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1. Introduction. In [8] and [9] we initiated a study of lattice theory by means of Baer
semigroups. Basically, a Baer semigroup is a multiplicative semigroup with 0 in which the
left annihilator L(x) of each element x is a principal left ideal generated by an idempotent,
while its right annihilator R(x) is a principal right ideal generated by an idempotent. By [8,
Lemma 2, p. 86], L(0) has a unique idempotent generator 1 which is effective as a two-sided
multiplicative identity for S. For any Baer semigroup S, if we use set inclusion to partially
order both $£ = i f (5) = {L(x) \ xeS} and ^ =®(S) = {R(x) \ xeS}, we have by [8, Theorem
5, p. 86], that £f and Si form dual isomorphic lattices with 0 and 1. The Baer semigroup S
is said to coordinatize the lattice L in case -£?(S) is isomorphic to L. In connection with this,
it is important to note that by [9, Theorem 2.3, p. 1214], a poset P with 0 and 1 is a lattice if
and only if it can be coordinatized by a Baer semigroup.

Our goal in this paper is three-fold: (i) to show that a complete lattice is infinitely distri-
butive if and only if it can be coordinatized by a decreasing Baer semigroup (see Definition
4.1); (ii) to begin an investigation of the algebraic properties of this class of semigroups;
(iii) to use the Stone representation theorem to obtain a representation for complete infinitely
distributive lattices.

2. Basic terminology. Let P be a partially ordered set with 0 and 1. A mapping (j>:
P -»P is called isotone if e ^ / impl ies that e<f) ^ftj) for all e,feP; it is called residuated if it
is isotone and there is a necessarily unique isotone mapping <f>+:P->P (called the residual
map associated with <f>) such that, for each eeP,

e<j>+<t>-£e^e<f)4>+. (1)

It follows from this that the pair (<p, (f>+) sets up a Galois connection ([2], p. 124) between P
and its dual. It is now immediate that if e = Va ex exists in P, then e<j) is the join of the family
{ea(j>}; dually, if e0 = /\aex exists in P, then eo(j)

+ is the meet of {ex(j>
+}. The set S(P) of

residuated maps on P forms a semigroup with respect to function composition, and by [9,
Theorem 2.3, p. 1214], this semigroup is a Baer semigroup if and only if P is a lattice. For a
more complete description of residuated maps we refer the reader to [4].

The residuated map (f> on P is called range-closed if its range is a principal ideal of P;
it is called dual range-closed if the range of its associated residual map <f>+ is a dual principal
ideal of P.

Suppose now that S is a Baer semigroup and P = S£(S). Then each x in 5 induces a
residuated map <j>x: P -* P by the rule

) , (2)

where e is an idempotent generator of Se; furthermore, by [8, Theorem 25, p. 94], the map
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X-KJ)X is a semigroup homomorphism of S into S(P) and {^ | x e S} is a Baer semigroup
which coordinatizes P. An element x of 5 is called range-closed or dual range-closed according
to whether <j>x has the indicated property in S(P).

While we are at the business of introducing terminology, let us point out that a lattice L
is called infinitely distributive if, for any family {ex} of elements of L, the following infinite
distributive law holds both in L and in its dual:

If Vaea exists, then, for each xeL, Va(ea AX) exists and equals (Vaea) AX. (3)

3. Decreasing residuated maps.

DEFINITION 3.1. Let P be a partially ordered set. A mapping <j>: P -* P is called decreasing
if e ^ e(j> for all eeP, and increasing if e ^ e<£ for all e e P .

LEMMA 3.2. /4 residuated map <j> on a partially ordered set P is decreasing if and only if
0 + is increasing.

Proof. If e ^ e<j), then e(j)+ ^ e</>$+ ^ e; conversely, e£e<j)+ implies that ecj) ^ e(j>+(j) ^ e.

LEMMA 3.3. For a residuated map 4> on the partially ordered set P, the following conditions
are equivalent:

(i) (f> is a decreasing idempotent;

(iv) $ + is an increasing idempotent.

Proof, (i)o(iv). This follows from Lemma 3.2 and [8, Lemma 11, p. 89].
(iv) => (ii). If x ^ x<f>+, then x<j> ^ X(f>+<t> ^ x. Hence

xcj) ^ x<l>*<t> = x<j>+<t>(t> = (x<t>+4>)<l> ^ x $ o r JC<£ = x<j)+(j).
( i i ) = > ( i i i ) . Kx<l> = x<l>+<p, t h e n x(/>+ =x<}>+<f><t>+ =xH+-
(iii)=>(iv). If x # + = x-</)0+, then by (1), x ^ JC0^>+ = xcj)+, and clearly

x 0 + ^ + =x4>+4>(j>+ = x<f>+.

Combining the above lemma with [9, Lemma 3.2, p. 1215], we now have

COROLLARY 3.4. Let 0 be an idempotent decreasing residuated map on the lattice L.
Then

(i) (j> is range-closed if and only ifx(j> = xA 10 for all xeL,
(ii) (j) is dual range-closed if and only ifX(j)+ = x v 0<f>+ for all xeL.

DEFINITION 3.5. A congruence relation 0 on a complete lattice L is called complete if the
condition ea = x (0) for each index a implies that \Jaex = x (0) and A , e , = J t (©)•

We now establish a one-one correspondence between decreasing idempotent residuated
mappings and complete congruences, thus generalizing a theorem of G. Bergmann [1].

THEOREM 3.6. Let 0 be a complete congruence on the complete lattice L. For each eeL,
set e(p = /\{xeL | x = e (0)}. Then <(> is a decreasing idempotent residuated map on L whose
associated residual map is given by e<j>+ = \J{xeL\x = e (0)}. Indeed, there is a one-one
correspondence between complete congruences and decreasing idempotent residuated maps.
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Proof. Let 0 be a complete congruence on L, and define <f>, </>+ as above. Since e = e(0),
we clearly have e<j) ^ e ^ e<f>+, and, since 0 is complete, we also have e = e<f> = e$ + (0 ) .
Thus y is congruent to any one of e, e§ or e</>+ if and only if e4> ^ y ^ e<f>+. It is immediate
that ecj) = e(j>$ = e</>+$ and e$ + = e $ + $ + = e<jxj>+, so </> is a decreasing idempotent element
of 5(L) with 0 + its associated residuated map.

Suppose conversely that 0 is a decreasing idempotent element of S(L). Notice that, by
Lemma 3.3, e</> =/</> if and only if e</>+ =/<£+. Thus, if we define 0 by the rule

e = f ( 0 ) <=> e<(> =f<j>,

it will follow that, if ea = x (0) for each index a, then

ea<t> = x<t>=> ( V . ex)ct> = V a ( e a tf>) = xtf>,
ea</>+ = xct>+ ^ ( A , O < A + = / U « . * + ) = *tf>+,

so that we may conclude that \lCLeOi= x (0) and f\aea= x (0). Therefore 0 is a complete
congruence. The proof is completed by noting that x = y (0) if and only if x<f> = y(f>, so that
0 is determined by <j>.

COROLLARY 3.7. If 0 is a complete congruence on L and if ea=fa (0) for all a, then
M.ea s Va/a (0) W Aaea EE A a / a (0).

Proof. With ^ and </>+ defined as in the theorem, we have

( V . ex)<j>

4. Decreasing Baer semigroups.

DEFINITION 4.1. A Baer semigroup S will be called decreasing if for each xeS the in-
duced residuated map (j>x on $£(S) is decreasing. Then S is decreasing if and only if SeeSC
together with xeS implies that (Se)$x = LR(ex) ^ Se.

We shall show in §5 that, if S is decreasing, then S?(S) is infinitely distributive, and
that every complete infinitely distributive lattice arises in this way. Meanwhile, we begin an
investigation of the semigroup properties of decreasing Baer semigroups.

THEOREM 4.2. For a Baer semigroup S the following conditions are equivalent:
(i) S is decreasing.

(ii) For each xeS, L(x) is a two-sided ideal.
(iii) For each xeS, R(x) is a two-sided ideal.
(iv) xy — 0 implies that xSy = (0).
(v) See£f(S) with e = e2 implies that ex = exefor all x in S.

(vi) eSe@(S) with e — e1 implies that xe — exefor all x in S.

Proof, (i) => (ii). Let Se = L{x). Then for each y e S, LR(ey) g Se implies that ey e L(x).
It follows that Se is a two-sided ideal of S.

(ii)=>(iv). If L(y) is a two-sided ideal, then xy = 0 implies that xeL(y), so, for each
aeS, xaeL(y) implies that xay = 0. It follows that xSy = (0).
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(iv) => (v). Suppose (iv) holds. Let Se = L[y) with e = e2. Then ey = 0 implies that
exy = 0 for all xeS, so exe£0>) and hence ex = exe.

(v) =*• (i). If ex = exe, then ey = 0 implies that exy = exey = 0, so R(e) ^ i?(ex). It
follows that (Se)cf)x = LR(ex) g LR(e) = Se( and hence 5 is decreasing.

This establishes that (i) o (ii) o (iv) •«*• (v). The remaining equivalences follow from the
symmetry of (iv).

COROLLARY 4.3. The multiplicative semigroup of a Baer ring is decreasing if and only if
every idempotent is central (in the sense that ex = xe for all x).

DEFINITION 4.4. A Baer semigroup S is called strongly regular [9, p. 1218] if Sxe&(S)
and xSe@(S) for every xeS.

We may now state

COROLLARY 4.5. Every decreasing strongly regular Baer semigroup S is a union of groups.

Proof. Such a semigroup is regular, and, by Theorem 4.2, every idempotent e commutes
with every x in S. Hence by [3, Theorem 1.17, p. 28], S is an inverse semigroup. It is now
easily seen that for each idempotent e, {xe S| Sx = Se} is a group. Since Sis strongly regular,
this completes the proof.

As a final item concerning the nature of decreasing Baer semigroups we have

THEOREM 4.6. For a Baer semigroup S, the following conditions are equivalent:
(i) S has no non-zero nilpotent elements.
(ii) L(x) = R(x)for each xeS.

(iii) S is decreasing and has no non-zero nilpotent ideals.

Proof. (i)=*-(ii). If xy = 0, then (yx)(yx) = y(xy)x = 0 shows that yx = 0; hence
R(x) S L(x). Similarly, L(x) £ R(x).

(ii) => (iii). If L{x) = R(x) for each xeS, then L(x) is a two-sided ideal, so by Theorem 4.2,
S is decreasing. In order to show that there are no non-zero nilpotent ideals, it clearly suffices
to show that if A is an ideal of S1 such that A2 = (0), then A = (0). If A is such an ideal and
xeA, then x2eA2 = (0) implies that x2 = 0. Now if Se = L(x) with e = e2, then since
L(x) = R(x), xe = 0. Hence xeL(x) = Se implies that x = xe = 0; consequently A = (0).

(iii) => (i). It suffices to show that x2 = 0 implies that x = 0. Now, if x2 = 0, then
SxS is an ideal and since S is decreasing,

(SxS)(SxS) = S(xSSx)S = (0),

by Theorem 4.2(iv). By (iii), SxS = (0); hence x = 0.

5. Infinitely distributive lattices. In this final section we tackle the problem of linking
Baer semigroups with infinitely distributive lattices. The key item is provided by Corollary 4.3
which states that, if <f> is a decreasing range-closed idempotent, then xcj) = x A \<p holds for all
x. It follows that if x = V« xx exists, then x A 10 is the join of the family {xa A 1 <j>}. Dually,
if <f> is a decreasing dual range-closed idempotent and if y = Ai7a exists, then y v 0 $ + is the
meet of the family {ya v0</»+}. If we apply this to a decreasing Baer semigroup S, then by
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[9, Lemma 3.1, p. 1214], See^(S) implies that e is range-closed, and so for each SxeS£,
{Sx)(j>e = SXA Se. It follows that if Va Sxa exists in Se{S), then (Va Sxx) A Se is the join of the
family {Sxa A Se}, and this shows that the infinite distributive law (3) of §2 holds. A dual
argument shows that 0t(S) satisfies (3), and the dual isomorphism between ^ (S) and i?(S)
now shows J2?(S) to be infinitely distributive.

Suppose next that L is a complete infinitely distributive lattice. Then, for each eeL, the
mapping xfie = x A e is residuated with the associated residual map given by

W? = V{yeL\yAeg:x}.

Dually, the map xve = /\{yeL\yve}z x} is residuated with xv* = x ve . Let S denote the
semigroup formed by the decreasing residuated maps in L. By [8, Lemma 13, p. 89], for

i/^ = 0 if and only if li>^0</> + .

Now lij/ 5; 0</>+ holds if and only if ijj = ^/io^+» a °d so the left annihilator of </> is 5^0«+-
Similarly, i?(</>) = v1<pS, showing that S is a Baer semigroup. Furthermore, as in the proof of
[8, Theorem 15, p. 90], the mapping Sfie -* e is an isomorphism of JSf(S) onto L. It follows
that 5 coordinatizes L and that S is decreasing. We summarize the situation in the next
theorem.

THEOREM 5.1. If S is a decreasing Baer semigroup, then -S?(S) is an infinitely distributive
lattice. Every complete infinitely distributive lattice may be coordinatized by a decreasing Baer
semigroup.

COROLLARY 5.2. A finite lattice is distributive if and only if it can be coordinatized by a
decreasing Baer semigroup.

If L is a complete infinitely distributive lattice, we now seek a representation for L
analogous to the Stone representation theorem for Boolean algebras. By [5, Corollary 2,
p. 79], L may be regarded as a complete sublattice of a complete Boolean algebra A (with the
same zero and unit elements). Hence by [7, Theorem 3.8, p. 9], there is an increasing idem-
potent residuated mapping 9 on A such that (i) range 6 = L, and (ii) the mapping a -* 0a is a
semigroup isomorphism of S(L) onto S[A; L], where S[A; L] denotes the set of all <f> e S(A)
such that range <f) £ L and range (j>+ £ Z-. Notice now that range ^ £ L if and only if
<j> = (j)6 and range <f>+ £ L if and only if $ + = 4>+9+, i.e. if and only if <f> = 6<j). It follows
that S[A; L] = 6S(A)6. We have yet to relate this to some sort of representation theorem for L.

The crucial item here is provided in [6]. By the Stone representation theorem [10], if A
is a Boolean algebra, then there is a Boolean space (i.e., a compact, totally disconnected
Hausdorff space) X such that A is isomorphic to the algebra of all clopen subsets of X. Here
the word clopen denotes a set which is both open and closed. A relation R on X is called
Boolean if the inverse image under R of a clopen subset of Z i s clopen, while the direct image
of a point in disclosed. It follows quickly from [6, Theorem 8, p. 233], that S(A) is isomorphic
to the semigroup B{X) formed by those relations R on X such that both R and R~l are
Boolean. By [11, Theorem 9, p. 116], every increasing residuated map on A may be regarded
as a reflexive transitive relation R in B(X). This proves
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THEOREM 5.3. Let Lbea complete infinitely distributive lattice. Then there exists a Boolean
space X and a reflexive transitive relation R in B(X) such that S(L) is isomorphic to R[B(X)]R.

COROLLARY 5.4. If L is a finite distributive lattice, there exists a set X and a reflexive
transitive relation R on X such that S(L) is isomorphic to R[!%{X)]R, where &(X) denotes the
semigroup of relations on X.

We close this paper by posing a question: Is it possible to obtain a representation in the
spirit of Theorems 5.1 and 5.3, for completely distributive lattices {see [2], p. 119)?
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