*}$ except the following three subgroups $\left\langle(\alpha, 0)_{i}^{*}\left(\alpha^{\prime}, 0\right)_{2}^{*}\right\rangle$ where $\alpha^{\prime}=\alpha^{2} ;\left(\alpha^{\prime}\right)^{2}=\alpha$ or $\alpha^{\prime}=\alpha^{-1}$ where $0(\alpha)=q+1$ in the first case and $0\left(\alpha^{\prime}\right)=q+1$ in the remaining cases. Moreover these three subgroups are conjugate in $N_{s U(V)}$ $H_{1}^{*} H_{2}^{*}$). Therefore after adjusting θ by an inner automorphism we may suppose $\theta\left(Z\left(L_{i} H_{i}\right)\right)=\left\langle(\alpha, 0)_{1}^{*}\left(\alpha^{2}, 0\right)_{2}^{*}\right\rangle$. It follows then $\theta\left(L_{i}\right)=L_{1}^{*}$. Finally because the remaining two subgroups of order $q+1$ are conjugate by an element of L_{1}^{*}, we may assume $\theta\left(L_{i}\right)=L_{2}^{*}$ after adjusting θ by an inner automorphism. It now follows easily that $\theta\left(H_{i}\right)=H_{1}^{*}$ and $\theta\left(H_{j}\right)=H_{2}^{*}$.

Lemma 1.4. There exists a group \tilde{G} of type X with the map $i \mapsto\left(\tilde{L}_{i}, \tilde{H}_{i}\right)$, ia vertex of X such that whenever G is a group of the same type with the map $i \mapsto\left(L_{i}, H_{i}\right)$, then there exists a homomorphism θ mapping \tilde{H}_{i} on H_{i} and $\tilde{L_{i}}$ on L_{i}.

Proof. For each vertex i, let F_{i} be a set and $R_{i i}$ be words generated by elements of F_{i} such that the group $\tilde{L_{i}}$ generated by F_{i} and presented by $R_{i i}$ is isomorphic to $S U(2, q)$. If $\{i, j\}$ is not an edge, let $R_{i j}$ be the words $[x, y$] where $x \in F_{i}$ and $y \in F_{j}$. If $\{i, j\}$ is an edge, we use (1.2), (1.3) to obtain a set of words $R_{i j}$ each involving both elements of F_{i} and F_{j} such that the group generated by $F_{i} \cup F_{j}$ and presented by the relations $R_{i i} \cup R_{i j} \cup R_{i j}$ is isomorphic to $S U(3, q)$.

Let \tilde{G} be the group generated by $F=\bigcup_{i} F_{i}$ defined by relations $\bigcup_{i, i} R_{i j}$. Each \tilde{L}_{i} defined earlier can be naturally identified with a subgroup of \tilde{G}. As \tilde{G} is a free product with certain amalgamations of groups isomorphic to $S U(3, q)$ or $S U(2, q) \times S U(2, q) ; \tilde{L}_{i} \neq 1$. By means of (1.3), we can now choose subgroups \tilde{H}_{i} in \tilde{L}_{1} such that all conditions (a), (b), (c), (d) are satisfied and so \tilde{G} is a group of type X.

It is now obvious that the mapping θ in the lemma has the required property.

Definition. The group \tilde{G} in (1.4) will be called a universal group of type X. It is clear that up to isomorphism there is only one universal group of type X.

Lemma 1.5. Let \tilde{G} be a universal group of type X with the map $i \mapsto\left(\tilde{L}_{i}, \tilde{H}_{i}\right)$ and Δ^{\prime} be a subgraph of type Y. Then $\left\langle\tilde{L}_{i} \mid i \in \Delta^{\prime}\right\rangle$ is a universal group of type Y.

Proof. This is obvious from our construction of \tilde{G} in (1.4).
Lemma 1.6. The group $S U(V)$ where $\operatorname{dim} V=n+1$ is a group of type A_{n}.
Proof. If the vertices of the graph of type A_{n} are naturally ordered by the set of integers $\{1,2, \cdots, n\}$ such that the consecutive integers form an edge, then the map $i \mapsto\left(L_{i}^{*}, H_{i}^{*}\right)$ satisfies conditions (a)-(d) by (1.2) and direct verification.

We need the following result at the end of our proof.
Lemma 1.7. Let g, g^{\prime} be elements of $S U(V)$ and set $S=\left\langle L_{i}^{*}\right| 1 \leqq i \leqq$ $m-2$). Then there exist elements $a \in L_{m-1}^{*}$ such that both ag and ag' belong to $S L_{m-1}^{*} S$.

Proof. Suppose $g\left(v_{m}\right)=v+\alpha v_{m-1}+\beta v_{m} \quad$ and $\quad g^{\prime}\left(v_{m}\right)=$ $v^{\prime}+\alpha^{\prime} v_{m-1}+\beta^{\prime} v_{m}$ where $v, v^{\prime} \in\left\langle v_{i} \mid 1 \leqq i \leqq m-2\right\rangle$. Let $a=(\xi, \eta)_{m-1}^{*} \in L_{m-1}^{*}$. Then

$$
a g\left(v_{m}\right)=v+(\alpha \xi+\beta \eta) v_{m-1}+(-\alpha \bar{\eta}+\beta \bar{\xi}) v_{m}
$$

and

$$
a g^{\prime}\left(v_{m}\right)=v^{\prime}+\left(\alpha^{\prime} \xi+\beta^{\prime} \eta\right) v_{m-1}+\left(-\alpha^{\prime} \bar{\eta}+\beta^{\prime} \bar{\xi}\right) v_{m}
$$

If the projections of $a g\left(v_{m}\right)$ and $a g^{\prime}\left(v_{m}\right)$ into $\left\langle v_{i} \mid 1 \leqq i \leqq m-1\right\rangle$ are not non zero isotropic vectors, then we use the argument of (1.2) to show that ag, $a g^{\prime} \in S L_{m-1}^{*} S$.

We shall assume $\eta \neq 0$ and set $\xi=x \eta$ and suppose that the projections of $(a g)\left(v_{m}\right)$ and $a g^{\prime}\left(v_{m}\right)$ into $\left\langle v_{i} \mid 1 \leqq i \leqq m-1\right\rangle$ are non zero isotropic vectors. Then we have

$$
(v, v)(1+x \bar{x})+\alpha \bar{\alpha} x \bar{x}+\alpha \bar{\beta} x+\bar{\alpha} \beta x+\beta \bar{\beta}=0
$$

and

$$
\left(v^{\prime}, v^{\prime}\right)(1+x \bar{x})+\alpha^{\prime} \bar{\alpha}^{\prime} x \bar{x}+\alpha^{\prime} \bar{\beta}^{\prime} x+\bar{\alpha}^{\prime} \beta^{\prime} x+\beta^{\prime} \bar{\beta}^{\prime}=0
$$

For the existence of a with the required property, we must have $x \in F_{q^{2}}$ not satisfying any one of above non-trivial equations of degree $q+1$ as well as $1+$ $x \bar{x}=0$. Hence a exists provided $q^{2}-3(q+1)>0$, ie $q>3$.

Remark. When q is odd, it is not necessary to assume second part of (c) as this follows from the other assumptions.

2. Factorization of G

Let G be a group of type A_{n} with the set of pairs of subgroups (L_{i}, H_{i}). In view of (1.3) we can denote each element of L_{i} as $(\alpha, \beta)_{i}$ where $\alpha ; \beta \in F_{q}{ }^{2}$ and $\alpha \bar{\alpha}+\beta \bar{\beta}=1$ and in case $\{i, j\}$ is an edge, we may perform the multiplication $(\alpha, \beta)_{i}(\gamma, \delta)_{j}$ in $S U(V)$ with $\operatorname{dim} V=3$ by setting $(\alpha, \beta)_{i}=(\alpha, \beta)_{1}^{*}$ and $(\gamma, \delta)_{j}=(\gamma, \delta)_{2}^{*}$. Thus $(\alpha, \beta)_{i} \in H_{i}$ if $\beta=0$.

Lemma 2.1. Suppose that $\left\langle L_{i}, L_{i}\right\rangle$ is isomorphic to $\operatorname{SU}(3, q)$. Let $a=$ $(\alpha, \beta)_{i}, c=(\xi, \eta)_{i}$ belong to L_{j} and $b=(\gamma, \delta)_{i}$ belong to L_{i}. Set $\sigma=\alpha \bar{\gamma} \eta+\beta \bar{\xi}$ and $\rho=\delta \eta$. Then abc belongs to $L_{i} L_{i} L_{i}$ if and only if either $\beta \delta \eta=0$ or $\sigma \bar{\sigma}+\rho \bar{\rho} \neq 0$.

In case $\beta \delta \eta \neq 0$ and $\sigma \bar{\sigma}+\rho \bar{\rho} \neq 0$, let $\mu \in F_{q^{2}}$ such that $\mu \bar{\mu}=\rho \bar{\rho} / \sigma \bar{\sigma}+\rho \bar{\rho}$ and let $\lambda=-\sigma \mu / \rho$. Then

$$
a b c=(\bar{\lambda},-\mu)_{i}(-\beta \gamma \bar{\eta}+\alpha \xi,-\rho / \mu)_{i}(-(\beta \gamma \bar{\xi}+\alpha \eta) \mu / \rho,-\beta \mu / \eta)_{i}
$$

Proof. A tedious verification.

Lemma 2.2. Let $\{i, j, k\}$ be a chain. Then

$$
L_{k} L_{j} L_{i} L_{j} L_{k} \subseteq L_{j} L_{i} L_{k} L_{j} L_{k} L_{i} L_{j}
$$

Proof. Let $a=(\alpha, \beta)_{k} ; b=(\gamma, \delta)_{i} ; c=(\sigma, \tau)_{i} ; d=(\nu, \rho)_{i}$ and $e=$ $(\lambda, \mu)_{k}$. If one of these elements lies in $H_{i} H_{j} H_{k}$, then their product abcde belongs to right-hand side of the inequality since $H_{i} \subseteq N_{G}\left(L_{j}\right) ; H_{j} \subseteq$ $N_{G}\left(L_{i}\right) \cap N_{G}\left(L_{k}\right)$ and $H_{k} \subseteq N_{G}\left(L_{j}\right)$ and $\left[L_{i}, L_{k}\right]=1$. Hence we may assume none of these elements lie in $H_{i} H_{i} H_{k}$; that is

$$
\begin{equation*}
\beta \delta \tau \rho \mu \neq 0 . \tag{1}
\end{equation*}
$$

Also we have

$$
\begin{equation*}
\alpha \bar{\alpha}+\beta \bar{\beta}=\gamma \bar{\gamma}+\delta \bar{\delta}=\sigma \bar{\sigma}+\tau \bar{\tau}=\nu \bar{\nu}+\rho \bar{\rho}=\lambda \bar{\lambda}+\mu \bar{\mu}=1 \tag{2}
\end{equation*}
$$

Next we may assume that $b c d \notin L_{i} L_{j} L_{i}$, otherwise we are done as $\left[L_{i}, L_{k}\right]=1$.
Therefore we have by (2.1)

$$
\begin{equation*}
\tau \bar{\tau} \rho \bar{\rho}+\gamma \bar{\gamma} \sigma \bar{\sigma} \rho \bar{\rho}+\delta \bar{\delta} \nu \bar{\nu}+\gamma \bar{\delta} \bar{\sigma} \nu \rho+\bar{\gamma} \delta \sigma \bar{\nu} \bar{\rho}=0 . \tag{3}
\end{equation*}
$$

We shall now show that it is possible to choose a suitable element $f=$ $(\xi, \eta)_{k}$ such that

$$
a b f=a_{j} b_{k} c_{j}
$$

$$
\begin{align*}
f^{-1} d e & =d_{j} e_{k} f_{j} \tag{*}\\
c_{j} c d_{j} & \in L_{i} L_{j} L_{i}
\end{align*}
$$

where $a_{j}, c_{j}, d_{j}, f_{j} \in L_{j}$ and $b_{k}, e_{k} \in L_{k}$. Then the lemma follows since [$\left.L_{i}, L_{k}\right]=$ 1.

We shall choose $f=(\xi, \eta)_{k}$ such that

$$
\begin{equation*}
\eta \neq 0 \tag{4}
\end{equation*}
$$

and set

$$
\begin{equation*}
\xi=x \eta \tag{5}
\end{equation*}
$$

Thus

$$
\begin{equation*}
(1+x \bar{x}) \eta \bar{\eta}=1 \tag{6}
\end{equation*}
$$

If there is f satisfying (${ }^{*}$, we can then find ζ, ϕ in $F_{q^{2}}$ such that

$$
\begin{equation*}
\zeta=-(\alpha \bar{\gamma}+\beta \bar{x}) \phi / \delta \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\phi \bar{\phi}=\delta \bar{\delta} \eta \bar{\eta} / \omega_{1} \tag{8}
\end{equation*}
$$

and

$$
\begin{align*}
c_{j} & =(-(\alpha+\beta \gamma \bar{x}) \phi / \delta,-\beta \phi / \eta)_{i} \\
\omega_{1} & =(\delta \bar{\delta}+\alpha \bar{\alpha} \gamma \bar{\gamma}+\alpha \bar{\beta} \bar{\gamma} x+\bar{\alpha} \beta \gamma \bar{x}+\beta \bar{\beta} x \bar{x}) \eta \bar{\eta} \bar{y} \tag{**}
\end{align*}
$$

$\neq 0$.
Similarly if $f^{-1} d e \in L_{j} L_{k} L_{j}$, there exist χ, ψ in $F_{q^{2}}$ such that

$$
\begin{equation*}
\chi=(\bar{\lambda}-\bar{\nu} \mu \bar{x}) \eta \psi / \rho \mu \tag{10}
\end{equation*}
$$

and

$$
\begin{align*}
d j & =(\bar{\chi},-\psi)_{i} \tag{12}\\
\omega_{2} & =(\lambda \bar{\lambda}+\rho \bar{\rho} \mu \bar{\mu}-\nu \overline{\lambda \mu} x-\bar{\nu} \lambda \mu \bar{x}+\mu \bar{\mu} x \bar{x}) \eta \bar{\eta} \\
& \neq 0 \tag{}
\end{align*}
$$

We also want $c_{j} e d_{j}$ to belong to $L_{i} L_{j} L_{i}$. This will be so if

$$
\begin{aligned}
\omega_{3}= & \tau \bar{\tau} \psi \bar{\psi}+(\alpha+\beta \gamma \bar{x}) \overline{(\alpha+\beta \gamma \bar{x})} \sigma \bar{\sigma} \phi \bar{\phi} \psi \bar{\psi} / \delta \bar{\delta} \\
& +\beta \bar{\beta} \phi \bar{\phi} \chi \bar{\chi} / \eta \bar{\eta}-(\alpha+\beta \gamma \bar{x})(\bar{\beta} \bar{\sigma} \bar{\phi} \bar{\chi} \psi) / \bar{\eta} \\
& -\overline{(\alpha+\beta \gamma \bar{x})}(\beta \sigma \phi \chi \bar{\psi}) / \eta \neq 0 .
\end{aligned}
$$

We note that for the first two equations of (*) to hold, we must choose x which are not solutions of any of the following equations

$$
\begin{aligned}
1+x \bar{x} & =0 \\
\omega_{1} & =0 \\
\omega_{2} & =0 .
\end{aligned}
$$

There are at most $3(q+1)$ elements which satisfy one of above equations. We shall now assume in the rest of the proof x is not a solution of one of these equations.

Using (7), (8), (10), (11), (**) and (***), we compute that the coefficient of $x \bar{x}$ in ω_{3} is

$$
\frac{\eta \bar{\eta}}{\omega_{1} \omega_{2}}\{\beta \bar{\beta}(\tau \bar{\tau} \rho \bar{\rho}+\gamma \bar{\gamma} \sigma \bar{\sigma} \rho \bar{\rho}+\delta \bar{\delta} \nu \bar{\nu}+\gamma \overline{\delta \sigma} \nu \rho+\bar{\gamma} \delta \sigma \bar{\nu} \bar{\rho}) \mu \bar{\mu}\}=0 \quad \text { by (3). }
$$

The constant term in ω_{3} is

$$
\begin{equation*}
\frac{\eta \bar{\eta}}{\omega_{1} \omega_{2}}\{(\alpha \bar{\alpha}+\beta \bar{\beta} \delta \bar{\delta} \tau \bar{\tau}) \rho \bar{\rho} \mu \bar{\mu}+\beta \bar{\beta} \delta \bar{\delta} \lambda \bar{\lambda}-\alpha \bar{\beta} \bar{\delta} \bar{\sigma} \rho \lambda \mu-\bar{\alpha} \beta \delta \sigma \bar{\rho} \bar{\lambda} \bar{\mu}\} \tag{13}
\end{equation*}
$$

and the coefficient of x in ω_{3} is

$$
\begin{equation*}
\frac{\eta \bar{\eta}}{\omega_{1} \omega_{2}}\{\alpha \overline{\beta \gamma} \rho \bar{\rho} \mu \bar{\mu}+\alpha \bar{\beta} \bar{\delta} \bar{\sigma} \nu \rho \mu \bar{\mu}-\beta \bar{\beta} \delta \bar{\delta} \nu \bar{\lambda} \bar{\mu}-\beta \overline{\beta \gamma} \delta \sigma \bar{\rho} \bar{\lambda} \bar{\mu}\} \tag{14}
\end{equation*}
$$

We shall now show that (13) and (14) cannot both be zero. We note that

$$
(\bar{\delta} \nu+\bar{\gamma} \bar{\rho} \sigma) \neq 0
$$

otherwise from $(\bar{\delta} \nu+\overline{\gamma \rho} \sigma)(\delta \bar{\nu}+\gamma \rho \bar{\sigma})=0$ we get $\tau \bar{\tau} \rho \bar{\rho}=0$ by (3) in contradiction to (1). Now set $\lambda=\varepsilon \bar{\mu}$. Then setting (14) to zero, we obtain

$$
\begin{equation*}
\bar{\varepsilon}=\frac{\alpha \rho(\bar{\gamma} \bar{\rho}+\bar{\delta} \bar{\sigma} \nu)}{\beta \delta(\bar{\delta} \nu+\bar{\gamma} \sigma \bar{\rho})} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon \bar{\varepsilon}=\alpha \bar{\alpha} / \beta \bar{\beta} \tag{16}
\end{equation*}
$$

We apply (2), (3), (13), (14), (15), and (16) to find that the constant term is

$$
(\delta \tau \rho \mu \eta) \overline{(\delta \tau \rho \mu \eta)} / \omega_{1} \omega_{2}
$$

which is not zero by (1) and (4). Thus ω_{3} is not identically zero. Hence there are at most q values of x such that $\omega_{3}=0$. Therefore the assertion is proved provided $q^{2}-(3 q+3)-q>0$ ie $q>4$.

Theorem 2.3. Let G be a universal group of type A_{n}. Then G is isomorphic to $S U(n+1, q)$.

Proof. We may suppose $n \geqq 3$ and let the graph be

Let $S=\left\langle L_{i} \mid 1 \leqq i \leqq n-1\right\rangle$ and $T=\left\langle L_{i} \mid 1 \leqq i \leqq n-2\right\rangle$. Clearly each element of G belongs to $\left(S L_{n}\right)^{k} S$ for some positive integer k. We shall show by induction on k that $g \in S L_{n} L_{n-1} L_{n} S$. This is obviously true when $k=1$.

We deal first with the case $n=3$. Using the relation $\left[L_{1}, L_{3}\right]=1$ and (1.2) we clearly have

$$
\left(S L_{3}\right)^{k} S=S\left(L_{3} L_{2} L_{1} L_{2}\right)^{k} S
$$

Now

$$
\begin{array}{rlr}
L_{3} L_{2} L_{1} L_{2}\left(L_{3} L_{2} L_{1} L_{2} L_{3}\right) & \\
& \subseteq L_{3}\left(L_{2} L_{1} L_{2} L_{2} L_{1}\right) L_{3} L_{2} L_{3} L_{1} L_{2} & \text { by }(2.2) \\
\quad=L_{1} L_{3} L_{2} L_{1}\left(L_{2} L_{3} L_{2} L_{3}\right) L_{1} L_{2} & \text { by }(1.2) \\
=L_{1}\left(L_{3} L_{2}\right) L_{1}\left(L_{3} L_{2} L_{3}\right) L_{2} L_{1} L_{2} & \text { by }(1.2) \\
\subseteq S L_{3} L_{2} L_{1} L_{2} L_{3} S & \text { by }(1.7)
\end{array}
$$

Therefore we can now apply induction to show $g \in S L_{3} L_{2} L_{3} S$.
By (1.4) and (1.5), there is a homomorphism $\theta: G \rightarrow S U(4, q)$ mapping L_{i} to L_{i}^{*}. Let $g \in$ kernel of θ and let $g=s_{1} c b c^{\prime} s_{2}$ where $s_{1}, s_{2} \in S ; c, c^{\prime} \in L_{3}$ and $b \in L_{2}$. Now $s_{2} g s_{2}^{-1} \in$ kernel of θ and $s_{2} g s_{2}^{-1}=s c b c^{\prime}$ where $s=s_{2} s_{1}$. Therefore $\theta\left(c b c^{\prime}\right)=\theta(s)^{-1}$. So $\theta\left(c b c^{\prime}\right)$ leaves v_{4} fixed and therefore $\theta\left(c b c^{\prime}\right) \in L_{2}^{*}$ as the stabilizer of v_{4} in $\left\langle L_{2}^{*}, L_{3}^{*}\right\rangle$ is L_{2}^{*}. As θ restricted to $\left\langle L_{2}, L_{3}\right\rangle$ is an isomorphism, there exists $b^{\prime} \in L_{2}$ such that $b^{\prime} c b c^{\prime}=1$. So $\theta\left(b^{\prime} s^{-1}\right)=1$. As θ restricted to $\left\langle L_{1}, L_{2}\right\rangle$ is again an isomorphism, $b^{\prime} s^{-1}=1$. Therefore $g=1$ and θ is an isomorphism.

We next suppose $n>3$ and use induction on n to show that

$$
G=S L_{n} L_{n-1} L_{n} S
$$

We have by induction,

$$
\begin{aligned}
L_{n} S L_{n} & =L_{n} T L_{n-1} L_{n-2} L_{n-1} T L_{n} \\
& =T L_{n} L_{n-1} L_{n-2} L_{n-1} L_{n} T \\
& \subseteq S L_{n} L_{n-1} L_{n} S \quad \text { by } \quad(2.2)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left(L_{n} S L_{n}\right) S L_{n} & \subseteq S L_{n} L_{n-1} L_{n} S L_{n} \\
& =S L_{n} L_{n-1} L_{n} T L_{n-1} L_{n-2} L_{n-1} T L_{n} \\
& =S\left(L_{n} L_{n-1} L_{n}\right) T\left(L_{n-1} L_{n-2} L_{n-1} L_{n}\right) T \\
& \subseteq S L_{n} S L_{n} S
\end{aligned}
$$

by (1.7), (1.5) and by what we just proved. So $\left(S L_{n}\right)^{k} S \subseteq\left(S L_{n}\right)^{k-1} S$ for $k \geqq 3$ and thus $G=\left(S L_{n}\right)^{2} S=S L_{n} L_{n-1} L_{n} S$ by the above. Because of (1.5), θ is an isomorphism by induction and we apply the same argument for the case $n=3$.

The theorem is now an immediate consequence of (2.3) and (1.4).

References

Jean Dieudonné (1955), La Géométrie des Groupes Classiques (Ergebnisse der Mathematik und ihrer Grenzgebiete, 5. Springer-Verlag, Berlin, Göttingen, Heidelberg, 1955).
Kok-Wee Phan (1972), 'A characterization of the finite groups PSL (n, q)', Math. Z. 124, 169-185. T. A. Springer and R. Steinberg (1970), 'Conjugacy classes', Seminar on Algebraic Groups and Related Finite Groups, El-E100 (Lecture Notes in Mathematics, 131. Springer-Verlag, Berlin, Heidelberg, New York, 1970).

Department of Mathematics, University of Notre Dame, Notre Dame, U.S.A.

