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Abstract

Let G be a finite group and let p be a prime factor of |G|. Suppose that G is solvable and P is a Sylow
p-subgroup of G. In this note, we prove that P CG and G/P is nilpotent if and only if ϕ(1)2 divides
|G : kerϕ| for all irreducible monomial p-Brauer characters ϕ of G.
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All groups throughout this note are finite. Gagola and the second author in [2] proved
that a group G is nilpotent if and only if χ(1)2 divides |G : ker χ| for all characters
χ ∈ Irr(G). Recently, under the hypothesis that G is solvable, Lu proved, in [5], that
G is nilpotent if and only if χ(1)2 divides |G : ker χ| for every monomial character
χ ∈ Irr(G). Also recently, the authors with Cossey and Tong-Viet proved, in [1], a
Brauer version of the theorem of Gagola and the second author. In particular, the
following result was obtained. Let p be a prime and let G be a group. Then φ(1)2

divides |G : kerφ| for all φ ∈ IBr(G) if and only if G has a normal Sylow p-subgroup P
and G/P is nilpotent.

Inspired by these results, we consider monomial Brauer characters in this note. Our
goal is to prove the following theorem.

Theorem 1. Suppose that G is a solvable group and p is a prime divisor of |G|. Fix
P ∈ Sylp(G). Then P is normal in G and G/P is nilpotent if and only if ϕ(1)2 divides
|G : kerϕ| for all monomial ϕ ∈ IBr(G).

Notice that the hypothesis of G being solvable cannot be dropped. For example, let
S5 be the symmetric group of degree five and let p = 2. It is not difficult to see that
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S5 has no subgroup of order 30, and it follows that all nonlinear irreducible 2-Brauer
characters of G are not monomial since they are of degree four; however, S5 has no
normal Sylow 2-subgroup.

Now, we give the proof of Theorem 1.

Proof of Theorem 1. Suppose that P is normal in G and that G/P is nilpotent. Using
[1, Lemma 3.4], ϕ(1)2 divides |G : kerϕ| for all ϕ ∈ IBr(G).

Conversely, assume that ϕ(1)2 divides |G : ker ϕ| for every monomial Brauer
character ϕ ∈ IBr(G). We work by induction on |G|. First, suppose that Op(G) > 1.
Note that G/Op(G) satisfies the induction hypothesis. Thus, by induction, P/Op(G)
is a normal Sylow p-subgroup of G/Op(G). This implies that P = Op(G) is a normal
Sylow p-subgroup of G, and we have the result.

Thus, we may assume that Op(G) = 1. If we can prove that G is a p′-group, then
we may apply Lu [5, Theorem 1.2] and that result gives the desired conclusion. With
this in mind, we work to prove that G is a p′-group.

Let M be a minimal normal subgroup of G. Since Op(G) = 1, it follows that M is a
p′-subgroup of G. We see that G/M satisfies the induction hypothesis. By induction,
PM/M will be a normal Sylow p-subgroup of G/M and G/PM will be nilpotent. Write
PM = N. The Frattini argument implies that

G = NNG(P) = MPNG(P) = MNG(P).

Suppose that M1 , M is another minimal normal subgroup of G. We see that M1
is also a p′-subgroup of G. We claim that M1 ∩ MP = 1. If not, then M1 would
be contained in MP. Since M is the normal p-complement of MP, we would have
M1 ≤ M and that is a contradiction. Applying the previous argument with M1 in place
of M, we see that G = M1NG(P). Since M1 and MP are normal subgroups that intersect
trivially, they centralise each other and, in particular, M1 centralises P. It follows that
G = NG(P) and P is normal in G. Using the fact that Op(G) = 1, we obtain P = 1, and
G is a p′-group, as desired.

Therefore, we may assume that M is the unique minimal normal subgroup of G.
Since G is solvable, M is an elementary abelian q-group for some prime q , p. As
G = MNG(P) and M is an abelian normal subgroup of G, we find that M ∩ NG(P) is
normal in G. Because M is minimal normal, either M ∩ NG(P) = 1 or M ≤ NG(P). If
M ≤ NG(P), then G = NG(P) and P is normal in G. Since Op(G) = 1, this shows that
G is a p′-group, as desired. Thus, M ∩ NG(P) = 1.

Observe that NG(P) normalises CP(M) and M normalises CP(M). Hence CP(M) is
normal in G = MNG(P). As Op(G) = 1, we conclude that CP(M) = 1. Therefore, P
acts faithfully on M and thus it acts faithfully on IBr(M) = Irr(M).

Applying Isaacs’ large orbit result [4, Theorem B], we see that there exists a
character λ ∈ IBr(M) so that |CP(λ)| <

√
|P|. This gives |P : CP(λ)| >

√
|P| and so

|P : CP(λ)|2 > |P|. Write T for the inertia group of λ in G and write S = MCP(λ).
Observe that S is the stabiliser of λ in N and S ≤ T . In particular, S = T ∩ N. Since
N/M is the Sylow p-subgroup of G/M, it follows that S/M is the Sylow p-subgroup
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of T/M. Thus, |N : S | = |P : CP(λ)|. We deduce that

|G : T |p = |P : CP(λ)| >
√
|P| =

√
|G|p.

In particular, |G : T |2 does not divide |G|.
Observe that M is complemented in T . It follows from a result of Gallagher (see

[3, Lemma 1] that there exists some Brauer character µ ∈ IBr(T ) such that µM = λ. By
the Clifford correspondence for Brauer characters [6, Theorem 8.9], ϕ = µG ∈ IBr(G).
Since µ is linear, this implies that ϕ is monomial and ϕ(1) = |G : T |. We have seen that
|G : T |2 does not divide |G| and so this contradicts the hypothesis that the squares of
the degrees of the monomial Brauer characters divide |G|. Therefore, we can conclude
that G is a p′-group, and this gives the desired conclusion. �
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