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ON INTERPOLATION POLYNOMIALS
OF THE HERMITE-FEJER TYPE II

S J . GOODENOUGH AND T.M. MlLLS

Given a real-valued function / on [-1,1] , n € N , and the

following partition of [-1, 1] :

-1 < x < x < . . . < x. := cos((2fc-l)ir/2n) < . . . < x < 1 ,
Yl W~"-L f\ _L

there exists a unique polynomial /?. 1 (/; a;) of degree not

exceeding kn - 1 such that

%n_xifi
 x

k) = /(^)
 f ° r fc = 1, 2, 3, .... n

and, for j = 1, 2 and 3 ,

RH-l(f'' Xfc) = ° for * " 1. 2, 3, .... n .

The polynomials i?, (/; x) for « = 1, 2, 3, ... are called

Hermite-Fejer type interpolation polynomials based on the zeros

of T (x) := cos(n cos" x) .

In this article, the authors first outline the development of

results pertaining to the (rate of) convergence of Hermite-Fejer

type interpolation polynomials. They then extend this

development by deriving a new pointwise error estimate. This

estimate represents a marked improvement on all previous error

estimates in that it reflects the interpolation conditions.
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Introduction

Let / be a real-valued function defined on [-1, l ] and, for

k = 1, 2, 3, . . . , n , denote by

(1) xk = COS((2/C-1)TF/2»)

the zeros of the Chebyshev polynomial of the first kind

(2) T (x) = cos n6 where -1 £ x = cos 6 £ 1 .

n

Then there exists a unique polynomial R, (f; x) of degree at most

kn - 1 satisfying the following conditions:

Rhn-l(fi xfc) = fty for * = 1. 2, 3, .... n

and, for j = 1, 2 and 3 ,
RH-l(f'' Xh) = ° fOr * = 1. 2, 3, .... n .

Henceforth, we shall refer to the polynomials R, Af; x) as

Hermite-Fejer type interpolation polynomials. These are so named due to

their close connection with the Hermite-Fejer interpolation polynomials

used by FejeY [J] in 1916 in presenting a new proof of the celebrated

Weierstrass approximation theorem.

Indeed, the Hermite-Fejer type interpolation polynomials were first

introduced by Krylov and Steuermann [5] (in 1922), who stated the following

THEOREM 1 [Krylov and S+euermann]. If f i C[-l, l] , then

lim H* (/)-/!!„ = 0 ,

where II'Ho,, denotes the uniform norm on C[-l, l] .

Unfortunately, the proof given by Krylov and Steuermann was incorrect.

A correct proof of this result was later furnished by Laden [6]. In 1959,

Stancu [70] estimated the rate of convergence of the Hermite-Fejer type

polynomials R, if; x) , n = 1, 2, 3, in terms of the modulus of

continuity of / , denoted by w(f; 6) , where

w(f; 6) = sup{|f(x)-f(y)\ : \x-y\ £ 6, x, y € [-1, l]} .

THEOREM 2 [Stancu]. There is a constant C± > 0 such that, if
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/ € C[- l , 1] , then

\\RUn_x(f)-f\L = Cflfi l/v£) for n - 1, 2, 3, ... .

Stancu's result was subsequently improved by Florica [2], vho proved

the following

THEOREM 3 [Florica]. There is a constant C> 0 such that, if

f 6 C[-l, 1] , then

\\Rkn^f)-fL - c
2
w(f~' (log w)/") f°r « - 2, 3, U, ... .

Now suppose ft is an increasing, subadditive, continuous function

defined on [0, <»[ with £2(0) = 0 . Indeed, it may be helpful to think of

ft as a generalised modulus of continuity. Furthermore, for each fixed but

arbitrary positive constant M , put

C,.(fi) := {/ € C[-l, 1] : w(f; 6) < MSl(6) for all 6 > 0} .
M

One of the authors, Mills [7], focussed attention on C. (fi) to obtain

an estimate (for the error incurred in replacing / by R, if) ) which

is best possible in a certain sense.

THEOREM 4 [Mills]. There exist positive constants C and C,

such that

n n

ltn-1 » k k=1

for « = 2, 3, 1*

In 1978, Prasad [8] established the following more general pointwise

estimate.

THEOREM 5 [Prasad]. There is a positive constant C such that, if

f € CJft) , n = 2, 3, It, ... and x I [-1, l] ,

It should be mentioned that this result was observed independently,

but not proved, by Goodenough and Mi I Is [3]. The main purpose of this
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paper is to establish

THEOREM 6. There exist positive constants a and o- such that,

if f <E C[-l, 1] , n = 2, 3, It, ... and x € [-1, l] ,

; (iy*)|/»)) •
Note that the above theorem represents an improvement on Theorem 5 in

that it reflects the interpolation conditions. More precisely, if

x = x, = cos((2fe-l)ir/2n) , then both sides of inequality (5) vanish

simultaneously.

Technical preliminaries

In this section, we shall unveil certain technical results which are

needed for the proof of Theorem 6. Firstly, the formula for the Hermite-

Fejer type interpolation polynomial i?. . (/; x) is given by:

(6) \r,-^f>*) = I rt*JV*>

where

(7)

(8) Fk(x) = (l/n
k) (l-x^) (l-x2) [Tn{x)l [x-xk))

(9) Gk(x) = ((Im
2-l) /6nk) (xx) 2

(10)

and

x, = cos((2fc-l)ir/2n) for k = 1, 2, 3, . . . , « .

We have already reported that if x = x̂ , for some

k = 1, 2, 3, ..., n , then both sides of the inequality (5) vanish

simultaneously. Accordingly, we may suppose that x t x, for
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k = 1, 2, 3, . . . , n . In this case, we define x. to be the node of
0

interpolation which is closest to x : if there are two such nodes, then

choose either one (but not both) to be x. . Clearly j = j(n) , and
d

p r o v i d e d x ^ l , j •* °° a s n •+<*>.

The following lemma is due to Kis ([4], p. 30).

LEMMA 1 [Kis]. For -1 £ x = cos 6 £ 1 ,

2u(f; (sin 6)/n) + 2u(f; l/w2) if k = j ,

\f[xk)-f{x)\ £ •

5u(/; (i sin 6)/n) + 13u(f; £2/n2) £/ i = |fe-j| > 1 .

The next lemma will be needed to establish the term C u(/; \T (x)\/n)

which appears as part of the upper estimate for |fl, -(/; x)-/(x)| in

Theorem 6.

LEMMA 2. If x = cos 9 , x, = cos 9, for k = 1, 2, ..., w and

x. is £fte node closest to x a then |9-9.| £ (ir/2n)|cos n9| .
J C

Proof. Suppose for example that 9 . < 9 £ (9 .+9 . )/2 . Then the

establishment of the required inequality follows from the easy observation

that the absolute value of the gradient of the line joining (9 ., 0J and
3

((9.+9. )/2, cos »(9-+9. )/2) does not exceed the absolute value of the

gradient of the line joining (9., o) and (9, cos «9) . Other cases may
J

be treated in a similar vein.

It is debatable whether the following lemma deserves its title.

Nonetheless, the elementary inequalities contained therein will smooth the

way for proving the all-important Lemma h.

LEMMA 3. If a , M [0, IT] , then

(i) 0 £ sin a £ 2 sin %(a+($) , and

(ii) sin %(a+B) 2 sin %|a-B| .

LEMMA 4. For k = 1, 2, ..., j-1, j+l, ..., n , F f e U ) , Cfc(x) and
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HAx) are all expressible in the form O(l)T (x) /i , where i = \k-j \
IS. it

P r o o f . Now

= [rn(x)U/nU]-(Sin2ek/[lt Sin2((9+6k)/2)))-[sin2e/[u sin2 ((9+6^/2)))

b y Lemma 3 .
K. " ) v. v. JJ

B u t

(11) (l/(sin'*((e-efe)/2))J = O(l)/(6-9k)
U = O(l)nk/ih , where i = \k-j\

so i t follows that

In particular,

Secondly,

(x)k/ik .

(x)k/i2

= (22-M(*)U/3«2) • [ s i n \ / (it sin2 ( (6+9 )̂ /2) ) ) • [l/ [sin2 ( (6-6fc) /2J ) j

os efc)/(Bin((8+efc)/2)Bin(|e-efc|/2))

+ \T (x)k/3n2)-\l/\sin2l[B-e)/2)\) by Lemma 3

{ li 2l f U 2l
S 22" (x) c /3i + 2" (x) c /3i for some absolute constant a .

Thus

GAx) = O(l)T(x)h/i2 .
is. 71
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F i n a l l y ,

S i n 2in2((e+ek)/2)sin2((e-ek)/2)))

£ [rB(or)1'/8n1|]«[l/[sinU((e-efc)/2))) by Lemma 3 .

Thus

In particular,

Hk(x) = 0{l)T(x)
k/ik by (11).

IlAx) = O(l)T(x)k/iZ

and the lemma is proved.

We now have the necessary machinery for the

Proof of Theorem 6

From the definition of ft .(f; x) , we have

It follows that

(12) \SUn_Afi x)-f(x)\

I \f{x)-f(x)\SAx)
k=l K K

* I \f[xk)-nx)\sAx)

= °t \f[xj)-f(x)\sAx) + \f{x)-f(x)\SAx) + I \f[x)-f(x)\SAx)
k=l K K 3 3 k=j+x *• K

where, as before, x. is the node closest to x ,
3

— w + l»n ' «-3 , say.

We now estimate W. , W and W in turn.
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Firstly,

(13) ft, = °i \f{x)-nx)\S Ax)
1 fe=l K K

= 0(l)Tjx)k 3£
n k=l

sin

by Lemmas 1 and It, where i = j - k

= 0(1) fr (x)k/n) £ w{f; [-Jl-x2/k) + {l/k2))
<• n J fe=l

by the methods of Saxena [9].

Similarly we may show that

(lU) w - od) fr (
3 I n

It remains only to estimate Vp . Now

(15) (* ]-/(x) |SAx)
d d

S 2w(/; |rn(a;)|/w) by Lemma 2.

We conclude that (12), (13), (l1*) and (15) prove Theorem 6.
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