

Summer Conference 2023, 3-6 July 2023, Nutrition at key stages of the lifecycle

The double-burden of functional vitamin B¹² deficiency among nonsupplemented vegan adults: a systematic review and meta-analysis

N. Ali¹, L. Helen¹, W. Martin², H. Lucian³ and R.A. Kourosh¹

¹Department of Nutritional Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK, ²Norwich Research Park, Quadram Institute Bioscience, Norwich, UK and

³Laboratory of Clinical Biochemistry and Metabolism, Department of General Paediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany

Plant-based diets, including vegan diets, are associated with significant health benefits but can also increase the risk of certain nutritional deficiencies, particularly vitamin B¹²deficiency (1). Pregnant and lactating vegan women are at an even more elevated risk of B¹² deficiency due to increased demand from the mother and foetus which, if not met⁽²⁾, can have severe health implications across the life course⁽³⁾. We carried out a systematic review and meta-analysis to develop a consensus on vitamin B¹² status among vegans and, more specifically, yegan women of childbearing age, using functional and static biomarkers.

A comprehensive search strategy of PubMed, Web of Science and Scopus was undertaken to identify studies comparing B¹² Status among vegans versus non-vegan controls. After removing duplicates, two independent reviewers used Rayyan software to screen articles based on a comprehensive set of inclusion and exclusion criteria. Specific study characteristics and outcomes, including static - serum B¹² & holotranscobalamin - and functional indicators of B¹² status - concentrations of methylmalonic acid and/or homocysteine – of participants who supplemented with B^{12} were extracted. We conducted a random-effects meta-analysis framework for each outcome and undertook subgroup analyses to evaluate the influence of

 B^{12} supplementation on B^{12} status among vegans.

A total of 1,894 records were identified. Only 13 studies were eligible and included in the systematic review & meta-analysis. Only one study provided gender-specific results for vitamin B¹² status. Our meta-analysis of B¹² status showed a significant trend towards lower serum B^{12} and holotranscobalamin concentrations (mean difference: -158 pmol/L | p = 0.05 & -13.1 pmol/L | p = 0.08, respectively) and higher methylmalonic acid and homocysteine (mean difference: +148 nmol/L | p = 0.01 & +3.76 umol/L | p = 0.03, respectively) among vegan participants compared to omnivores. Sub-group analysis showed significant, consistent, and physiologically relevant improvements in all B¹² biomarkers between supplemented and non-supplemented vegan participants.

This is the first meta-analysis to highlight a significant and physiologically relevant decrease in vitamin

B¹² status between vegans and non-vegans using static and functional biomarkers. Furthermore, the findings suggest that B¹² supplementation can improve B^{12} status, as evidenced by both static and functional biomarkers of B^{12} status. Alarmingly, in light of B^{12} deficiency rates of 62% among pregnant vegetarian women (4), only one study presented results for functional vitamin B¹² status among vegan women of childbearing age. These findings underscore the importance of urgent research among this at-risk group, regularly monitoring B¹² status and the need for appropriate use of B¹² supplements among vegans, particularly those of child-bearing age. Further research is underway to explore the knowledge, attitudes and practices of B¹² and supplementation among UK-dwelling vegan women of child-bearing age.

References

- Bakaloudi DR, Halloran A, Rippin HL, et al. (2021) Clin Nutr 40, 3503–21.
 Obeid R, Murphy M, Solé-Navais P, et al. (2017) Adv Nutr 8, 971–79.
 Rogne T, Tielemans MJ, Chong MF-F, et al. (2017) Am J Epidemiol 185, 212–23.
- 4. Pawlak R, Parrott SJ, Raj S et al. (2013) Nutr Rev 71, 110e7