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Introduction

This paper is the result of our attempt to carry over the method of our
characterization of the linear groups PSL(n,q) (Phan (1972)) to that of the
unitary groups PSU(n,q). It appears desirable to have available a result on
the generation of the unitary groups more closely related to the splitting of
the underlying hermitian spaces of these groups into orthogonal direct sum of
anisotropic lines. Another motivation comes also from our work on the unit-
ary groups in which we obtained a fusion pattern different from that of the un-
itary group when the dimension of the underlying space is eight. This fusion
pattern produces a group whose structure is not immediately apparent. In
order to identify this group, the result of this paper appears to be a necessary
step.

To discuss the type of problems that we shall consider, it is convenient to
introduce the language of graphs. A graph F on a set A is the couple (A, E)
where £ is a set of 2-element subsets of A. The elements of A (resp. E) are
called vertices (resp. edges). An ordered subset A' of A is a chain if the con-
secutive members of A' are the only edges in Y. We shall also use pictorial rep-
resentation of a graph with points corresponding to vertices and line segment
joining two points if the corresponding vertices form an edge. We are in-
terested in graphs whose pictorial representations are the Dynkin diagrams of
types An, Dn, E6, E-,, E8. We say a graph is of type X if its pictorial representa-
tion is a Dynkin diagram of type X.

Let F = (A, E) be a graph of type X on a finite set A. We want to investi-
gate the structure of groups G such that there is a mapping which takes i in A
to a pair of subgroups (L,, Hi) of G where L, is isomorphic to SI/(2, q) and Ht

is a subgroup of order q + 1 in L, (q finite). Furthermore these subgroups
satisfy the following conditions
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(a) G = <Li|VJGA>;
(b) [Li,Li] = lit{i,j}£E;
(c) (U L,)= SU(3,q) and (L,, H,) = GU(2, q) = <«, L,> if {i,;}GE;
(d) {Hi,Hi)=HixHi i*U V i , / G A .

DEFINITION. A group G together with a mapping from a graph T of type X
into pairs of subgroups of G satisfying the above conditions is called a group
generated by SU(3,q)'s of type X.

Our aim is to prove the following

THEOREM Let G be a group generated by SU(3,q)'s of type An. Assume
that q is greater than 4. Then G is a homomorphic image of SU(n + 1, q).

The result holds trivially when n = 1 or 2. We may assume that n > 2.
Among the groups of the same type, we show that there is a 'universal' group
G such that every group of the same type is a homomorphic image of G. Then
we prove that SU(n + l,q) is of type An. Consequently there exists a
homomorphism 8 : G -> SU(n + 1, q). The theorem then follows at once be-
cause the kernel of 8 is 1. This fact results from a factorization of G involving
the subgroups Lt. We are able to obtain this factorization because of the iden-
tity {Li,Lj)= LiLjLiL, for any edge {/,/}.

1. SU(n + \,q) as group of type An

Let V be a vector space of dimension m over the field F,* of q2 elements
equipped with a non degenerate hermitian form (,). Throughout this paper
we shall assume q > 4. The space V has an orthonormal basis B = {vt \ 1 ^ i ^
m). The set of all non singular linear transformations x of V which are
isometries (i.e. (x(v), x(v')) = (v, v')Vv, v' G V) forms a group GU(V), the
general unitary group of V. The special unitary group SU( V) of V is the sub-
group of determinant 1 in GU( V). We note that for a linear transformation x
to belong to GU(V), it is necessary and sufficient that the matrix [x] of x rela-
tive to the basis B satisfies [x]'[x] = 1 where [x] is the matrix obtained from
[x] by replacing each of its entry xi; by JC(>= xj}.

For 1 g i § m - 1, let L* be the elements of SU(V) which fix all u,/V i,
i + 1. Since Vt = {vh u,+i) = (v, |;V i, i + 1) ,̂ L* leaves Vt invariant and hence
L* = SU(2,q). We compute that each element in L* when restricted to V,
has a matrix of the form

-B a)
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where a, (3 G F,* and aa + /3/3 = l. We shall denote such an element by
(a, 13)1. The set (a,0)* forms a diagonal subgroup H* of order 4 + 1.

We want to show that SU(V) is generated by L*. First we note the fol-
lowing elementary facts. The set of elements in F^ fixed by the map x »-» x is a
subfield of order q and for each non zero element a of this subfield, there are
exactly q + 1 elements x such that xx = a.

LEMMA 1.1. Let a, (3, y be in F^ such that (3y/ 0 and ad + (3(1 = 0. Then
there are at least (q2 — 2q- l)(q + 1) ordered pairs (f, TJ) in Fq* such that ff +
rjfj = 1 and

PROOF. Any pair (£, 17) such that i£ = 1 and 77 = 0 clearly does not have
the required property..We may suppose ij^O and set £ = XT). We required
that

C) 7,77(1 +xx) = 1 .

Now suppose

This implies that

(**) ad + yy + (3yx + Pyx = 0.

Equation (**) has at most q solutions in x. For (*) to hold, we have to
exclude the (q + 1) members x of F,* such that xx = - 1. Hence there are
q2 — 2q — 1 possible choices of x not satisfying (**) and xx = — 1. For each of
these x's, we can choose q + 1 different 17's satisfying (*). So there are al-
together (q2 -2q — 1)(<7 + 1) ordered pairs (£ 77) with the required properties.

PROPOSITION 1.2. We

(a) {L*,L*+l) = L*
(b)

PROOF, (a) We may assume dim V = 3 and / = 1. It suffices by symmetry
to show that SU(V) = L*2L*XL*2L?.

Let gGSU(V). Then g(v3) = a», + /3i>2+ yt;3. If a =/3 = 0 or if
aDi + /3t>2 is a non-isotropic vector, set g2 = 1. Otherwise we use (1.1) to find
an element g2 = (£ TJ)* G L? such that the projection of g2g(u3) into (vi, v2) is
not a non zero isotropic vector. In all cases we can now find gi G L * such that
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since L * is transitive on non isotropic vector of the same length and the sub-
space contains non isotropic vector of any length as well as the zero vector.
For the same reason, there exists h2G L* such that

= V3.

The assertion now follows because the stabilizer of v3 in SU(V) is L*.
(b) We may assume m g 4. Let V, = (v,,| 1 S i S m - 1), and V2 =

(vm-2,vm-uvm). Set S = (L*\IS itsm -2) ; T = <L*_2, £.*_,). By induction,
S s SC/(V1) and T = S£/( V3).

Let g GSC/(V). Then g(vm)= v + v' where i )£V, and t>'G(um). Since
t>2 contains non zero isotropic vectors and dim Vx § 3, we can apply Witt's
Theorem (Dieudonne (1955)) to obtain an element s G S and t G T such that
sg(vm)E. V2 and tsg(vm) = vm. The result follows since the stabilizer of vm in
SU(V) is S.

We next investigate the embedding of Lh Lt in (L,, L,) if {i,/} is an edge.

LEMMA 1.3. Suppose dim V = 3. Let {i, /} be an edge and 6 the isomor-
phism from (Li, Lj) onto SU(V). Then replacing 6 by its composition with an
inner automorphism of SU(V) we may assume 6(Li) = L*\ 6{Hi)= H*\

and B{H,)=H*2.

PROOF. We shall regard SU(V) as the set of fixed points of a suitable
algebraic endomorphism a on the algebraic group SL(V) where V is an ex-
tension of V by an algebraically closed field (Steinberg and Springer (1970)
§2). Then 0(HjH,) is a set of commuting semisimple elements and hence
lie in a maximal torus of SL(V) which is fixed by cr (II.5.10(a) of
Springer-Steinberg). Since any two o--fixed maximal tori are conjugate by an
element of SL(V), we conclude that B{HiHj) = H*H* after adjusting 9 by an
inner automorphism (Steinberg and Springer (1970); II.5.8; 1.2.9).

Since (L;, Hj) = GU(2,q) by (c) and q > 4, we have (Li, H,)' = Lt as L, is
perfect. So (Lf, H,) = L,H, and CLiHi(H,) = Htfj. Therefore Z(Ltfs) which has
order q + 1 is contained in HfH,. An easy computation shows that every sub-
group in H*H* of order q + 1 has its centralizer in SU(V) equal to H*H1
except the following three subgroups ((a,0)t(a',0)f) where a' = a2; (a'f = a
or a' = a"1 where 0(a) = q + 1 in the first case and O(a') = q + 1 in the re-
maining cases. Moreover these three subgroups are conjugate in Nsuiv)
H*H*). Therefore after adjusting 8 by an inner automorphism we may sup-
pose d(Z(LiHi)) = ((a,0)1(a2,0)*2). It follows then 0(L,)= L*t. Finally be-
cause the remaining two subgroups of order q + 1 are conjugate by an ele-
ment of LT, we may assume 0(L,)= L* after adjusting 0 by an inner au-
tomorphism. It now follows easily that #(//,)= HT and. 6{Hj)= H*.

https://doi.org/10.1017/S1446788700017353 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017353


[5] Groups generated by unitary groups 71

LEMMA 1.4. There exists a group G of type X with the map i •-» (L*, H), i a
vertex of X such that whenever G is a group of the same type with the map
i •-» {Lt, Hi), then there exists a homomorphism 6 mapping H on H and Lf on Lf.

PROOF. For each vertex i, let fi be a set and Ru be words generated by
elements of Ft such that the group d generated by Ff and presented by Ru is
isomorphic to SU(2,q). If {i,j} is not an edge, let /?*, be the words [x, y]
where i £ r ; and y G F,. If {i,j} is an edge, we use (1.2), (1.3) to obtain a set of
words Ri, each involving both elements of Ft and Fs such that the group gen-
erated by Fi U Fj and presented by the relations Ru U Ru U Rv is isomorphic
to SU(3,q).

Let G be the group generated by F = U..F1 defined by relations U,,,/?,,.
Each L, defined earlier can be naturally identified with a subgroup of G. As G
is a free product with certain amalgamations of groups isomorphic to SU(3, q)
or SU(2,q)x SU(2,q); L,^ 1. By means of (1.3), we can now choose sub-
groups H, in L, such that all conditions (a), (b), (c), (d) are satisfied and so G
is a group of type X.

It is now obvious that the mapping 8 in the lemma has the required prop-
erty.

DEFINITION. The group G in (1.4) will be called a universal group of type
X. It is clear that up to isomorphism there is only one universal group of type X.

LEMMA 1.5. Let G be a universal group of type X with the map i •-» (Liy H)
and A' be a subgraph of type Y. Then {Li 11 £ A') is a universal group of type Y.

PROOF. This is obvious from our construction of G in (1.4).

LEMMA 1.6. The group SU(V) where dim V = n + \ is a group of type An.

PROOF. If the vertices of the graph of type An are naturally ordered by
the set of integers {1,2, • • •, n} such that the consecutive integers form an
edge, then the map /' •-» (L *, H*) satisfies conditions (a)-(d) by (1.2) and direct
verification.

We need the following result at the end of our proof.

LEMMA 1.7. Let g, g' be elements of SU(V) and set S = (L*\l^iS

m - 2). Then there exist elements a G L *_i such that both ag and ag' belong to

PROOF. Suppose g(vm)= v + avm-, + @vm and g'(vm) =
v' + a'vm-, + P'vm where v, u ' G (v, 11 § i g m - 2 ) . Let a = ( £ T/)*_, G L*_,.

Then
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ag(vm) = v + (a£ + /3i/)um_, + ( - arj #

and

If the projections of ag(um) and ag'(vm) into (i>, 11 § i S m - 1) are not
non zero isotropic vectors, then we use the argument of (1.2) to show that ag,
ag'GSL'-iS.

We shall assume 17 / 0 and set £ = X17 and suppose that the projections of
(ag)(fm) and ag'{vm) into (Uj 11 ^ i S m — 1) are non zero isotropic vectors.
Then we have

(v, v)(l + xx) + adxx + a(3x + dfix + )3j3 = 0

and

(«', v')(l + xx)+a'd'xx +a'(l'x + a'/3'x + /3'/3' = 0.

For the existence of a with the required property, we must have x G Fq* not
satisfying any one of above non-trivial equations of degree q + 1 as well as 1 +
xx =0. Hence a exists provided q2-3(q + l )>0 , ie q >3 .

REMARK. When q is odd, it is not necessary to assume second part of (c)
as this follows from the other assumptions.

2. Factorization of G

Let G be a group of type An with the set of pairs of subgroups {L{, Ht). In
view of (1.3) we can denote each element of L, as (a, /3)f where a; /3 G Fq* and
ad + /3/3 = 1 and in case {i, j} is an edge, we may perform the multiplication
(a,|3),(y,S), in SU(V) with dim V = 3 by setting (a, 0), = (a, /3)T and
(y, S), = (y, 5)5. Thus (a, 0), G H, if /3 = 0.

LEMMA 2.1. Suppose that (Lt, L,} is isomorphic to SU(3,q). Let a =
(a, j8)/? c = (£ 17 )y belong to L, and fc = (y, 5), belong to Li. Set cr = ayi7 + /3/
and p = 8TJ. Tnen afcc belongs to LiLjL, if and only if either /35TJ =0 or

(7(7 + pp/0.

In case JSSTJ / 0 and cr(7 + pp^ 0, let /u, G Fq* such that /i/I = pplaa + pp

and let A = — o~(i I p. Then

afcc = (A, - fj.)i(- /3yrj + a f -plp.):(- (j3y# + arj)M/p, - /3fA/TJ),,

PROOF. A tedious verification.
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LEMMA 2.2. Let {i,j,k} be a chain. Then

ULfLtLtU C LiLULiULiLj.

PROOF. Let a = (a, j3)k; b = (y, 5),; c = (a-, T)J ; d = (̂ , p), and e =

(A, /i. )k. If one of these elements lies in HjHjHk, then their product abcde be-
longs to right-hand side of the inequality since Ht C NG(L;) ; H, C
NG(Lj)n NG(Lk) and Ht C NG(Lj) and [Lj; Lk] = 1. Hence we may assume
none of these elements lie in HiHjHk; that is

(1) pSrpfji * 0.

Also we have

(2) a a + /3/3 = -yy + 88 = era + TT = vv + pp = AA + /U./I = 1.

Next we may assume that bcd£ L,LjL,, otherwise we are done as [Lh Lk] = 1.
Therefore we have by (2.1)

(3) Tjpp + yycrapp + 88vi> + ySavp + yScrvp = 0.

We shall now show that it is possible to choose a suitable element / =
(£ rj)k such that

abf = aibkCj

(*) rxde = dfij,

where ah c,, dh f, G L; and bk, ek G Lk. Then the lemma follows since [L,, Lk ] =
1.

We shall choose / = (£ r\)k such that

(4) T, * 0

and set

(5) f = XT,.

Thus

(6) (1 + XX)T,TJ = 1.

If there is / satisfying (*), we can then find £, <p in F,* such that

(7) f =

(8) <^>

and
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(9) ci=(-(a + Pyx)<l>/8,-p4>/r,)l

&M = (55 + adyy + afiyx + dfiyx + PJ3xx)r)rj

Similarly if / 'de G LjLkLj, there exist x> <P m ^V s u c n

(10) x = (A - vfix)7nl//pfi

and

(12) d/ = Or, - (A),

a>2 = (AA + ppp-fJi — v\fix — vkfix + fifLXx)i}i]

We also want qedj to belong to LiL,Li. This will be so if

6j3 = TTW + (a + |8-yx)(a +

We note that for the first two equations of (*) to hold, we must choose x
which are not solutions of any of the following equations

1 + xx = 0

There are at most 3(q + 1) elements which satisfy one of above equations. We
shall now assume in the rest of the proof x is not a solution of one of these
equations.

Using (7), (8), (10), (11), (**) and (***), we compute that the coefficient of
xx in o>3 is

{pil(Tfpp + yycrapp + 88vv + ySavp + y8avp)fxfl} = 0 by (3).
(OlO)2

The constant term in w} is

(13) {(ad + (3fi88TT)pp~fifi + /3/355AA" — a(i8d-p\fi — afiScrpXfl}
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and the coefficient of x in w3 is

. . rjfj — _
V1 4) {/3

We shall now show that (13) and (14) cannot both be zero. We note that

(8v + ypcr) ̂  0

otherwise from (8i> + yp<j)(8v + ypa) = 0 we get rfpp = 0 by (3) in contradic-
tion to (1). Now set A = ep.. Then setting (14) to zero, we obtain

(15) E =

and

(16) ee = aa //8j3.

We apply (2), (3), (13), (14), (15), and (16) to find that the constant term is

which is not zero by (1) and (4). Thus w3 is not identically zero. Hence there
are at most q values of x such that w3 = 0. Therefore the assertion is proved
provided q2 — (3q + 3) — q > 0 ie q > 4.

THEOREM 2.3. Let G be a universal group of type An. Then G is isomor-
phic to SU(n + \,q).

PROOF. We may suppose n g 3 and let the graph be

1 2 3 n-\ n

Let S = (Lf 11 g i g n - 1) and T = <L, l g i g n - 2). Clearly each ele-
ment of G belongs to (SLn)

kS for some positive integer k. We shall show by
induction on k that g £ SLnLn-,LnS. This is obviously true when k = 1.

We deal first with the case n = 3. Using the relation [Lu L3] = 1 and (1.2)
we clearly have

Now
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QU{UUUL2U)UUUL,U by (2.2)

= UUL2L,{UUUU)UL2 by (1.2)

= U(UL2)U{UUU)UUU by (1.2)

QSUUUUUS by (1.7).

Therefore we can now apply induction to show g G SL3L2L3S.
By (1.4) and (1.5), there is a homomorphism 6: G —* SU(4, q) mapping L,

to L*. Let g G kernel of 6 and let g = Sicbc's2 wWere s,, x2G S; c, c 'G L3 and
fc G L2. Now 52g5r' G kernel of 8 and s2gS2' = scbc' where s = s2s,. There-
fore 0(cbc') = 0(s)~\ So 6(cbc') leaves u4 fixed and therefore 6(cbc')ELi as
the stabilizer of u4 in (L *, L ?) is L \. As 0 restricted to (L2, L3) is an isomorph-
ism, there exists b' G L2 such that b'cbc' = 1. So fl(6's"1)= 1. As 0 restricted
to (LUL2) is again an isomorphism, b's~'= 1. Therefore g = 1 and 0 is an
isomorphism.

We next suppose n > 3 and use induction on n to show that

G = SLnLn^LnS.

We have by induction,

LnSLn = LnTLn^Ln-2Ln

CSLnLn-,LnS by (2.2).

Hence

(LnSLn)SLn C SLnLn-,LnSLn

C SLnSLnS

by (1.7), (1.5) and by what we just proved. So (SLn)
kS C (SLn)

k~lS for k g 3
and thus G = (SLn)

2S = SLnLn-xLnS by the above. Because of (1.5), 0 is an
isomorphism by induction and we apply the same argument for the case
n = 3 .

The theorem is now an immediate consequence of (2.3) and (1.4).
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