
A NOTE ON EULER NUMBERS AND POLYNOMIALS

L. CARLITZ

1. Euler numbers. Let Em denote the Euler number in the even suffix

notation so that

(1.1) ( E + l ) m + ( £ ^ l ) m = 0 (m>0), £o = l,

where, as usual, after expansion of the left member Er is replaced by Er.

Nielsen [4, p. 273] has proved that

iΛ ov _ _ ί 0 (mod p) (p = l (mod 4))
\1. Δ) Ezm •= Ϊ

1 2 (mod ί ) (p ΞE 3 (mod 4)),

where i> is an odd prime such that £ - 112 m. The special case m=p-l is due

t o Ely [1, p, 341].

We wish to point out, to begin with, that (1.2) can be extended to give

(Λ ON Γ | 0 (mod pe) (psl (mod 4))
vl. o) Eim = \

ι 2 ίmodί#) (#s3 (mod 4)),

where i> is an odd prime such that (p-l)pe~1\2m.

To prove (1.3) we begin with the formula

(1.4)

where [5, p. 25]

(1.5) Em(x)= Σ (

is the Euler polynomial of degree m. It is clear from (1.4) that

We also recall that £5, p. 28]
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(1.7) Em(x) =
s

where

(1.8) Cm-ι = 2m(l-2m)-^

Consequently for # = 0, (1.5) and (1.6) imply

(1.9) 2 Σ ( - i r V m = £ W ( r + l ) = 2 - 2 m Σ ( 2

s = l s = 0 \ ώ

Clearly (1.9) yields the congruence

(1.10) 2

2 m H Σ ( - l Γ s s 2 m E £ 3 w l (mod (2r+l) 2 ) .

Now let ( ί - l ) / " 1 ^ ^ and pe\ (2r + l)2. Then f or £ + s it is evident that

s2m ΞΞ 1 (mod pe), while for p \ s we have s2m = 0 (mod jί>e). Thus the left member

of (1.10) is congruent to

(1.11) 2 Σ ( - l ) r " s (modi*).
l

Since p\2r + l implies r = γ(p — l) (mod />), it follows at once that (1.11) re-

duces to

(1.12) 2 ( 1 - 1 + ., , ,
2 (p = 3 (mod 4)).

Comparison of (1.10) and (1.12) leads at once to (1.3). This proves

THEOREM 1. If (p-ΐ)pe~ι\2m then (1.3) holds.

For a different proof of (1.3) see [2, p. 845].

2. Euler polynomials. Returning to (1.6) we put x = a, where a is a ra-

tional umber that is integral (mod p). Since for a = b (mod pe) we have

Em(a) = Em(b) (mod pe), there is no loss in generality in assuming that a is an

integer.

If we take r = ί - l , (1.6) becomes

P - 1

(2.1) 2Σ<
s=0
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Let a = Q (mod p) and assume that (p-l)pe'1\2m. Then (2.1) reduces to

(2.2) E2m(a)+E2m(a+p)==0 (mod pe)a

Since by (1.7) and (1.8), E2m(0) = 0 for m^Ί we therefore get from (2.2)

(2.3) E2m(a)=0 (mod/) (p\a).

For a = l (mod p) it is also clear that the left member of (2.1) is divisible by

pe since JÊ md) = 0 for m ^ 1 we get

<2.4) JB3m(β)Ξθ (mod/) (β = l (modj)).

In the next place, since

it follows from (1.6) that

(2.5) 2 Σ ( - l ) s ( α 4 - s ) 2

2w-l

= (1 + ( - iy)Eΐm{a) + ( - 1 / Σ ( .

Ξ (1 + ( - lΓ"1) j&mie) (mod r).

We take r odd, pβ\r and (p-Dp^^m; since

( Λ + ^ ) 2 m

Ξ α 2 m (mod/),

it follows at once from (2.5) that

(2.6) £2m(« +jf>) Ξ ̂ 2 m(β) (mod pβ),

where a is arbitrary (but integral (mod p)).

Thus to determine the residue of E%wkά) it suffices to take 1 ^a

Using (1.6) we have

which implies

(2.7) 2 Σ ( - If-'(a + sfm = ( - lVEzmia) •

(mod

If we assume that (p-l)pe~1\2rn and pe\{2a + 2r+l)2 then (2.7) becomes
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(2.8) 2 Σ ( - i r S ( - l f £ M ( β ) + £ ! f f l (modpe).
8=0

P+Cl+S

Clearly the left member of (2.8) is equal to

(2.9) 2 Σ ( - D f l + r ~ s ~ 2 Σ ( - Da+r~s.
8 = 1 8=1
p+s

Comparing the first sum in (2.9) with (1.11) and using (1.3) it is clear that

(2.8) becomes

( - l ) r £ 2 m ( α ) Ξ - 2 Σ ( - l ) β + Γ - s

s = l

and therefore finally

(2.10) E2m(a) Ξl + (-l) f l (mod pe) {l^atkp-1).

We may state

THEOREM 2. If (β- Dp6'112 m and p\ a then

(2.11) E2m(a) = 1 + ( - l ) c (mod pe)9

where a = c (mod p), 1 ̂  c ^ p - 1 if p\a, then (2.3) holds.

It is evident that (2.11) includes (2.4) also it is not difficult to show that

(2.11) includes (1.3).

3. Additional results. If in (1.6) we replace m by 2m —1 we get using

(1.5)

(3.1) 2Σ(-l) s(fl + sΓ 1 =fi w _ 1 ( f l ) (mod
s = 0

Hence if (p-\)pe-χ\2m and ί β |2o + 2r + l, (3.1) implies

(3.2) 2 Σ - ^ = ^ - = £:2m.1(α) (mod/).
s = 0 U-tS

P+α+3

In particular when a = 0, it follows from (1.8) that

(3.3) Σ ^ L L = C2 m- I = ( l - 2 2 m ) ^ ( m o d / ) ;
P + 5

the special case
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(3. 4) 2 — ~ ~ Ξ Com-i (mod ί ) (p - 1! 2 m)
S

may be noted. We also remark that for a= γ9 (3.2) becomes

(3.5) Σ 4=^r- = 0 (mod/).

For formulas like (3.4) see Glaisher [3].

If {alp) denotes the Legendre symbol, then

Thus (1.6) implies

(3.6) 2 Σ ( - l ) s ( 4 i ) = ω f l ) + ( - l Γ 1 ^ + ̂ ) (mod/),

where m is an odd multiple of -^-{p — Dp6"1. Now let r be odd, pe\r\ then

(3.6) yields

(3.7) 2-ι(-l) I—v—j^Emίa) (mod/).
s=0 \ p /

It follows at once from (3.7) that

(3.8) Em{a + p)=Em{a) (mod/).

Moreover it is clear from (3.7) that {r-pt)

t-lp-l

p

P i t=o \ p /

(mod

(3.10) Em(0) Ξ Σ f - l f ί i ) (mod / ) .

For >̂ = 1 (mod 4), both members of (3.10) vanish, while for p = 3 (mod 4)

SO

(3.

In

that

9)

particular

I

for a = 0, (3.9) becomes

a + i
P

https://doi.org/10.1017/S0027763000018043 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000018043


40 L. CARLITZ

we get

(3.11) C , Ξ 2 Σ (-l)s(-i-) (mod/).
s=Q \ p /

Let l ^ a ^p-ll t h e n by (3.9)

p + α - l

£ m ( α ) = ( - ! ) * Σ ( - 1

Comparing with (3.10) we get

(3.12) Em(0) - Em(a) s 2( - l ) β Σ ( - D s (- | ) (mod / ) .

We may state

THEOREM 3. If m is an odd multiple of \(p-l)pe~\ then (3.8), (3.10)

and (3.12) hold.

In particular, (3.12) implies

(3.13) Cm-Em = 2(-l)i{p*1) Σ ( ~ 1 ) S ( - l r ) (rnoάpe)9

which includes (3.11).

4. Eulerian numbers and polynomials. It is of interest to compare (2.3)

with the following known results for Bernoulli polynomials.

(4.1) Bm{a)=0 (mod/) (p€\m, p - l \ m),

(4.2) Bm(a) + j - l = 0 (mod pe) {(p-l)pe\m),

where the rational number a is integral (mod p). However it seems more in-

structive to discuss the "Eulerian" numbers φm(O defined by

(4.3) j ^ - = Σ ί m ( C ) ^ - (C * 1),

and the polynomials

(4.4) φm(x,C) = (
=Q \ S

For a detailed study of φm(ζ) see [2]. We shall suppose that the parameter C
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is an /-th root of unity, where / ̂  2.

It is an immediate consequence of (4.4) that

(4.5) Φm(x + 1, O-Cφm(x, C) = ( l -

(Since φm(x, -1) = Em(x), it is clear that (4.5) reduces to (1.4) when C= - 1 ) .

By means of (4.5) we readily obtain

(4.6) φm(x + n C) - Crψm(x, 0 = (1 - 0 Σ V " 1 " ^ + s)m.
s = 0

Substituting from (4.4) it is evident that (4.6) implies

(4.7) (l-ζr)φm(x, O+

Now replace x by a rational number a that is integral (mod p). The

number ψm(C) is in the field R(O, where R is the rational field; more precisely

it is of the form αrm/(l —Om, where am is an integer of R(ζ). If we assume

that (p, 1-C) = (1), then φm(O is integral (mod p) the same is therefore

true of φ?n(a, C). In the next place (4.7) implies

(4.8) (1-O0«(*, O s d - O s V - ^ U + sΓ (mod r),

provided (r, 1-C) = (1) Let us now assume that (p-l)pe~ι\m and pe\r.

Then (4.8) reduces to

(4.9) (l-Cr)φm(a, C ) s ( l - C ) Σ C^1"5 (mod/X
5=0

p+a+s

If we suppose, as we may, that I \ r, then it follows readily from (4.9)

that

<4.10) φm{a +p, C) = φm(a, 0 (mod pe).

It accordingly suffices to assume that 0 ̂  a ̂  p — 1.

In the first place for <z = 0, (4.9) reduces to

(4.11) (l-OMOaίl-OΣC-1-' (mod/).
s = 0

We shall take r s l (mod /) then (4.11) gives
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where r=tp. A little computation now gives

(4.12) φm(C) = 1ι^ςP

Next for 1 ̂  α i^p-1, where again r = l (mod /), r-tp, it follows from
(4.9) that

α+r- l α-1 ί
i ( f\ _ V βΌ+r-l-s SΓΛ -a+r-l-s

s=0 s=0

Hence using (4.10) we get

(4.13) φm(a, C ) Ξ 1 - ?~X^zfp (mod p*\

where a = c (mod p), 1 ̂  c i= p — 1. This completes the proof of

THEOREM 4. Let (p - Dp*'11 m <zw<i let a = c (mod i>), w/^re 0 ̂  c ^p-l.

Then if c^O, (4.13) holds, while for c = 0 we have

(4.14) φm(a, C) ΞΞ X^SζP ( m o d ^ (^l«)

It is clear that for C= - 1 , (4.13) reduces to (2.11) and (4.14) reduces to

(2.3). For the special case a = 0 of (4.14) see [2, p. 842].

If α: is an integer of i?(C), we may again employ (4.8). Let p be a prime

ideal of R(C), Np=pf, where (p, I) =1. Then if we assume that

(4.15) (iNφ-D^'Mm,

and pe I r, we get

(4.16) (1 - C) φm(a, C) = (1 - C) Σ C"1-5 (mod })').

It follows that if TΓ e |> then

(4.17) φm{a + τr?. C) ΞΞ φm(ac, C) (mod })e),

and therefore
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(4.18) φm(a +p, C) = φmU, C) (mod pe).

Now if u is congruent to a rational integer (mod p), then, in view of (4.17),

(4.13) holds. On the other hand, when a is not congruent to a rational integer,

then in the right member of (4.16) the condition ί> + a + s is satisfied automati-

cally and we get (r = l (mcd /))

φm(a, C) = ΣC S = - \ ^ f = 1 (mod pe).

We may state

THEOREM 5. Let a be an integer of R(O, p \ I, and assume that (4.15)

is satisfied, where p is a prime ideal of R(C), Nχ>-pf. Then if a is congruent

to a rational integer a (mod p), (4.13) and (4.14) hold; otherwise we have

(4.19) φm(a, C ) Ξ 1 (mod pe).

In particular if Np=p, (4.13) and (4.14) apply.
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