
J. Fluid Mech. (2022), vol. 947, A43, doi:10.1017/jfm.2022.664

Weak nonlinearity for strong non-normality
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We propose a theoretical approach to derive amplitude equations governing the weakly
nonlinear evolution of non-normal dynamical systems, when they experience transient
growth or respond to harmonic forcing. This approach reconciles the non-modal nature of
these growth mechanisms and the need for a centre manifold to project the leading-order
dynamics. Under the hypothesis of strong non-normality, we take advantage of the fact
that small operator perturbations suffice to make the inverse resolvent and the inverse
propagator singular, which we encompass in a multiple-scale asymptotic expansion. The
methodology is outlined for a generic nonlinear dynamical system, and four application
cases highlight common non-normal mechanisms in hydrodynamics: the streamwise
convective non-normal amplification in the flow past a backward-facing step, and the Orr
and lift-up mechanisms in the plane Poiseuille flow.
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1. Introduction

Nonlinear dynamical systems can have one or several equilibrium solutions, which form
one of the building blocks of the phase space (Strogatz 2015). The linear stability of
an equilibrium can be deduced from the eigenvalues of the linearised operator: linear
modal analysis thus helps to detect bifurcations and distinguish between linearly unstable,
neutral (marginally stable) and strictly stable equilibria, when the largest growth rate is
positive, null and negative, respectively. The linear modal analysis sometimes remains too
simplistic, however, and has therefore been generalised over the last decades to account for
nonlinear (Stuart 1960) and non-modal (Trefethen et al. 1993) effects, although these two
types of correction have generally been opposed, culminating in F. Waleffe’s paper entitled
‘Nonlinear normality vs non-normal linearity’ (Waleffe 1995). The objective of the present
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study is precisely to contribute to reconciling nonlinearity and non-normality, and to
rigorously deriving weakly nonlinear amplitude equations ruling non-normal systems.

1.1. Strong non-normality
Upon the choice of a scalar product, a linear operator is non-normal if it does not commute
with its adjoint. Consequently, its eigenmodes do not form an orthogonal set, and the
response to an initial condition or to time-harmonic forcing may be highly non-trivial
(see Trefethen & Embree (2005) for an exhaustive presentation). This response generally
results from an intricate cooperation between a large number of eigenmodes. The leading
(least stable or most unstable) eigenvalue solely provides the asymptotic (long-time) linear
behaviour of the energy of the unforced system. At finite time, restriction to the leading
eigenmode is generally irrelevant. In particular, a negative growth rate for all eigenvalues
is not a guarantee for the energy to decay monotonically for all initial conditions: some
small-amplitude perturbations may experience a large transient amplification (figure 1a).
The same is true for systems subject to harmonic forcing: they may exhibit strong
amplification, much larger than the inverse of the smallest damping rate, and at forcing
frequencies unpredictable at the sight of the spectrum (figure 1b).

Non-normal operators are encountered in various fields. In laser physics (see Trefethen
& Embree 2005, § 60), H.J. Landau described non-normality by developing the concept
of the pseudospectrum, as a pertinent alternative to modal analysis (Landau 1976, 1977).
Non-normality in an unstable laser cavity results in a substantial increase in the linewidth
of the laser beam signal compared with a perfect resonator (Petermann 1979). In
astrophysics, Jaramillo, Macedo & Sheikh (2021) recently used a pseudospectrum analysis
to study the stability of black holes. In network science, Asllani, Lambiotte & Carletti
(2018) have shown that many directed empirical networks in various disciplines (biology,
sociology, communication, transport, etc.) present strong non-normality. For instance,
the non-normality of the London Tube network can result in the outbreak of a measles
epidemic, although linear stability theory predicts an asymptotic decay of the number of
contagions.

In hydrodynamics, non-normality is frequent and inherited from the linearisation of
the advective term (U · ∇)U, U being the velocity field of the fluid flow. This term
gives a preferential direction to the fluid flow, which breaks the normality of the linear
operator. In the context of parallel flows, non-normality is found for instance in the
canonical plane Couette and Poiseuille flows (Gustavsson 1991; Butler & Farrell 1992;
Farrell & Ioannou 1993; Reddy & Henningson 1993; Schmid & Henningson 2001), in
pipe flow (Schmid & Henningson 1994) and in boundary layers (Butler & Farrell 1992;
Corbett & Bottaro 2000). Non-normality is also found in non-parallel flows (Cossu &
Chomaz 1997), for instance spatially developing boundary layers (Ehrenstein & Gallaire
2005; Åkervik et al. 2008; Monokrousos et al. 2010), jets (Garnaud et al. 2013a,b) and
the flow past a backward-facing step (Blackburn, Barkley & Sherwin 2008; Boujo &
Gallaire 2015). Exhaustive reviews of non-normality in hydrodynamics can be found in
Chomaz (2005) and Schmid (2007). The crucial role played by non-normality in the
transition to turbulence has become clear over the years (Trefethen et al. 1993; Baggett
& Trefethen 1997; Schmid 2007). If the flow is non-normal, low-energy perturbations
such as free-stream turbulence or wall roughness can be amplified strongly enough to lead
to a regime where nonlinearities come into play, which may lead to turbulence through a
sub-critical bifurcation. The toy system presented in Trefethen et al. (1993) is an excellent
illustration of this so-called ‘bypass’ scenario.
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Figure 1. Cartoon representation of nonlinearity and non-normality, illustrated in the time domain (a) and
frequency domain (b), for a linearly stable system; the least stable eigenvalue σ1 of the eigenspectrum in
(c) has indeed a negative growth rate. (a) In the linear regime, the amplitude of the perturbations eventually
decays like exp(σ1,rt). Non-normal systems can experience a very large transient growth. Nonlinearity may be
stabilising or destabilising. (b) Normal systems subject to external forcing respond preferentially at frequency
σ1,i. Non-normal systems can respond at different frequencies, with an amplification much larger than predicted
by σ1,r. Nonlinearity may be stabilising or destabilising.

1.2. Weak nonlinearity
This illustrates the importance of combining nonlinearity and non-normality. In the bypass
transition scenario, it is the conjunction of non-normality and nonlinearity which succeeds
in shrinking the basin of attraction of a linearly strictly stable equilibrium, as strong
amplification triggers nonlinearities (figure 1), and may radically change the behaviour of
dynamical systems. Weakly or fully nonlinear effects can be introduced in the analysis.
Notwithstanding the relevance and usefulness of fully nonlinear solutions (Hof et al.
2004; Schneider, Gibson & Burke 2010), as well as the existence of a fully nonlinear
non-normal stability theory able to compute nonlinear optimal initial conditions via
Lagrangian optimisation (Cherubini et al. 2010, 2011; Pringle & Kerswell 2010; Kerswell
2018), we believe that establishing a rigorous reduced-order model for weak nonlinearities
is relevant. To the best of our knowledge, weakly nonlinear approaches all hinge on the fact
that an amplitude equation can only be constructed close to a bifurcation point. Indeed,
only linearised systems with a neutral or weakly damped eigenmode may experience
resonance, whose avoidance condition results in the amplitude equation.
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Following the insight of L. Landau, who introduced amplitude equations in analogy
to phase transitions (Landau & Lifshitz 1987, § 26), weakly nonlinear analyses using
a multiple-scale approach were performed in some pioneering works in the context of
thermal convection (Gor’kov 1957; Malkus & Veronis 1958), parallel shear flows (Stuart
1958, 1960; Watson 1960) and non-parallel shear flows (Sipp & Lebedev 2007). In these
studies, a so-called Stuart–Landau equation of the form dTA = λA − κA|A|2 is obtained
for the bifurcated mode amplitude A as a condition for non-resonance. When the real
part of the nonlinear coefficient is strictly positive, Re(κ) > 0, the cubic term A|A|2
is sufficient to capture the saturation amplitude, and the Stuart–Landau equation is an
accurate model for supercritical bifurcations; otherwise it can be extended to describe
subcritical bifurcations as well.

Amplitude equations can be generalised to describe slow dependence on space
(see Cross & Hohenberg (1993) for a review) and are also widely used to describe
spatio-temporal pattern formation in physical systems near the bifurcation threshold.
Beyond hydrodynamics, this occurs in plasma physics, solidification fronts, nonlinear
optics, laser physics, oscillatory chemical reactions, buckling of elastic rods and many
other fields.

While the form of the amplitude equation can often be deduced from symmetry
considerations (Crawford & Knobloch 1991; Fauve 1998), its coefficients (λ and κ in
the case of the Stuart–Landau equation) are evaluated with scalar products of fields
computed at the bifurcation point. Other approaches exist to deduce the normal form, i.e.
the amplitude equation which distillates the quintessence of the nonlinear behaviour in the
vicinity of a bifurcation point (Guckenheimer & Holmes 1983; Manneville 2004; Haragus
& Iooss 2011). Common to all these approaches is the concept of the centre manifold,
along which the dynamics is slow, while, under a spectral gap assumption, an adiabatic
elimination ensures the slaving of quickly damped modes.

1.3. Amplitude equations without eigenvalues
It is now understood that the application of asymptotic approaches to describe the weakly
nonlinear behaviour of non-normal systems is not straightforward, because of the absence
of a neutral bifurcation point in many non-normal systems. Note that, even when a system
has a neutral or weakly damped mode, it can still exhibit large non-normality, which could
jeopardise the relevance of a classical, single-mode amplitude equation.

The present work proposes to reconcile amplitude equations and non-normality.
Specifically, a method is advanced to derive amplitude equations in the context of
(i) harmonic forcing and (ii) transient growth. In case (i), we vary the amplitude of a
given harmonic forcing at a prescribed frequency and predict the gain (energy growth)
of the asymptotic response (§ 2). In case (ii), we vary the amplitude of a given initial
condition and predict the gain of the response at a selected time t = to (§ 3). In both cases,
we perform an a priori weakly nonlinear prolongation of the gain, at very low numerical
cost. The applied harmonic forcing and initial condition are allowed to be arbitrarily
different from any eigenmode. The method does not rely on the presence of an eigenvalue
close to the neutral axis; instead, it applies to any sufficiently non-normal operator. If
such an eigenvalue is nevertheless present on the neutral axis, we recover a classical,
modal amplitude equation. The method is illustrated with two flows, the non-parallel
flow past a backward-facing step (sketched in figure 2a) and the parallel plane Poiseuille
flow (figure 2b). These two non-normal flows exhibit large gains, both in the context of
harmonic forcing (§§ 2.1–2.2) and transient growth (§§ 3.1–3.2).
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Figure 2. Sketch of the flow configurations. (a) Two-dimensional flow over a backward-facing step, with
fully developed parabolic profile of unit maximum centreline velocity at the inlet. (b) Three-dimensional
plane Poiseuille flow, confined between two solid walls at y = ±1, and invariant in the x (streamwise) and
z (spanwise) directions.

In both contexts, a generic nonlinear dynamical system is considered

∂tU = N(U) + F , U(0) = U0, (1.1)

where N(∗) is a nonlinear operator and F is a forcing term. An appropriate and common
step to begin the analysis of (1.1) is to linearise it around an unforced equilibrium. The
latter is denoted Ue and satisfies N(Ue) = 0. Around this equilibrium are considered
small-amplitude perturbations in velocity εu, forcing ε f and initial condition εu0, where
ε � 1. An asymptotic expansion of (1.1) in terms of ε can thus be performed, transforming
the nonlinear equation into a series of linear ones. The fields u, f and u0 are recovered at
order ε and linked through the linear relation

∂tu = Lu + f , u(0) = u0, (1.2)

where L results from the linearisation of N around Ue. For fluid flows governed by the
incompressible Navier–Stokes equations, Lu = −(Ue · ∇)u − (u · ∇)Ue + Re−1�u −
∇p(u), where the pressure field p is such that the velocity field u is divergence free. Both
fields are linked through a linear Poisson equation. In practice, pressure is included in the
state variable, resulting in a singular mass matrix; it is omitted here, for the sake of clarity.

2. Response to harmonic forcing

We first derive an amplitude equation for the weakly nonlinear amplification of
time-harmonic forcing f (x, t) = f̂ (x)eiωot + c.c. (where c.c. is complex conjugate and
ωo designates the frequency) in a linearly strictly stable system. In the long-time regime,
only the same-frequency harmonic response u(x, t) = û(x)eiωot + c.c. persists. Injecting
the expressions of f and u in (1.2) leads to û = (iωoI − L)−1f̂ .= R(iωo)f̂ , where R(z) =
(zI − L)−1 is the resolvent operator, and I is the identity operator. In the current context,
it maps a harmonic forcing structure onto its asymptotic linear response at the same
frequency. A measure of the maximum gain is

G(iωo) = max
f̂

∥∥û
∥∥∥∥∥f̂
∥∥∥ = ‖R(iωo)‖ .= 1

εo
. (2.1)

In the following, we choose the L2 norm (or ‘energy’ norm) induced by the Hermitian inner
product 〈ûa, ûb〉 = ∫

Ω
ûH

a ûb dΩ (the superscript H denotes the Hermitian transpose).
The operator R(iωo)

† denotes the adjoint of R(iωo) under this scalar product, such that
〈R(iωo)ûa, ûb〉 = 〈ûa, R(iωo)

†ûb〉, for any ûa, ûb. Among all frequencies ωo, the one
leading to the maximum amplification is noted ωo,m and associated with an optimal gain
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G(iωo,m) = 1/εo,m. The singular-value decomposition of R(iωo) provides G(iωo) = ε−1
o

as the largest singular value, and the associated pair of right singular vector f̂ o and
left singular vector ûo. The former represents the optimal forcing, whereas the latter
characterises the long-time-harmonic response reached, after the transients fade away

R(iωo)
−1ûo = εof̂ o,

[
R(iωo)

†
]−1

f̂ o = εoûo, (2.2)

where ‖f̂ o‖ = ‖ûo‖ = 1. Smaller singular values of R(iωo) constitute sub-optimal gains,
and the associated right singular vectors are sub-optimal forcing structures. Note that one
can express 〈û, û〉 = 〈Rf̂ , Rf̂ 〉 as 〈R†Rf̂ , f̂ 〉, such that the singular values of R(iωo) are also
the square root of the eigenvalues of the symmetric operator R(iωo)

†R(iωo). An important
implication is that the singular vectors form an orthogonal set for the scalar product 〈∗, ∗〉.
The practical computation of εo, f̂ o and ûo is detailed for the Navier–Stokes equations
in Garnaud et al. (2013b), for instance. Note that, if the operator L possesses a neutral
eigenvalue, ωo,m, f̂ o and ûo respectively reduce to the frequency, the adjoint and the direct
mode associated with this eigenvalue.

Since L is strongly non-normal, as assumed in the rest of the present study, none of
εo, ûo and f̂ o are immediately determined from its spectral (modal) properties. Strong
non-normality implies εo � 1, such that the inverse resolvent R(iωo)

−1 appearing in (2.2)
is almost singular. We perturb it as

Φ
.= R(iωo)

−1 − εoP, with P = f̂ o
〈
ûo, ∗

〉
, (2.3)

where the linear operator P is such that Pĝ = f̂ o〈ûo, ĝ〉, for any field ĝ (note that 〈ûo, ∗〉
would write more simply ‘〈ûo|’ in the quantum mechanics formalism). This leads to
Φûo = 0, such that Φ is exactly singular. The norm of the perturbation operator is small
since ‖P‖ = 1. The field ûo constitutes the only non-trivial part of the kernel of Φ, and its
associated adjoint mode is f̂ o. Indeed, using that P† = ûo〈f̂ o, ∗〉, we have

Φ†f̂ o =
[
R(iωo)

−1
]†

f̂ o − εoûo

〈
f̂ o, f̂ o

〉
=
[
R(iωo)

†
]−1

f̂ o − εoûo = 0, (2.4)

where we used the fact that the inverse of the adjoint is the adjoint of the inverse. We note
that Φ can be rewritten as Φ = (iωoI − Ln) where Ln

.= L + εoP, such that (2.3) seems
to imply that the state operator L has been perturbed. In this process, the operator Ln has
acquired an eigenvalue equal to iωo, and therefore has become neutral. However, it has also
lost its reality and therefore does not, in general, possess an eigenvalue equal to −iωo. By
construction, εo is the smallest possible amplitude of the right-hand side of (2.2) for a given
iωo, such that εoP is the smallest perturbation of L necessary to relocate an eigenvalue of L
on iωo. This fact can be formalised with the pseudospectrum theory outlined in Trefethen
& Embree (2005). In the complex plane, z ∈ C belongs to the ε-pseudospectrum Λε(L) if
and only if ‖R(z)‖ ≥ 1/ε. If E is an operator with ‖E‖ = 1, eigenvalues of L − εE can lie
anywhere inside Λε(L). Eigenvalues of L and singularities of ‖R(z)‖ thus collide with the
ε-pseudospectrum in the limit ε → 0. As ε increases, the ε-pseudospectrum may touch the
imaginary axis, such that any z = iωo can be an eigenvalue of L − εE if the amplitude of
the perturbation is greater than or equal to ε = ‖R(iωo)‖−1. We recognise ε as the inverse
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Figure 3. Natural and perturbed spectra of the flow past a backward-facing step (sketched in figure 2a) at
Reynolds number Re = 500. Blue circles: eigenvalues of the linearised Navier–Stokes operator L. Red dots:
eigenvalues of the linear operator perturbed with εoP = εo f̂ o〈ûo, ∗〉. By construction, one eigenvalue of Ln =
L + εoP lies on the imaginary axis. Green isocontour: part of the εo-pseudospectrum of L, where ‖R(z)‖ =
1/εo. By construction, the εo-pseudospectrum is contained in the stable half-plane, except at iωo where it
touches the neutral axis.

gain εo defined in (2.1), and thus E as P. In particular, if ωo = ωo,m, the associated εo,m is
referred to as the stability radius of L since the εo,m-pseudospectrum is the first to touch
the imaginary axis.

As an illustration of the fact that a small-amplitude perturbation can easily ‘neutralise’
a non-normal operator, we consider the Navier–Stokes operator linearised around the
steady flow past a backward-facing step (BFS), sketched in figure 2, at Reynolds number
Re = 500. The most amplified frequency ωo = ωo,m ≈ 0.47 is associated with εo ≈
1.3 × 10−4 � 1. The spectra of L and Ln are shown in figure 3, together with part of the
εo-pseudospectrum of L. Clearly, the very small perturbation εoP locates an eigenvalue
exactly onto iωo, despite the strong stability of L. We stress that neither ωo nor εo can be
deduced only by inspecting the spectrum of L.

Nevertheless, in what follows, it is really the inverse resolvent and not the state operator
L that we propose to perturb. Indeed, L is generally a real operator whereas Ln is
necessarily a complex one, and only one side of the spectrum of Ln can generally be made
neutral at a time, depending on whether L is perturbed with P or its complex conjugate P∗.

The inverse gain εo � 1 constitutes a natural choice of small parameter. We choose
the Navier–Stokes equations for their nonlinear term (U · ∇)U , which yields both a
non-normal linearised operator and a rich diversity of behaviours. The flow is weakly
forced by F = φ

√
εo

3f̂ heiωot + c.c., where f̂ h is an arbitrary (not necessarily optimal)
forcing structure, and φ = O(1) is a real prefactor. Imposing ‖f̂ h‖ = 1, the forcing
amplitude is F .= φ

√
εo

3. A separation of time scales is invoked for the flow response: its
envelope is assumed to vary on a slow time scale T = εot (such that dt = ∂t + εo∂T ). This
ensures a comprehensive distinguished scaling and suggests the following multiple-scale
expansion:

U(t, T) = Ue + √
εou1(t, T) + εou2(t, T) + √

εo
3u3(t, T) + O(ε2

o). (2.5)

The velocity field at each order j is then Fourier expanded as

uj(t, T) = ūj,0(T) +
∑

m

(ūj,m(T)eimωot + c.c.), (2.6)
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with m = 1, 2, 3 . . .. This decomposition is certainly justified in the permanent regime, of
interest in this analysis. The proposed slow dynamics does not aim to capture the transient
regime but flow variations around the permanent regime. Introducing (2.5)–(2.6) into the
Navier–Stokes equations and using (2.3) to perturb the operator R(iωo)

−1 appearing from
time derivation yields

√
εo

[(
Φū1,1eiωot + c.c.

)
+ s1

]
+ εo

[(
Φū2,1eiωot + c.c.

)
+ s2 + C(u1, u1)

]
+ √

εo
3
[(

Φū3,1eiωot + c.c.
)

+ s3 + 2C(u1, u2) + ∂T u1 +
(

Pū1,1eiωot + c.c.
)]

+ O(ε2
o)

= φ
√

εo
3 f̂ heiωot + c.c., (2.7)

where

sj
.= −Luj,0(T) +

[∑
m

(imωo − L)ūj,m(T)eimωot + c.c.

]
, (2.8)

for m = 2, 3, . . . , and C(a, b)
.= 1

2 ((a · ∇)b + (b · ∇)a). Note that the perturbation εoP
modifying R(iω0)

−1 into Φ at leading order is compensated for at third order. Terms are
then collected at each order in

√
εo, leading to a cascade of linear problems, detailed

hereafter.
At order

√
εo, we collect (imωoI − L)ū1,m = 0 for m = 0, 2, 3, . . ., and Φū1,1 = 0.

Since L is strictly stable, the unforced equation for m /= 1 can only lead to ū1,m = 0.
Conversely, the kernel of Φ contains the optimal response ûo, therefore ū1,1(T) = A(T)ûo,
where A(T) ∈ C is a slowly varying scalar amplitude verifying ∂tA = 0. Finally, the
general solution at order

√
εo is written

u1(t, T) = A(T)ûoeiωot + c.c.. (2.9)

At order εo, we obtain the solution u2 = |A|2u2,0 + (A2e2iωotû2,2 + c.c.), where

−Lu2,0 = −2C(ûo, û∗
o),

(2iωoI − L)û2,2 = −C(ûo, ûo).

}
(2.10)

The homogeneous solution of the system Φū2,1 = 0 is arbitrarily proportional to ûo, and
written A2(T)ûo. It can be ignored (ū2,1 = 0) without loss of generality. It could also be
kept, provided it is included in the definition of the amplitude, which would then become
A + εoA2.

At order
√

εo
3, we assemble two equations yielding the Fourier components of the

solution oscillating at ωo

Φū3,1 = −A|A|2 [2C(ûo, u2,0) + 2C(û∗
o, û2,2)

]− ûo
dA
dT

− Af̂ o + φ f̂ h (2.11)

(recalling Pûo = f̂ o) and at 3ωo, (3iωoI − L)ū3,3 = 2A3C(ûo, û2,2). The operator Φ being
singular, the only way for ū3,1 to be non-diverging, and thus for the asymptotic expansion
to make sense, is that the right-hand side of (2.11) has a null scalar product with the kernel
of Φ†, i.e. is orthogonal to the adjoint mode f̂ o associated with ûo. This is known as the
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Weak nonlinearity for strong non-normality

‘Fredholm alternative.’ As a result, the amplitude A(T) satisfies

1
η

dA
dT

= φγ − A − μ + ν

η
A |A|2 , (2.12)

with the coefficients

η = 1〈
f̂ o, ûo

〉 , γ =
〈
f̂ o, f̂ h

〉
,

μ

η
=
〈
f̂ o, 2C(ûo, u2,0)

〉
,

ν

η
=
〈
f̂ o, 2C(û∗

o, û2,2)
〉
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.13)

The coefficient γ is the projection of the applied forcing on the optimal forcing. The
coefficient μ embeds the interaction between ûo and the static perturbation u2,0, i.e. it
corrects the gain according to the fact that ûo extracts energy from the time-averaged
mean flow rather than from the original base flow. In contrast, the coefficient ν embeds
the interaction between û∗

o and the second harmonic û2,2. We show in Appendix A that,
in the regime of small variations around the linear gain, the amplitude equation reduces
to the standard sensitivity of the gain (Brandt et al. 2011) to a base flow modification
induced by u2,0, and embeds the effect of the second harmonic û2,2 as well. Introducing the
rescaled quantities a .= √

εoA and F = φ
√

εo
3, such that the weakly nonlinear harmonic

gain G = ‖√εoū1,1‖/‖φ√
εo

3f̂ h‖ is simply = |a|/F, (2.12) becomes

1
ηεo

da
dt

= γ F
εo

− a − μ + ν

ηεo
a |a|2 . (2.14)

The gain associated with the linearised version of (2.14) is G = |γ |/εo, as expected for the
linear prediction. We recover G = 1/εo when the optimal forcing is applied (γ = 1). We
also note that this expression predicts G = 0 when γ = 0, which merely indicates that the
linear response is orthogonal to ûo, without stating anything on the gains associated with
sub-optimal forcings except that they should be at most O(ε

−1/2
o ), assuming a sufficiently

large ‘spectral’ gap in the singular-value decomposition of the resolvent operator. For the
rest of the paper, we set γ = 1. Expressing a in terms of an amplitude |a| ∈ R+ and a
phase ρ ∈ R such that a(t) = |a(t)|eiρ(t), the time-independent equilibrium solutions, or
fixed points, of (2.14), (|ae| , ρe), solve

F
εo

e−iρe = |ae| + μ + ν

ηεo
|ae|3 . (2.15)

Squaring and adding the real and imaginary parts of (2.15) leads to a third-order
polynomial for the equilibrium amplitude of (2.14)

DY3 + 2BY2 + Y =
(

F
εo

)2

with D = |μ + ν|2
ε2

o |η|2 > 0 and B = Re
[
μ + ν

εoη

]
,

(2.16)

and where Y = |ae|2 > 0. Let p(Y) = DY3 + 2BY2 + Y be the left-hand side of (2.16).
We further distinguish two cases: (i) if B ≥ 0, p(Y) is increasing monotonically with Y
and can only cross the constant line (F/εo)

2 once. We have in addition p(Y) > Y , thus the
gain smaller than the linear prediction and monotonically decaying while F is increasing.
Conversely, if (ii) B < 0, we have p(Y) < Y in the interval 0 < Y < −2B/D, and the
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gain should then be greater than the linear one in the corresponding range of forcing
0 < (F/εo)

2 < −2B/D. Furthermore, p(Y) may vary non-monotonically over this interval
and cross the constant line (F/εo)

2 three times (leading to three solutions for Y); namely,
p(Y) may be decreasing on a certain interval of Y while dominated by the negative term
∝ Y2, bridging two other intervals where p(Y) is increasing due to the respective positive
terms ∝ Y and ∝ Y3. A necessary and sufficient condition for such a case to occur is that
the equation dP/dY = 3DY2 + 4BY + 1 = 0 possesses two real and positive solutions.
This is guaranteed if and only if the determinant �

.= 16B2 − 12D is strictly positive.
Finally, for −2B/D ≤ Y , p(Y) must be monotonically increasing again with p(Y) ≥ Y ,
resulting in a gain smaller than the linear one and monotonically decreasing while F is
increasing.

The stability of the equilibrium solution(s) (|ae| , ρe) can also be established from
the amplitude equation (2.14). If an equilibrium becomes unstable for a given forcing
amplitude, we expect the flow response to depart from the associated limit cycle. However,
the stability of the equilibria of the amplitude equation does not directly conclude on
stability of the limit cycle, for instance, to perturbations in the third dimension, which
could be assessed with a Floquet stability analysis or a direct numerical simulation.
Equation (2.14) can be expressed as a two-by-two amplitude/phase nonlinear dynamical
system

d |a|
dt

= F [ηr cos(ρ) + ηi sin(ρ)] − ηrεo |a| − (μr + νr) |a|3 (2.17)

|a| dρ

dt
= F [ηi cos(ρ) − ηr sin(ρ)] − ηiεo |a| − (μi + νi) |a|3 . (2.18)

Perturbing this system around the equilibrium solution (|ae| , ρe) + (|a|′ (t), ρ′(t))
and neglecting nonlinear terms leads to the following equation for the perturbation
dt(|a|′ , ρ′)T = J(|a|′ , ρ′)T, where J is the Jacobian matrix expressed as

J =
[ −εoηr − 3(μr + νr) |ae|2 F [ηi cos(ρe) − ηr sin(ρe)]
−εoηi |ae|−1 − 3(μi + νi) |ae| −F [ηi sin(ρe) + ηr cos(ρe)] |ae|−1

]
. (2.19)

If at least one of the two eigenvalues of J has a positive real part, the associated equilibrium
is linearly unstable.

Note that (2.17) and (2.18), for the amplitude and the phase of the oscillating linear
response, are similar to those that would be obtained for a classical Duffing–Van der
Pol oscillator with appropriate parameters and harmonically forced around its natural
frequency. If the latter is set to one, ηrεo and ηiεo are respectively proportional to the
damping ratio and the detuning parameter. The coefficient (μi + νi) is proportional to
the cubic stiffness parameter (Duffing nonlinearity ∝ x3), and (μr + νr) to the nonlinear
damping parameter (Van der Pol nonlinearity ∝ ẋx2).

For the sake of completeness, Appendix C shows how to compute higher-order
corrections of (2.14). It is worth mentioning, in particular, that the Fredholm alternative
ensures that higher-order solutions oscillating at ωo are orthogonal to the optimal response
ûo, and that the action of Φ need not be computed explicitly and can be replaced by the
action of (iωoI − L) for all practical purposes.

2.1. Application case: the flow past a BFS
Equation (2.14) is the first main result of this study and will be further referred to as
the Weakly Nonlinear Non-normal harmonic (WNNh) model. We discuss its performance
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Weak nonlinearity for strong non-normality
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Figure 4. (a) Streamwise (x) component of the optimal harmonic forcing structure Re(f̂ o) for the BFS
(sketched in figure 2a) at Re = 500 and at the optimal forcing frequency ωo/(2π) = ωo,m/(2π) = 0.075.
(b) Streamwise component of the associated response Re(ûo). Both structures are normalised as ‖f̂ o‖ =
‖ûo‖ = 1.

Re ε0 η μ/(εoη) ν/(εoη) B

200 73.9−1 3.66 − i × 0.0163 5.13 − i × 1.32 0.137 + i × 1.13 5.27
500 7456.6−1 117.1 − i × 0.653 8.23 − i × 2.60 0.364 − i × 0.396 8.59
700 148080−1 1626.7 − i × 8.65 9.06 − i × 4.38 −0.729 − i × 1.39 8.33

Table 1. The WNNh coefficients for the BFS flow, when the optimal forcing structure (γ = 1) is applied at
the optimal frequency ωo/(2π) = ωo,m/(2π) = 0.075.

when the stationary flow past a BFS sketched in figure 2 is forced harmonically with
the optimal structure f̂ o. At Re = 500 and the optimal forcing frequency, f̂ o is shown
in figure 4(a) together with its associated response ûo in figure 4(b) (see Appendix B
for details about the geometry and the numerical method). As shown in Blackburn
et al. (2008); Boujo & Gallaire (2015), the BFS flow constitutes a striking illustration
of streamwise non-normality. As seen in figure 4(a), the optimal forcing structure is
located upstream and triggers a spatially growing response along the shear layer adjoining
the recirculation region, as the result of the convectively unstable nature of the shear
layer. We first set the Reynolds number Re between 200 and 700, and the frequency
ωo = 2π × 0.075 close to the most linearly amplified frequency ωo,m, which varies only
slightly with Re. The linear gain grows exponentially with Re (Boujo & Gallaire 2015), as
seen in table 1. Since η scales like O(ε

−1/2
o ), the term in dA/dT in (2.11) is asymptotically

consistent only close to equilibrium points where dA/dT = 0, which is the regime of
primary interest in the context of harmonic forcing. In accordance, the temporal derivative
dA/dT is kept in (2.12) to assess the stability of such equilibria, determined by the analysis
of the Jacobian matrix (2.19).

Predictions from the WNNh model are compared with fully nonlinear gains extracted
from direct numerical simulations (DNS) in figure 5(a). The DNS gains are the ratio
between the temporal root-mean-square (r.m.s.) of the kinetic energy of the fluctuations
at ωo (extracted through a Fourier transform) and the r.m.s. of the kinetic energy of
the forcing (for instance, the forcing Ff̂ oeiωot + c.c., with ‖f̂ o‖ = 1 corresponding to
an effective forcing r.m.s. amplitude of

√
2F). Since the coefficient B defined in (2.16)

is strictly positive for all Re, the WNNh model predicts nonlinearities to saturate the
energy of the response, and thus the gain to decrease monotonically with the forcing
amplitude. This is confirmed by the comparison with DNS, displaying an excellent overall
agreement. As shown in the inset (in logarithmic scale), the nonlinear gain transitions
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Figure 5. Weakly and fully nonlinear harmonic gain in the BFS flow (sketched in figure 2a). At each
frequency and each Reynolds number, the optimal linear forcing structure f̂ o is applied. (a) Fixed frequency
ωo/(2π) = 0.075, varying Reynolds number Re = 200 and 700 (larger Re darker). Inset: log–log scale,
Re = 200, 300, . . . , 700. (b) Fixed Reynolds number Re = 500, varying forcing r.m.s. amplitude F =√

2
−1

[1, 2, 4, 10] × 10−4 (larger amplitudes darker).

from a constant value in the linear regime to a −2/3 power-law decay when nonlinearities
prevail, as predicted from (2.14). This transition is delayed when the Reynolds number (and
therefore the linear gain) decreases, and compares well with DNS data. The main plot (in
linear scale) confirms the agreement with the DNS, and the improvement over the linear
model. Re-scaled WNNh curves appear similar for Re = 200 and Re = 700, and a slight
overestimate is observed as the forcing amplitude approaches ε0. Indeed, F ∼ ε0 implies
φ ∼ 1/

√
εo, which jeopardises the asymptotic hierarchy. Nonetheless, the error remains

small for this flow in the considered range of forcing amplitudes. Further physical insight is
gained from the WNNh coefficients gathered in table 1. The nonlinear coefficients remain
of order one, which confirms the validity of the chosen scalings. The real part of μ being
larger than that of ν, the present analysis rationalises a priori the predominance of the
mean flow distortion over the second harmonic in the saturation mechanism reported a
posteriori in Mantic-Lugo & Gallaire (2016b).

Next, we select Re = 500 and report in figure 5(b) harmonic gains as a function of
the frequency, for increasing forcing amplitudes. At each frequency, the corresponding
optimal forcing structure f̂ o is applied. The comparison between DNS and WNNh is
conclusive over the whole range of frequencies. The saturating character of nonlinearities
is well captured. Such a good agreement may appear surprising in the low-frequency
regime, for instance at ωo/(2π) = 0.04 where the second harmonics at frequency 2ω0
could, in principle, be amplified approximately four times more than the fundamental. It
happens, however, that the associated forcing structure −C(ûo, ûo) is located much farther
downstream than the optimal forcing at 2ωo, with a weak overlap region which results in
a poor projection. Therefore, the second-order contribution does not reach amplitudes of
concern in this flow, as a consequence of its streamwise non-normality. For ωo/(2π) =
0.075 the fully nonlinear and predicted weakly nonlinear structures are compared in
figure 6. The energy centroid of the fully nonlinear response shows a clear migration
upstream when increasing the forcing amplitude, as already reported in Mantic-Lugo
& Gallaire (2016b). It is associated with a shortening of the mean recirculation bubble
under the action of the Reynolds stresses, in turn explaining the reduction of the gain.
Although some distortion of the structures due to higher harmonics is observed when
increasing the forcing amplitude, the fully nonlinear structure remains dominated by its
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Figure 6. Snapshots of the weakly (WNNh) and fully (DNS) nonlinear cross-wise (y) component of the
velocity perturbation around the mean flow in the BFS flow. The frequency is fixed to ωo/(2π) = 0.075 and the
Reynolds number to Re = 500. Three increasing forcing amplitudes are considered: (a), (b) and (c) correspond
respectively to F = [10−5, 10−4 and 10−3]/

√
2. The WNNh structures are evaluated as 2Re(

√
εoAeiωotûo +

εoA2e2iωotû2,2), with A the equilibrium solution of (2.12); the DNS structures are obtained by taking the nωo
(n = 1, 2, 3, . . .) Fourier components of a DNS simulation in the stationary regime, then by taking two times
the real part of their sum weighted by einωot. In this manner, the phases can also be compared between WNNh
and DNS.

ωo-component. The weakly nonlinear structure does not capture the upstream migration
since it does not include the O(ε

3/2
o ) corrections of the ωo-component structure; thus, the

latter is intrinsically restricted to ûo. However, the coefficient μ + ν is constructed on
forcing terms at O(ε

3/2
o ) and indeed embeds the nonlinear interactions responsible for the

migration and the saturation, explaining why the predicted level of energy is correct even
though the structure is not.

2.2. Application case: Orr mechanism in the plane Poiseuille flow
The weakly nonlinear evolution of the harmonic gain is now sought for the plane Poiseuille
flow sketched in figure 2, a typical flow with component-wise non-normality (Trefethen
et al. 1993; Schmid 2007). Periodicity is imposed in the streamwise and spanwise
directions with wavenumbers kx and kz, respectively. The set of parameters (Re, kx, kz) =
(3000, 1.2, 0) is selected. According to the classical work of Orszag (1971), the base flow
at this Re number is linearly stable since instability first occurs at Recr ≈ 5772 and kx,cr ≈
1.02. In both the linear and nonlinear computations, the spanwise invariance kz = 0 is
systematically maintained. While the base flow U( y) has only one velocity component
and depends only on one coordinate, the perturbations are here two-dimensional (i.e.
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Figure 7. (a) Linear harmonic (optimal) gain as function of the optimisation frequency. Present results are
compared with those reproduced from Schmid & Henningson (2001), where perturbations are expressed as
Fourier mode of streamwise wavenumber kx. (b) Eigenspectra.

u = (ux(x, y), uy(x, y))). The computations are performed in the streamwise-periodic box
(x, y) ∈ [0, 2π/1.2] × [−1, 1] ≡ Ω . All the scalar products are taken upon integration
inside this periodic box, in particular for the normalisation 〈ûo, ûo〉 = 〈f̂ o, f̂ o〉 = 1, and
latter for the evaluation of the weakly nonlinear coefficients.

The linear optimal gain (2.1) is computed in the frequency interval 0 ≤ ωo ≤ 0.8
(figure 7a), together with the associated optimal forcing and responses structures.
Results are validated with the one-dimensional results of Schmid & Henningson (2001)
based on a Fourier expansion of wavenumbers kx = 1.2 and kx = 0 in the streamwise
direction. Eigenspectra are also reported in figure 7(b). The singular value decomposition
(SVD) algorithm applied to the periodic box automatically selects the most amplified
wavenumber among all spatial harmonics n1.2 with n = 0, 1, 2, . . .. Below ωo ≈ 0.12,
the harmonic 0 × 1.2 = 0 is dominant due to the concentration of weakly damped
eigenvalues along the imaginary axis. The gain G(ωo = 0) = 1216 is equal to the inverse
of the smallest damping rate among all these spatially invariant modes. The large
value of the gain associated with those modes is understood considering that the small
pressure gradient (2/Re, 0)T = (2/3000, 0)T is sufficient to induce the Poiseuille base
flow (equal to unity in the centreline). Above ωo ≈ 0.12, the fundamental wavenumber
1 × 1.2 = 1.2 prevails. The corresponding harmonic gain presents a local and selective
maximum for ωo = 0.38, certainly linked to the presence of the weakly damped eigenvalue
σ1 = −0.0103 + 0.380i. Nevertheless, G(ωo = 0.38) = 416 is significantly larger than
1/0.0103 ≈ 97. This is a direct consequence of the non-normality of the plane Poiseuille
flow. Unlike the BFS flow, the non-normality at play here is not due to the presence of
a convectively unstable region but to the Orr mechanism, suggested for the first time in
Orr (1907). Namely, an initial condition or forcing field constituted of spanwise vortices
tilted towards the upstream direction (figure 8a), tilts downstream under the action of
the mean shear (figure 8b), which leads to a significant gain in the kinetic energy of
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Figure 8. (a) Streamwise component of the optimal forcing Re( fo,x) for the plane Poiseuille flow (sketched
in figure 2b) for (Re, kx, kz) = (3000, 1.2, 0) and ωo = 0.3810. (b) Streamwise component of the response
Re(ûo,x). Both fields are normalised as ‖f̂ o‖ = ‖ûo‖ = 1. Only one wavelength 0 ≤ kxx ≤ 2π is shown.

ωo εo η μ/(εoη) ν/(εoη) B

0.3810 (415.6)−1 4.06 + i × 0.218 −177.0 − i × 315.6 −17.4 − i × 197.8i −194.4
0.4025 (190.4)−1 2.78 + i × 3.89 −160.1 + i × 24.3 −52.3 − i × 10.6 −212.4

Table 2. The WNNh coefficients for the plane Poiseuille flow at (Re, kx, kz) = (3000, 1.2, 0), and when the
optimal forcing structure (γ = 1) is applied.

the perturbation. The coefficient B is shown in figure 9(a), and the associated WNNh
prolongation of the harmonic gain in figure 9(b). The coefficient B is negative in the
interval 0.378 ≤ ωo ≤ 0.486, and B and D are such that three equilibrium amplitudes |ae|
exist for some values of F in the sub-interval 0.389 ≤ ωo ≤ 0.428. Among them, none or
only one is found to be stable. Consequently, as the forcing amplitude is increased, the
harmonic gain curve leans toward the higher frequencies in figure 9(b); in the meantime,
a frequency interval where no stable solution is predicted appears and grows larger.

Note that, in the absence of a stable equilibrium, it is natural to consider completing
(2.14) up to O(

√
εo

5). It is shown in Appendix C, however, that such an approach is
problematic in the present case, because the non-oscillating forcing terms appearing
at O(ε2

o) excite the largely amplified static modes visible in figure 7 for ωo = 0. The
associated gains being of order 1/εo, the mean flow correction terms at O(ε2

o) break
the asymptotic hierarchy. This problem is not encountered at O(εo), because the forcing
−2C(ûo, û∗

o) in (2.10) projects poorly on the optimal one for ωo = 0, and ‖u2,0‖ remains
of order unity.

For comparison with DNS data, two different forcing frequencies with a priori
distinct behaviours are selected: ωo = 0.3810 and ωo = 0.4025. These two frequencies
are highlighted by the vertical dashed grey lines in figure 9. In both cases the coefficient B
is negative, and for the case ωo = 0.4025 three equilibrium solutions exist for some values
of F. The linear gains and weakly nonlinear coefficients are reported in table 2.

The corresponding WNNh prolongation of the linear gain as a function of the forcing
amplitude is shown in figure 10, together with DNS results. For comparison, the prediction
of a ‘classical’ (modal) amplitude equation constructed around the weakly damped
eigenvalue σ1 and its associated direct and adjoint modes is also added. Its derivation
is briefly recalled in Appendix D.

For ωo = 0.3810 (figure 10a), the WNNh gain initially increases with F due to the
negativity of B. As visible in table 2, this is mostly due to the contribution of Re[μ/(εoη)]
which is ten times larger than that of Re[ν/(εoη)]. Thus, at this frequency, the principal
factor for the initial increase of the WNNh gain is the Reynolds stress of the response aûo.
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Figure 9. (a) Coefficient B defined in (2.16) as a function of the optimisation frequency. The superimposed
bold green line indicates that B and D are such that three equilibrium solutions to (2.14) exist. (b)
Weakly nonlinear harmonic gain predicted by the WNNh model for increasing forcing amplitude F in
[0.55, 1.45, 2.35, 3.25, 4.15] × 10−4 (larger F darker). Solid lines denote stable equilibrium solutions of (2.14)
whereas bold plus markers (+) denote the unstable ones. The vertical dashed grey lines highlight ωo = 0.3810
and ωo = 0.4025, frequencies for which comparison with DNS data is shown in figure 10. The grey zone
denotes a negative B.
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Figure 10. Evolution of the harmonic gain G with respect to F for (a) ωo = 0.3810 and (b) ωo = 0.4025
(frequencies highlighted by vertical dashed grey lines in figure 9). In both, the grey zone indicates that no
harmonic gain could be properly defined, as the kinetic energy of the perturbation ceases to converge to a
constant value. In particular, the inset shows the monitoring of uy(0, 0) for the flow represented by the circle
(the link is indicated by a thin line).

The latter creates a mean flow that amplifies the linear forcing f̂ o more than the base flow
does. This may be interpreted considering the displacement of the eigenvalue σ1. Let q̂1
(respectively â1) denote the eigenmode (respectively adjoint mode) associated with the
eigenvalue σ1. The sensibility of the latter to the base flow deformation δUb due to the
Reynolds stress of aûo is written

δσ1 = −
〈
â1, C[q̂1, δUb]

〉
〈
â1, q̂1

〉 , (2.20)

where δUb = |a|2u2,0. For ωo = 0.3810, we obtain δσ1 = |a|2(1.2 + i × 3.9). Since
Re[δσ1] > 0, the eigenvalue is moving towards the unstable part of the complex plane
under the action of the Reynolds stress. This is in accordance with the fact that the plane
Poiseuille flow is subcritical, and may explain the initial increase in the gain with F.
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Weak nonlinearity for strong non-normality

Meanwhile, Im[δσ1] > 0 and σ1 is shifting toward higher frequencies. Thus ωo ceases to
be the least damped frequency, which could shed light on the fact that increasing F further
leads to a monotonic decay in the WNNh gain at ωo. Because of the flow non-normality,
however, this explanation based solely on the location of σ1 remains qualitative.

The overall agreement with the DNS results is excellent. Nevertheless, the WNNh model
slightly underestimates the threshold in F above which a stable equilibrium does not
exist anymore. It stands at F/εo = 0.087 against F/εo = 0.11 for the DNS. This loss of
a proper harmonic response may be symptomatic of the fact that σ1 eventually crosses
the neutral line and becomes unstable. Indeed, for F/εo = 0.11 (blue circle in the grey
zone in figure 10a), the Fourier spectrum of the flow in its stationary regime presents two
dominant neighbouring frequencies: the forcing one at ω = ωo and a second ‘natural’ one
at ω ≈ 0.404. As these two frequencies are very close, a beating behaviour is visible in
the inset of figure 10(a) at a frequency consistent with �ω = 0.404 − 0.381 = 0.023.

The classical modal amplitude equation leads to a prediction that is only qualitative.
Even for F = 0 the linear harmonic gain |〈f̂ o, â1〉/(〈q̂1, â1〉σ1,r)| (see Appendix D for
its derivation) is overestimated, as it is deduced from the modal quantities linked to σ1
only. As mentioned earlier, in non-normal flows a high number of eigenmode is generally
necessary to describe its harmonic response, even in the presence of a weakly damped
eigenvalue. Thus, relying on a single mode constitutes a poor description of the response
to forcing.

We now consider ωo = 0.4025, and the associated results in figure 10(b). The WNNh
model yields multiple equilibrium solutions in the range 0 < F/εo < 0.0264. Only the one
represented by a thick continuous line is stable, and corresponds to a monotonic growth
of the gain with F. The DNS results validate the existence of this solution. The two other
solutions, depicted by the dash-dotted and dashed lines, are unstable in one eigendirection
and two eigendirections, respectively. Above F/εo = 0.0264 the WNNh models predicts
the loss of the stable equilibrium solution, which is accurately confirmed by the DNS
whose threshold is located around F/εo = 0.0286. Slightly above, the signal of uy(0, 0)

in the inset suggests again the presence of a ‘natural’ frequency due to the subcritical
destabilisation of σ1. Indeed, uy(0, 0) alternates between an algebraic growth typical
of a true resonance (both natural and forcing frequencies collapse), and a beating-like
behaviour whose period is very long (the natural frequency drifts slightly from the forcing
one).

Across this threshold, the evolution of the average kinetic energy of the response
appears discontinuous. This loss of a stable equilibrium is to be distinguished with its
destabilisation encountered for ω = 0.3810. Overall, the difference of behaviours between
figures 10(a) and 10(b) may be explained by the difference of proximity between ωo and
Im[σ1] of the mean flow. As the forcing is progressively increased above F/εo = 0.0286,
the flow response quickly becomes chaotic, and then turbulent.

It should be mentioned that, in some situations, the amplitude equation (2.14) may be in
default. First, as just mentioned, when the optimal linear harmonic gain at frequency 2ωo
is ∼ 1/

√
εo or larger and projects well onto the optimal forcing, the asymptotic hierarchy

is threatened as û2,2 may be substantial enough to reach order
√

εo or above. It is thus
important to assess that the norm of û2,2 remains of order one. A second delicate situation
arises, for the same reason, when a sub-optimal gain at the frequency ωo is ∼ 1/εo. In both
cases, the model could be extended by including in the kernel of Φ the optimal response
at frequency 2ωo, or the sub-optimal response at frequency ωo, respectively.

Eventually, it should be noted that there are several manners to perturb R(iωo)
−1 such as

to include ûo in the kernel. Among them, the one with the smallest amplitude, i.e. εo, has
been chosen in (2.3). We demonstrate in Appendix E that this is the only choice that leads
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to a consistent amplitude equation. Choosing a higher perturbation amplitude is possible,
but implies filling the kernel with another structure than ûo.

3. Transient growth

Next, we derive an amplitude equation for the weakly nonlinear transient growth in an
unforced ( f = 0) system, without restriction on its linear stability.

The solution to the linearised equation (1.2) is u(t) = eLtu(0), where eLt is the operator
exponential of Lt. In an unforced context, the propagator eLt maps an initial structure at
time t = 0 onto its evolution at t ≥ 0. The largest linear amplification at to > 0 (subscript
o for ‘optimal’) is

G(to) = max
u(0)

‖u(to)‖
‖u(0)‖ =

∥∥∥eLto
∥∥∥ .= 1

εo
. (3.1)

The singular-value decomposition of the propagator eLto provides the transient gain G(to)
as the largest singular value of eLto , as well as the left and right singular pair vo and uo,
respectively,

e−Ltovo = εouo,

[(
eLto

)†
]−1

uo = εovo, (3.2)

where ‖vo‖ = ‖uo‖ = 1. The field uo is the optimal initial structure for the propagation
time t = to, and vo is its normalised evolution at to. The corresponding amplification is
1/εo, as defined in (3.1). Smaller singular values are sub-optimal gains, associated with
orthogonal sub-optimal initial conditions. Their orthogonality is ensured by the fact that
singular vectors of the operator eLto also are the eigenvectors of the symmetric operator
(eLto)†eLto , the singular values of the former being the square root of the eigenvalues of
the latter. Of all the to, the time leading to the largest optimal gain will be highlighted with
the subscript m (for ‘maximum’) such that maxto>0 G(to) = G(to,m).

By construction, the linear gain is independent of the amplitude of the initial condition
u(0). As this amplitude increases, however, nonlinearities may come into play and the
nonlinear gain may depart from the linear gain G. Similar to the previous section on
harmonic gain, we propose a method for capturing the effect of weak nonlinearities on
the transient gain.

Due to the assumed non-normality of L, the inverse gain is small, εo � 1. While the
previous section focused on the inverse resolvent, it is now the inverse propagator e−Lto

that appears close to singular. The first equality of (3.2) can be rewritten as (e−Lto −
εouo〈vo, ∗〉)vo = 0, which shows that the operator (e−Lto − εouo〈vo, ∗〉) is singular since
vo /= 0 belongs to its kernel. Mirroring our previous reasoning for the WNNh model, we
now wish to construct a perturbed inverse propagator whose kernel is the linear trajectory

l(t) .= εoeLtuo, (3.3)

seeded by the optimal initial condition uo and of unit norm in t = to since l(to) = vo. One
conceptual difficulty lies in the fact that the linear response is not a fixed vector field, but a
time-dependent trajectory; therefore, the perturbed inverse propagator too should depend
on time. We propose to perturb the inverse propagator for all t ≥ 0 as

Φ(t) = e−Lt − εoP(t), where P(t) .= H(t)
uo〈l(t), ∗〉
‖l(t)‖2 , (3.4)

and where the Heaviside distribution H(t) satisfies H(0) = 0 and H(t > 0) = 1. As
the time t → to, the perturbation operator P → uo〈vo, ∗〉 such that ‖P‖ → 1 and the

947 A43-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

66
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.664


Weak nonlinearity for strong non-normality
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Λ(Φ(to))
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Figure 11. Restricted spectra (fifteen least stable eigenvalues) of the natural and perturbed inverse propagators
of the plane Poiseuille flow (sketched in figure 2b) for t = to = 10 and (Re, kx, kz) = (3000, 0.5, 2) (purely
one-dimensional computations using the code of Schmid & Henningson (2001) based on a Fourier expansion
of wavenumbers kx and kz in x and z, respectively). Blue circles: eigenvalues of e−Lto . Red dots: eigenvalues of
Φ(to). By construction, one eigenvalue of Φ(t) lies at the origin. Thin red lines: full locus of the eigenvalues
of Φ(t) for t ≤ to. Green line: εo-pseudospectrum of e−Lto , such that ‖(e−Lto − zI)−1‖ = 1/εo.

expansion (3.4) is certainly justified. The non-trivial kernel of Φ(t) is l(t) for all t > 0;
the kernel reduces to 0 at t = 0 since Φ(0) = I. We show in addition that, for t > 0, the
non-trivial kernel of the adjoint operator Φ(t)† is

b(t) .=
(

eLt
)†

l(t). (3.5)

Indeed, using that P† = l(t)〈uo, ∗〉/〈l(t), l(t)〉 for t > 0, we have

Φ(t)†b(t) =
(

e−Lt
)†

b(t) − εol(t)
〈uo, b(t)〉
〈l(t), l(t)〉

=
(

e−Lt
)†

b(t) − εol(t)

〈
eLtuo, l(t)

〉
〈l(t), l(t)〉

=
(

e−Lt
)†

b(t) − l(t)

=
[(

eLt
)†
]−1

b(t) − l(t)

= 0. (3.6)

As an illustration of the singularisation of e−Lto , parts of the spectra of e−Lto and Φ(to)
are shown in figure 11 for the plane Poiseuille flow sketched in figure 2. The red dot at the
origin is the null singular eigenvalue of Φ(to) associated with l(to). Since ‖P(to)‖ = 1, this
singular eigenvalue lies on the εo-pseudospectrum of e−Lto , meaning that a perturbation
of amplitude εo is sufficient to make the inverse propagator singular.

Recalling that L is assumed strongly non-normal, we choose εo � 1 as expansion
parameter, introduce the slow time scale T = εot and propose the multiple-scale expansion

U(t, T) = Ue + εou1(t, T) + ε2
ou2(t, T) + O(ε3

o). (3.7)
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The square root scaling of the previous section is not made here, as resonance at second
order cannot be excluded a priori. The flow is initialised with U(0) = αε2

ouo, where α =
O(1) is a prefactor. After injecting this expansion in the unforced Navier–Stokes equations,
we obtain

εo(∂t − L)u1 + ε2
o [(∂t − L)u2 + C(u1, u1) + ∂Tu1] + O(ε3

o) = 0, (3.8)

subject to u2(0) = αuo, and ui(0) = 0 for i /= 2. In its primary quality of inverse
propagator, the following property holds for e−Lt: ∂t(e−Lt) = −e−LtL, where the
commutation of e−Lt and L has not been used. Thanks to this relation, we write
(∂t − L)ui = eLt∂t(e−Ltui). As a result, L disappears from the asymptotic expansion
but e−Lt appears. The latter is perturbed according to (3.4), leading to eLt∂t(e−Ltui) =
eLt∂t(Φ(t)ui) + εoeLt∂t(P(t)ui) for i = 1, 2, . . .. The asymptotic expansion (3.8) becomes

εoeLt∂t(Φu1) + ε2
o

[
eLt∂t(Φu2) + C(u1, u1) + ∂Tu1 + eLt∂t(P(t)u1)

]
+ O(ε3

o) = 0.

(3.9)

Note that the transformation performed from (3.8) to (3.9) is not restricted to
time-independent base flows, as the property ∂t(Ψ (t)−1) = −Ψ (t)−1L(t) holds for a
time-varying operator L(t) and the associated propagator Ψ (t). This can be shown easily
by taking the time derivative of Ψ (t)−1u(t) = u(0). Terms of (3.9) are then collected at
each order in εo, leading to a succession of linear problems, detailed hereafter.

At order εo, we collect ∂t(Φu1) = 0, subject to u1(0) = 0. We obtain Φu1 =
Φ(0)u1(0) = 0, therefore u1(t, T) is proportional to the kernel of Φ(t) for all t ≥ 0. We
choose the non-trivial solution

u1(t, T) = A(T)H(t)l(t), (3.10)

where the initial condition u1(0) = 0 is enforced by H(t), while the slowly varying
scalar amplitude A(T) is continuous in T and modulates the linear trajectory. This choice
is motivated by the observation that, since A must be constant in time in the linear
regime, we expect it to be weakly time dependent in the weakly nonlinear regime. We
stress that A(T) does not depend explicitly on t, such that ∂tA = 0. Note that the choice
u1(t) = A(t)H(t)l(t) would also have been possible, and the assumption of the amplitude
depending on a slow time scale is made solely to simplify the ensuing calculations.

At order ε2
o , we collect

∂t(Φu2) + A2He−LtC(l, l) + H
dA
dT

e−Ltl + Adt(HPl) = 0, (3.11)

subject to u2(0) = αuo. We used the property H(t)2 = H(t), which will henceforth be
understood. The particular solution of (3.11) yields

u2(t, T) = u(a)
2 (t) + A(T)2u(b)

2 (t) + dA(T)

dT
u(c)

2 (t) + A(T)u(d)
2 (t), (3.12)

where

dt

(
Φu(a)

2

)
= 0, dt

(
Φu(b)

2

)
= −H e−LtC(l, l),

dt

(
Φu(c)

2

)
= −He−Ltl, and dt

(
Φu(d)

2

)
= −dt (HPl) ,

⎫⎪⎬
⎪⎭ (3.13)

subject to the initial conditions u(a)
2 (0) = αuo and u(b)

2 (0) = u(c)
2 (0) = u(d)

2 (0) = 0. Time
integration can now be performed without ambiguity as all the partial derivatives (∂t · · · )
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have been replaced by total derivatives (dt . . .). After time integration between t = 0 and
t > 0, we obtain a series of problems for u(a)

2 , u(b)
2 , u(c)

2 and u(d)
2

Φ(t)u(a)
2 (t) = Φ(0)u(a)

2 (0) = αuo, (3.14)

since Φ(0) = I;

Φ(t)u(b)
2 (t) = −

∫ t

0
H(s)e−LsC[l(s), l(s)] ds = e−Ltũ2(t), (3.15)

where
dũ2

dt
= Lũ2 − C(l, l), ũ2(0) = 0, (3.16)

and where we have used that the general solution of dtx = Lx + F is x(t) = eLt[x(0) +∫ t
0 e−LsF (s)ds];

Φ(t)u(c)
2 (t) = −

∫ t

0
H(s)e−Lsl(s) ds

= −
∫ t

0
H(s)εouo ds = −εouot, (3.17)

since e−Ltl(t) = εouo holds by construction; and

Φ(t)u(d)
2 (t) = − [H(t)P(t)l(t) − H(0)P(0)l(0)] = −uo, (3.18)

since, by construction, H(t)P(t)l(t) = H(t)uo. Note that the presence of the Heaviside
distribution inside the integral is unimportant. Eventually,

Φu2 = αuo + A2e−Ltũ2 − εot
dA
dT

uo − Auo, t > 0. (3.19)

Invoking again the Fredholm alternative, (3.19) admits a non-diverging particular
solution if and only if its right-hand side is orthogonal to b(t) for all t > 0. This leads
to

〈uo, b(t)〉 (α − A) + A2
〈
e−Ltũ2(t), b(t)

〉
− εot

dA
dT

〈uo, b(t)〉 = 0, t > 0. (3.20)

Dividing (3.20) by 〈uo, b(t)〉 leads to

(α − A) + εoA2μ2(t) − εot
dA
dT

= 0, t > 0, (3.21)

where

μ2(t) = ε−1
o

〈
e−Ltũ2(t), b(t)

〉
〈uo, b(t)〉 = 〈ũ2(t), l(t)〉

〈l(t), l(t)〉 . (3.22)

Equation (3.21) is re-expressed as E(t, T) = 0 for t > 0, where E(t, T) = (α − A) +
εoA2μ2(t) − εotdTA. Since

∫ t
t→0 ∂sE(s, T) ds = E(t, T) − E(t → 0, T), solving E(t, T) =

0 is equivalent to solving ∂tE(t, T) = 0 for t > 0 subject to E(t → 0, T) = 0. Thereby, the
partial derivative of (3.21) with respect to the short time scale t is taken, leading to

εoA2 dμ2(t)
dt

− εo
dA
dT

= 0, 0 < t, (3.23)

where we have used that ∂tA = 0 by construction since A = A(T) does not explicitly
depend on t. Furthermore, the relation (3.23) is subject to E(t → 0, T) = limt→0(α −
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A) = 0 where we have used that ũ2(t → 0) = ũ2(0) = 0. To be meaningful, (3.23) and
its initial condition must be re-written solely in terms of t, which is done by evaluating
T along T = εot. The total derivative of A, denoted dtA, is now needed, as it takes into
account the implicit dependence of A on t. By definition, dtA = ∂tA + εo∂TA = εodTA,
such that the final amplitude equation reads

dA
dt

= εoA2 dμ2(t)
dt

, with A(0) = α, (3.24)

as limt→0(α − A(εot)) = 0 implies A(t → 0) = α, and the amplitude A is extended by
continuity in t = 0 so as to eventually impose A(0) = α. Note that the evaluation in
T = εot and the passage to the total derivative would lead to indeterminacy in its solution
if performed directly in (3.21), since that equation is not subject to any initial condition.
Indeed, at linear level for instance, it would yield dtA = (α − A)/t, which admits the
family of solutions A(t) = α + Ct, with C an undetermined constant.

We stress that the inverse propagator is not needed to solve the amplitude equation
(3.24). Just like the original problem considered in this section, (3.24) is unforced and
has a non-zero initial condition. In the linear regime, A = α for all times, and the linear
gain is ‖εoαl(t)‖/‖αε2

o‖ = ‖l(t)‖/εo. At t = to, in particular, we recover that it is equal to
1/εo since ‖l(to)‖ = ‖vo‖ = 1.

In the following, we call equation (3.24) the Weakly Nonlinear Non-normal transient
(WNNt) model. It can be corrected with higher-order terms, which requires solving the
linear singular system (3.19), as detailed in Appendix F. We show in particular that singular
higher-order solutions are orthogonal to the first-order solution l(t), and that the action of
Φ need not be computed explicitly but can in practice be replaced by the action of e−Lt.

3.1. Application case: the flow past a BFS
The WNNt model is applied to the BFS flow for Re = 500 and to = to,m = 58. See
Appendix B for details about the numerical method. For these parameters, the linear
optimal structures (figure 12) and gain are validated with the results presented in
Blackburn et al. (2008). The quadratic term in (3.24), although asymptotically correct,
happens to be insufficient to capture the nonlinear saturation of the transient gain for this
particular flow, in particular because of the weak value of the coefficient μ2(t). Indeed,
l(to) = vo appears to be dominated by a specific spatial wavenumber (see figure 12b), thus
the field ũ2, being generated by the nonlinear interaction of l(t) with itself, is dominated
by spatial harmonics and its projection on l(t) is close to zero. For this flow the WNNt
model therefore needs to be extended to order ε3

o (see Appendix F), yielding

dA
dt

= εoA2 dμ2

dt
+ ε2

oA3 dμ3

dt
, A(0) = α, (3.25)

where

μ3(t)
.= 〈ũ3(t), l(t)〉

〈l(t), l(t)〉 , (3.26)

and
dũ3

dt
= Lũ3 − 2

[
C(l, ũ2) − μ2C(l, l) + μ̇2(ũ2 − μ2l)

]
, ũ3(0) = 0. (3.27)

Equation (3.25) is similar to (3.24), although corrected by a cubic term. We formulate the
amplitude equation (3.25) in terms of the rescaled quantities a = εoA and the amplitude
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Figure 12. (a) Streamwise (x) component of the optimal initial condition uo for the BFS (sketched in figure 2a)
at Re = 500 and at to = to,m = 58. (b) Streamwise component of the evolution vo at t = to. Both structures are
normalised as ‖uo‖ = ‖vo‖ = 1.

of the initial condition U0 = ‖U(0)‖ = αε2
o

da
dt

= a2 dμ2

dt
+ a3 dμ3

dt
, a(0) = U0

εo
. (3.28)

In this manner, the weakly nonlinear transient gain becomes G(to) = a(to)/U0. Note that
in (3.28) the amplitude a(t) does not depend on U0 nor on εo independently, but on
their ratio U0/εo. Thus, as expected, increasingly nonlinear regimes are found when the
amplitude of the initial condition increases with respect to the linear gain.

Predictions from (3.28) are shown in figure 13 together with the linear and fully
nonlinear DNS gain evaluated as Gtot(t) = ‖U(t) − Ue‖/U0. In figure 13(a), the WNNt
model extended to O(ε3

o) appears to capture the weakly evolution of the transient gain
with satisfactory precision. When the amplitude of the initial condition is too large,
the higher-order fields ũ2, ũ3, . . . are expected to have a significant amplitude, and
thus the WNNt prediction deteriorates since it is based on an asymptotic hierarchy. In
figure 13(b), the gain history of Gtot(t) for all times 0 ≤ t ≤ to is successfully compared
with a(t)‖l(t)‖/U0. The coefficient μ3(t) is much larger than μ2(t) (inset), and is largely
dominated by the part of ũ3 generated by the forcing term C(l, ũ2). Since μ3(t) is
monotonically decreasing toward μ3(to) = −7.77, larger times are subject to a stronger
saturation. This leads to a decrease of the time for which the specific initial condition uo
leads to a maximum transient gain, consistently with the DNS results.

3.2. Application case: lift-up in the plane Poiseuille flow
The WNNt is now applied to the plane Poiseuille flow. The set of parameters
(Re, kx, kz, to) = (3000, 0, 2, to,m = 230) is selected. In both the linear and nonlinear
computations, the wavenumber kx = 0 is maintained such that the fields are constant in
x, and only the dependence in y and z is computed. Contrarily to the application case § 2.2,
perturbations can now be fully three-dimensional (i.e. u = (ux( y, z), uy( y, z), uz( y, z)).
The computations are performed in the spanwise-periodic box ( y, z) ∈ [−1, 1] ×
[−π/2, π/2] ≡ Ω . All the scalar products are taken upon integration inside this periodic
box, in particular for the normalisation 〈uo, uo〉 = 〈vo, vo〉 = 1, and for the evaluation of
the weakly nonlinear coefficients. The linear optimal gain is validated with the result of
Schmid & Henningson (2001); the associated optimal initial condition and its evolution
at t = to are shown in figures 14(a) and 14(b), respectively. The optimal initial condition
consists of vortices aligned in the streamwise direction; as these streamwise vortices are
superimposed on the parabolic base flow, they bring low-velocity fluid from the wall
towards the channel centre and high-velocity fluid from the centre of the channel towards
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Figure 13. Transient gain in the flow past a BFS (sketched in figure 2a) for Re = 500. (a) Gain squared G(to)2

for to = to,m = 58 as a function of the amplitude of the initial condition. (b) History of the gain squared for 0 ≤
t ≤ to,m and for three amplitudes of initial condition, U0/εo = [0.025, 0.08, 0.25] (vertical dashed lines in (a));
larger amplitudes darker. Inset: weakly nonlinear coefficients μ2(t) (continuous line) and μ3(t) (dashed-dotted
line) as a function of time.

the walls, thus generating alternated streamwise streaks. Due to the spanwise periodicity
of the optimal initial condition uo, all the solutions at even orders ε2n

o (n = 1, 2, 3, . . .)

only yield even spatial harmonics in kz and are orthogonal to l(t), such that the coefficient
μ2(t) defined in (3.22) is null at all times. Therefore, (3.28) reduces to

da
dt

= a3 dμ3

dt
, a(0) = U0

εo
, (3.29)

and ũ3 solves the simplified equation

dũ3

dt
= Lũ3 − 2C(ũ2, l), ũ3(0) = 0. (3.30)

The analytical solution of (3.29) is written

a(t) = U0

εo

[
1 −

(
U0

εo

)2

2μ3(t)

]−1/2

. (3.31)

We show in Appendix G that, at first order in the gain variation, (3.31) reduces to the
sensitivity of the transient gain to the base flow modification (U0/εo)

2ũ2(t).
Predictions from (3.31) are shown in figure 15 together with the linear and fully

nonlinear DNS gains. These DNS gains are evaluated in two ways: using either the total
perturbation around the base flow, for Gtot (already defined), or using only the part of the
perturbation fluctuating at kz along z, for Gkz (in the same manner that we considered only
the component oscillating at ωo in the computation of the gain in the harmonic forcing
part). Indeed, a(t) multiplies the linear trajectory field l(t) that is purely fluctuating at kz
along z. The WNNt model predicts Gkz accurately in the weakly nonlinear regime for t =
to,m, which supports our approach (figure 15a). In the strongly nonlinear regime, beyond
U0/εo ≈ 0.4, the model overestimates Gkz . This can be interpreted by noting that Gtot is
twice as large as Gkz , i.e. more energy is contained in the higher-order terms generated by
the linear response than in the linear response itself. Therefore, this is not the amplitude
equation (3.31) that breaks down, but the very idea of an asymptotic expansion. Whether
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Figure 14. (a) Optimal initial condition uo for the plane Poiseuille flow (sketched in figure 2b) for
(Re, kx, kz) = (3000, 0, 2) and to = to,m = 230. Arrows: cross-sectional velocity field (uo,z,uo,y). Contours:
streamwise component uo,x. (b) Evolution vo at t = to. Both fields are normalised as ‖uo‖ = ‖vo‖ = 1.
Initial vortices have a null streamwise component uo,x, and streaks at t = to have negligible cross-sectional
components (vo,z,vo,y). Only one wavelength −π ≤ kzz ≤ π is shown.
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Figure 15. Transient gain in the plane Poiseuille flow (sketched in figure 2b) for (Re, kx, kz) = (3000, 0, 2).
(a) Gain squared G(to)2 for to = to,m = 230 as a function of the amplitude of the initial condition. Streamwise
invariance kx = 0 is enforced in the DNS as well. (b) History of the gain squared for 0 ≤ t ≤ to,m and for three
amplitudes of initial condition, U0/εo = [0.088, 0.18, 0.37] (vertical dashed lines in (a)); larger amplitudes
darker. Inset: weakly nonlinear coefficient μ3(t) as a function of time.

higher-order terms remain smaller than the fundamental is certainly flow dependent, and
the WNNt model is expected to be even more accurate when this is the case, as shown in
§ 3.1 for the flow past a BFS, which generated rather weak higher-order fields.

Figure 15(b) compares for t ≤ to the history of the approximated gain a(t)‖l(t)‖/U0 with
that of the DNS gain Gkz , and shows a convincing overall agreement. The coefficient μ3(t)
is negative and decays monotonically with time until μ3(to) = −3.30 (inset), enhancing
the saturation. This results in a reduction of the approximated optimal time with the
amplitude of the initial condition, as also observed in the DNS.

The impact of the optimisation time to (and therefore the one of εo) on the WNNt
predictions is studied in figure 16. The weakly nonlinear evolution of the gain envelope for
an increasing amplitude of the initial condition is reported together with DNS data. For
each optimisation time, the (linear) corresponding optimal initial condition is applied. The
agreement between WNNt and DNS is satisfactory over the whole range of optimisation
times to, particularly those associated with lower linear gain as they require higher U0 to
reach a fully nonlinear regime; on the contrary, optimisation times for which the linear
gains are large are subject to a more pronounced degradation of the predictions in the
considered range of U0. However, the decrease of both the maximum gain and the time for
which it is reached is well captured by the WNNt model.
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Figure 16. Gain envelope in the plane Poiseuille flow for Re = 3000 and kx = 0 (maintained in the DNS as
well); the numerical box has a length of π and periodic boundary conditions in the spanwise (z) direction, so the
optimisation algorithm automatically select the most amplified wavenumber among all harmonics kz = 2n with
n = 1, 2, . . .. Optimisation times are to = 20, 70, 120, . . . , 620: the times to = 20 (horizontal dashed line),
to = 70 (horizontal dashed-dotted line) and to ≥ 120 correspond respectively to kz = 6, kz = 4 and kz = 2 .
Four amplitudes of initial condition, U0/εo,m = [0.088, 0.18, 0.37, 0.77] are selected, the larger amplitudes are
darker.

4. Conclusions

In summary, we have derived two amplitude equations for non-normal systems, describing
the asymptotic response to harmonic forcing and the transient response to initial condition.
In both cases, the presence of a neutral or weakly damped mode was unnecessary. Both
approaches are based on the same observation: in non-normal systems, the resolvent and
propagator operators can be made singular by perturbing them slightly, therefore the
small distance to singularity can be used as a multiple-scale expansion parameter. The
resulting amplitude equations have been compared with fully nonlinear simulations, both
in parallel and non-parallel two-dimensional flows. In all cases, they predict accurately
the supercritical or subcritical nonlinear evolution of the response, and bring insight into
the weakly nonlinear mechanisms that modify the gains as the amplitude of the harmonic
forcing or the initial condition varies.

For future research, we believe that the proposed amplitude equations could be employed
as tools in a variety of different problems. (i) For instance, the efficiency of the WNNh
model in capturing a subcritical behaviour may prove useful in the search for optimal paths
to chaos or turbulence. Indeed, (2.16) could be included as a constraint in a Lagrangian
optimisation problem, whose stationary point would constitute a weakly nonlinear optimal.
Such an approach could complement fully nonlinear optimisations, proposed for instance
in Pringle & Kerswell (2010), by providing physical understanding at a numerical cost
close to the linear one. (ii) Amplitude equations could also be exploited for fully
three-dimensional flows, where we expect them to still be valid since the hypothesis of
two dimensionality has never been made in the developments. Again in their quality of
reduced-order models, they would be all the more relevant here because assessing the
three-dimensional finite-amplitude flow behaviour from DNS is generally costly. (iii) For
the transient growth aspect, the assumption of a time-independent state operator and the
associated operator exponential formalism are unnecessary, and we believe that the model
can be applied to time-varying base flows.

Furthermore, the method presents numerous possibilities for extension, in addition
to higher-order corrections. For instance, the inclusion of multiple forcing structures or
trajectories: the nonlinear interaction of multiple harmonic forcings or initial conditions
is particularly relevant when distinct structures lead to comparable gains, for instance
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optimal and sub-optimal initial conditions (Butler & Farrell 1992; Blackburn et al. 2008),
or perturbations of different spatial wavenumbers as in jet flows forced with different
azimuthal wavenumbers (Garnaud et al. 2013b). The ensuing system of coupled amplitude
equations may bear a rich dynamics, such as hysteresis and chaos. Amplitude equations
are useful for flow control and optimisation, as shown for instance in Sipp (2012) in
the classical context of a marginally stable flow, displaying little non-normality, with
a well isolated eigenvalue and a sufficiently large spectral gap. Our current efforts
also involve deriving an amplitude equation for the response to stochastic forcing, as
investigated in Farrell & Ioannou (1993) and Mantic-Lugo & Gallaire (2016a) with linear
and self-consistent models, respectively.

Finally, it should be noted that the proposed method is not restricted to the
Navier–Stokes equations, but applies to all nonlinear systems whose linearised operator
exhibits strong non-normality (see Trefethen & Embree (2005, §§ 55–60) for a
comprehensive discussion, as well as the situations discussed in the introduction). For
instance in ecological models describing the temporal evolution of a population, such
as the canonical Lotka–Volterra predator–prey equations, the so-called resilience of a
community (spectral abscissa of the Jacobian of the system) is known to be sometimes
a misleading or incomplete measure (Neubert & Caswell 1997). The conjunction of
non-normality and nonlinearity is then key to predicting population extinction/survival.
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Appendix A. Harmonic gain sensitivity and comparison with the WNNh model

Let Go = 1/εo designate the linear harmonic gain. Then R†Rf̂ o = G2
of̂ o holds by

definition, and implies G2
o = 〈R†Rf̂ o, f̂ o〉 thanks to the chosen normalisation ‖f̂ o‖ = 1.

We are interested in the squared gain variation δG2
o (where this notation does not designate

the square of the gain variation) induced by a small perturbation δL of the state operator.
The latter results in the following perturbation δR of the resolvent:

δR = (iωI − L − (δL))−1 − (iωI − L)−1

= [(iωI − L)(I − R(δL))]−1 − R

≈ (I + RδL)R − R

= R(δL)R. (A1)

The gain variation is therefore

δG2
o = 〈δ(R†R)f̂ o, f̂ o〉 =

〈
(δR)†Rf̂ o + R†(δR)f̂ o, f̂ o

〉
=
〈
R†(δR)f̂ o, f̂ o

〉
+ c.c.
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=
〈
R(δL)Rf̂ o, Rf̂ o

〉
+ c.c.

=
〈
(δL)Goûo, G2

of̂ o

〉
+ c.c., (A2)

so finally

δG2
o = 2G3

oRe
[〈

(δL)ûo, f̂ o

〉]
. (A3)

For instance, a base flow modification δUe results in (δL)ûo = −(ûo · ∇)δUe − (δUe ·
∇)ûo = −2C(ûo, δUe) yielding the same formula as in Brandt et al. (2011) with a
different normalisation.

On the other hand, the WNNh model predicts

Y3 |μ + ν|2
ε2

o |η|2 + 2Y2Re
[
μ + ν

εoη

]
+ Y =

(
F
εo

)2

, (A4)

where Y = |ā|2. We identify the weakly nonlinear harmonic gain as G2 = Y/F2, and
multiply (A4) by ε2

o/Y

Y2 |μ + ν|2
|η|2 + 2Y

Go
Re
[
μ + ν

η

]
+ 1

G2
o

− 1
G2 = 0. (A5)

Being interested in small variations around G2
o (that correspond to the linear limit Y =

|ā|2 → 0), we write G2 = G2
o + δG2

o with |δG2
o/G2

o| � 1. In this manner, 1/G2
o − 1/G2 =

δG2
o/G4

o + higher order terms, eventually leading to

δG2
o = −2G3

oRe
[ |ā|2(μ + ν)

η

]
+ h.o.t.. (A6)

We recognise at leading-order equation (A3) where (δL)ûo = −|ā|2[2C(ûo, u2,0) +
2C(û∗

o, û2,2)]. Thus, in the small gain variation limit, the WNNh model both contains
the sensitivity formula of the harmonic gain to the base flow static perturbation |a|2u2,0,
and embeds the effect of the second harmonic û2,2 as well.

Appendix B. Applying the WNN models to the Navier–Stokes equations

The incompressible Navier–Stokes equations are written, after linearising around the
equilibrium velocity field Ue,

B
dq
dt

= Lq + d, (B1)

with the state vector q = [u, p]T, the forcing d = [ f , 0]T, the singular mass matrix

B =
[

I 0
0 0

]
, (B2)

and the linearised Navier–Stokes operator

L =
[−(Ue · ∇) ∗ −(∗ · ∇)Ue + Re−1�(∗) ∇(∗)

∇ · (∗) 0

]
. (B3)
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Several subtleties arise from the peculiarity of the pressure variable that ensures the
instantaneous satisfaction of the incompressibility condition: (i) the absence of time
derivative of the pressure results in a singular mass matrix, (ii) forcing terms remain
restricted to the momentum equations as we choose to have no source/sink of mass and (iii)
the pressure is not included in the energy norm of the response. This complicates slightly
the practical computation of the gain. For the harmonic response model, the resolvent
operator is generalised as R(iωo) = (iωoB − L)−1, and the gain is measured according to

G2(iωo) = 〈q̂, q̂〉B

〈d̂, d̂〉 , (B4)

where we used the following scalar products:

〈q̂a, q̂b〉B =
∫

Ω

(
û∗

a,xûb,x + û∗
a,yûb,y + û∗

a,zûb,z

)
dΩ, and

〈q̂a, q̂b〉 =
∫

Ω

(
û∗

a,xûb,x + û∗
a,yûb,y + û∗

a,zûb,z + p̂∗
ap̂b

)
dΩ.

⎫⎪⎪⎬
⎪⎪⎭ (B5)

The B-scalar product excludes pressure, such that the pseudonorm 〈q̂, q̂〉B = ‖q̂‖2
B is the

total kinetic energy of the response. The scalar product at the denominator includes
pressure, although this will not change the norm of d̂, namely 〈d̂, d̂〉 = ‖d̂‖2, since we
have no source/sink of mass. The weakly nonlinear coefficients must be considered under
these scalar products. Let q̂o = [ûo, po]T with ‖q̂o‖B = 1, d̂o = [f̂ o, 0]T with ‖d̂o‖ = 1,
and d̂h = [f̂ h, 0]T with ‖d̂h‖ = 1, then

γ = 〈d̂o, d̂h〉, 1/η = 〈d̂o, Bq̂o〉 = 〈d̂o, q̂o〉B,

μ/η = 〈d̂o, d̂
(3)

3,1〉, ν/η = 〈d̂o, d̂
(4)

3,1〉,

⎫⎬
⎭ (B6)

where d̂
(3)

3,1 = [f̂
(3)

3,1, 0]T, d̂
(4)

3,1 = [f̂
(4)

3,1, 0]T, f̂
(3)

3,1 = 2C(ûo, u2,0) and f̂
(4)

3,1 = 2C(û∗
o, û2,2).

The pressure field has no influence on the weakly nonlinear coefficients. For instance

1/η =
∫

Ω

(
f̂ ∗
o,xûo,x + f̂ ∗

o,yûo,y + f̂ ∗
o,zûo,z

)
dΩ, and

μ/η =
∫

Ω

(
f̂ ∗
o,xf̂ (3)

(3,1),x + f̂ ∗
o,yf̂ (3)

(3,1),y + f̂ ∗
o,zf̂

(3)
(3,1),z

)
dΩ.

⎫⎪⎪⎬
⎪⎪⎭ (B7)

The linear and nonlinear Navier–Stokes equations are solved for (ux, uy, p) by means
of the finite element method with Taylor–Hood (P2, P2, P1) elements, respectively, after
implementation of the weak form in the software FreeFem++. The steady solutions of
the Navier–Stokes equations are solved using the iterative Newton–Raphson method,
and the linear operators are built thanks to a sparse solver implemented in FreeFem++.
The singular-value decomposition is performed in Matlab following Garnaud et al.
(2013b) directly. Finally, DNS are performed by applying a time scheme based on the
characteristic–Galerkin method as described in Benitez & Bermudez (2011).

For the two-dimensional flow past a BFS presented in § 2.1, we refer to Mantic-Lugo
& Gallaire (2016b) for the validation of the codes with existing literature and the mesh
convergence, since the same codes have been used. The length of the outlet channel
is chosen as Lout = 50 for Re ≤ 500 (Mantic-Lugo & Gallaire 2016b), Lout = 65 for

947 A43-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

66
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.664


Y.-M. Ducimetière, E. Boujo and F. Gallaire

Re = 600 and Lout = 80 for Re = 700. This ensures the convergence of the linear gain
and weakly nonlinear coefficients. For the plane Poiseuille studied in § 2.2, the validation
is proposed in the main text.

For the transient growth model, the linearised problem is written

B
dq
dt

= Lq subject to q(0) =
[

u(0)

0

]
, (B8)

and the gain is measured as

G(to)2 = 〈q(to), q(to)〉B

〈q(0), q(0)〉B
, (B9)

where the pressure component of the initial condition can be chosen as p(0) = 0. The
orthogonality properties hold under the B-scalar product, and the weakly nonlinear
coefficient μ2(t) is written

μ2(t) = εo

〈
q̃2(t), ql(t)

〉
B〈

ql(t), ql(t)
〉
B

, (B10)

where ql(t) = [l(t), pl(t)]T, and where q̃2 = [ũ2(t), p̃2(t)]T is solution of

B
dq̃2

dt
= Lq̃2 −

[
C(l, l)

0

]
, q̃2(0) = 0. (B11)

Again, pressure does not influence the weakly nonlinear coefficient since only velocity
fields are involved in the scalar product. In particular at t = to, ql(to) = [vo, pl(to)]T thus
〈ql(to), ql(to)〉B = 1 by construction, and

μ2(to) = εo

∫
Ω

ũ2,xvo,x + ũ2,yvo,y + ũ2,zvo,z dΩ. (B12)

The software FreeFem++ is again used to solve for the velocity and pressure by means
of the finite element method with Taylor–Hood elements, (P2 for velocity and P1 for
pressure). The practical computation of the gain (B9) proposed in Garnaud et al. (2013a)
is followed. The application of the propagator eLt (respectively its adjoint (eLt)†) are
performed by integrating in time the linearised problem (B8) (respectively the adjoint
problem) with the Crank–Nicolson method. The application of the inverse propagator
e−Lt is never needed. For the transient growth past the BFS studied in § 3.1, our linear
optimisation codes are validated upon comparison with the results of Blackburn et al.
(2008). For (Re, to) = (500, 58), we obtained G(to)2 = 62.8 × 103, against G(to)2 =
63.1 × 103 in Blackburn et al. (2008). The ≈ 0.5 % relative error could be explained by
the fact that our entrance length is Li = 5, against Li = 10 in Blackburn et al. (2008).
For the plane Poiseuille flow analysed in § 3.2, the validation was performed thanks to
the open-source results of Schmid & Henningson (2001), obtained with a Chebyshev
polynomial discretisation, and where the singular-value decomposition of the matrix
exponential eLt is performed directly. For the chosen set of parameters (Re, kx, kz, to) =
(3000, 0, 2, 230), convergence was achieved for a squared linear gain of G(to)2 = 1761.8,
against G(to)2 = 1761.9 in Schmid & Henningson (2001).
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Appendix C. Higher-order corrections of the WNNh equation

Recall (2.11) obtained at order
√

εo
3

Φū3,1 = −A|A|2 [2C(ûo, u2,0) + 2C(û∗
o, û2,2)

]− ûo
dA
dT

− Af̂ o + φ f̂ h, (C1)

After imposition of the Fredholm alternative, leading to (2.12) for dA/dT , the relation (C1)
becomes

Φū3,1 = A|A|2 [−2C(ûo, u2,0) − 2C(û∗
o, û2,2) + ζ ûo

]
+ A(−f̂ o + ηûo) + φ(f̂ h − ηγ ûo), (C2)

where ζ = (μ + ν). For higher-order corrections of the WNNh model, the field ū3,1
is needed and is solution of (C2) where the operator Φ is singular since ûo /= 0
belongs to its kernel. Since by construction f̂ o = εoR(iωo)

†ûo, it follows immediately
that 〈right-hand side, f̂ o〉 = εo〈R(iωo)right-hand side, ûo〉. Thus, thanks to the (imposed)
orthogonality of the right-hand side with f̂ o (〈right-hand side, f̂ o〉 = 0), solving the
equation replacing Φ by (iωoI − L) leads directly to ū3,1 being orthogonal to ûo.
Therefore, Pū3,1 = 0 and (iωoI − L)ū3,1 = Φū3,1, which implies that the field ū3,1
computed with (iωoI − L) instead of Φ is directly the particular solution of (C2). Note
that ū3,1 appears as a true correction to ûo in the sense of the scalar product. This
property has the striking and important consequence that the operator Φ never needs to
be constructed explicitly, whatever the order of the amplitude equation. The homogeneous
part of the solution of (C2) is arbitrarily proportional to ûo. It can be ignored without
loss of generality (Fujimura 1991). Eventually, the term Pūj,1eiωot + c.c. collected at
O(

√
εo

j+2
) disappears if j ≥ 2. This is due to the nullity of ūj,1 for even j, and to the

nullity of Pūj,1 for odd j. Overall, the particular solution at order
√

εo
3 is written

u3(t, T) =
(
φû(a)

3,1 + Aû(b)
3,1 + A |A|2 û(c)

3,1

)
eiωot + A3e3iωotû3,3 + c.c., (C3)

where
(iωoI − L)û(a)

3,1 = f̂ h − ηγ ûo,

(iωoI − L)û(b)
3,1 = −f̂ o + ηûo,

(iωoI − L)û(c)
3,1 = −2C(ûo, u2,0) − 2C(û∗

o, û2,2) + ζ ûo

(3iωoI − L)û3,3 = −2C(ûo, û2,2).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(C4)

The equation at order ε2
o is assembled as

(Φū4,1eiωot + c.c.) + s4 = −2C(u1, u3) − C(u2, u2) − ∂Tu2 + (Pū2,1eiωot + c.c.).
(C5)

As mentioned, Pū2,1 = 0 since ū2,1 = 0, and the forcing terms are −2C(u1, u3),
−C(u2, u2) and −∂Tu2. We first develop C(u1, u3) as

C(u1, u3) = φAC(ûo, û(a)∗
3,1 ) + |A|2C(ûo, û(b)∗

3,1 ) + |A|4C(ûo, û(c)∗
3,1 )

+
[
φAC(ûo, û(a)

3,1) + A2C(ûo, û(b)
3,1) + A2|A|2

[
C(ûo, û(c)

3,1) + C(û∗
o, û33)

]]
e2iωot

+ A4e4iωotC(ûo, û33) + c.c., (C6)
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then C(u2, u2) as

C(u2, u2) = |A|4[C(û2,2, û∗
2,2) + c.c.] + |A|4C(u2,0, u2,0)

+
[
2A2|A|2e2iωotC(u2,0, û2,2) + c.c.

]
+
[
A4e4iωotC(û2,2, û2,2) + c.c.

]
. (C7)

In addition,

∂T |A|2 = A∗∂TA + A∂TA∗ = A∗(φη − ηA − ζA|A|2) + A(φη∗ − η∗A∗ − ζ ∗A∗|A|2)
= φηA∗ + φη∗A − (η + η∗)|A|2 − (ζ + ζ ∗)|A|4, (C8)

and

∂TA2 = 2A∂TA = 2φηA − 2ηA2 − 2ζA2|A|2, (C9)

such that

∂Tu2 = ∂T(|A|2u2,0 + A2e2iωotû2,2 + A∗2e−2iωotû∗
2,2)

= (φη∗Au2,0 + c.c.) − (ζ + ζ ∗)|A|4u2,0 − (η + η∗)|A|2u2,0

+
[
(2φηAû2,2 − 2ηA2û2,2 − 2ζA2|A|2û2,2)e2iωot + c.c.

]
. (C10)

Eventually, collecting all terms leads to the following particular solution for u4:

u4 = [φAû(a)
4,0 + c.c.] + |A|2u(b)

4,0 + |A|4u(c)
4,0 + · · ·[

(φAû(a)
4,2 + A2û(b)

4,2 + A2|A|2û(c)
4,2)e

2iωot + c.c.
]

+
[
A4e4iωotû4,4 + c.c.

]
, (C11)

with

− Lû(a)
4,0 = −η∗u2,0 − 2C(ûo, û(a)∗

3,1 ),

− Lu(b)
4,0 = u2,0(η + η∗) − [2C(ûo, û(b)∗

3,1 ) + c.c.],

− Lu(c)
4,0 = u2,0(ζ + ζ ∗) − C(u2,0, u2,0) − [C(û2,2, û∗

2,2) + c.c.] − [2C(ûo, û(c)∗
3,1 ) + c.c.],

(2iωoI − L)û(a)
4,2 = −2ηû2,2 − 2C(ûo, û(a)

3,1),

(2iωoI − L)û(b)
4,2 = 2ηû2,2 − 2C(ûo, û(b)

3,1),

(2iωoI − L)û(c)
4,2 = 2ζ û2,2 − 2C(u2,0, û2,2) − 2C(ûo, û(c)

3,1) − 2C(û∗
o, û3,3),

(4iωoI − L)û4,4 = −C(û2,2, û2,2) − 2C(ûo, û3,3).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C12)

The norms of the particular solutions at successive orders εo,
√

εo
3 and ε2

o are outlined
in 3 for the plane Poiseuille flow at (Re, kx, kz) = (3000, 1.2, 0) considered in § 2.2 and
forced at ωo = 0.3810.

Despite a large harmonic gain for ω = 0 as visible in figure 7, the stationary field
u2,0 remains of reasonable amplitude as the associated Reynolds stress forcing C(ûo, û∗

o)
projects poorly on the most amplified singular mode for ω = 0. However, the same does
not hold for the stationary fields û(a,b,c)

4,0 at order ε2
o , all of significantly large amplitudes.
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‖u2,0‖ ‖û2,2‖
11.5 2.07

‖û(a)
3,1‖ ‖û(b)

3,1‖ ‖û(c)
3,1‖ ‖û3,3‖

10.6 10.6 21.7 11.4

‖û(a)
4,0‖ ‖u(b)

4,0‖ ‖u(c)
4,0‖ ‖û(a)

4,2‖ ‖û(b)
4,2‖ ‖û(c)

4,2‖
10.5 × 104 4.2 × 104 5.3 × 104 1.6 × 102 4.0 × 102 1.6 × 102

Table 3. Norms of the particular solutions at O(εo), O(
√

εo
3) and O(ε2

o ) for the plane Poiseuille flow at
(Re, kx, kz) = (3000, 1.2, 0) considered in § 2.2, and forced at ωo = 0.3810.

This implies that the asymptotic hierarchy is only maintained until order
√

εo
3. Indeed, if

it holds that√
εo � εo(‖u2,0‖, ‖û2,2‖) � √

εo
3
(‖û(a)

3,1‖, ‖û(b)
3,1‖, ‖û(c)

3,1‖, ‖û3,3‖) (C13)

such that, until order
√

εo
3, each order appears as a true correction of the previous one,

this does not hold for order ε2
o . As ε2

o‖û(a)
4,0‖ is of order unity, it cannot be considered

as a correction of the order
√

εo
3 but appears directly at the base flow level, which is

asymptotically ill posed.

Appendix D. Modal amplitude equation for harmonic forcing

The dominant eigenmode q̂1 satisfies Lq̂1 = σ1q̂1. Let its small damping rate σ1,r (i.e. the
real part of σ1), be scaled in terms of εo as σ1,r = θεo, where θ = O(1) (and θ ≤ 0). The
forcing frequency ωo is detuned around the natural one, i.e. ωo = ω1 + βεo where ω1 is
the imaginary part of σ1 and β = O(1). The shift-operator procedure introduced in Meliga,
Chomaz & Sipp (2009); Meliga, Gallaire & Chomaz (2012) is adopted thereafter, in order
to apply the classical weakly nonlinear formalism. Namely, we perturb L as L = L̄ + εoS
where S satisfies Sq̂1 = θ q̂1 and is such that all the other eigenvectors of L constitute
its kernel (i.e. Sq̂i = 0 for i = 2, 3, . . .). In this way, the perturbed operator L̄ possesses
the same eigenvector as L, only the eigenvalue σ1 associated with q̂1 is shifted of −σ1,r
such as to be truly neutral: L̄q̂1 = (L − εoS)q̂1 = Lq̂1 − σ1,rq̂1 = iω1q̂1. The asymptotic
multiple-scale expansion of the forced Navier–Stokes equations is expressed
√

εo
[
(∂t − L̄)u1

]+ εo
[
(∂t − L̄)u2 + C(u1, u1)

]+ · · ·
+ √

εo
3 [

(∂t − L̄)u3 + 2C(u1, u2) + ∂Tu1 − Su1
]+ O(ε2

o) = φ
√

εo
3eiωot f̂ o + c.c..

(D1)

The equation at order
√

εo reads

(∂t − L̄)u1 = 0, (D2)

which leads to the solution u1 = A(T)q̂1eiω1t + c.c. At order εo, we obtain for u2 the
equation

(∂t − L̄)u2 = −C(u1, u1)

= −2|A|2C(q̂1, q̂∗
1) −

[
A2C(q̂1, q̂1)e

i2ω1t + c.c.
]
, (D3)

947 A43-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

66
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.664


Y.-M. Ducimetière, E. Boujo and F. Gallaire

whose solution is u2 = |A|2q2,0 + [A2e2iωotq̂2,2 + c.c.], where

−L̄q2,0 = −2C(q̂1, q̂∗
1),

(2iωoI − L̄)q̂2,2 = −C(q̂1, q̂1).

}
(D4)

At order
√

εo
3 is assembled

(∂t − L̄)u3 = −2C(u1, u2) + Su1 − ∂Tu1 + φ(eiβT+iω1t f̂ o + c.c.)

=
[
−2A|A|2 [C(q̂2,2, q̂∗

1) + C(q2,0, q̂1)
]+ θAq̂1 − q̂1

dA
dT

+ φeiβT f̂ o

]
eiω1t

+ c.c. + non-resonant terms, (D5)

where we used that Su1 = θAq̂1eiω1t + c.c. Cancelling the projection of the resonant part
of the forcing term (inside the brackets) on the adjoint â1, results in an equation for A

dA
dT

= θA − A|A|2 〈2C(q̂2,2, q̂∗
1) + 2C(q2,0, q̂1), â1〉
〈q̂1, â1〉 + φeiβT 〈f̂ o, â1〉

〈q̂1, â1〉 . (D6)

Note that, for ωo = ω1 (i.e. the detuning parameter β = 0), the amplitude in the linear
regime, Al, reads

0 = θA + φ
〈f̂ o, â1〉
〈q̂1, â1〉 ⇔ Al = −φ

〈f̂ o, â1〉
〈q̂1, â1〉θ

−1, (D7)

which corresponds to the following linear harmonic gain:

G =
√

εo|Al|
φ
√

εo
3 = 1

εo

∣∣∣∣∣ 〈f̂ o, â1〉
〈q̂1, â1〉

∣∣∣∣∣ εo

|σ1,r| =
∣∣∣∣∣ 〈f̂ o, â1〉
〈q̂1, â1〉

∣∣∣∣∣ 1
|σ1,r| , (D8)

which is different from the norm of the resolvent operator, i.e. 1/εo. Thus, even the
matching with the linear regime is not guaranteed with this classical, modal approach.

Appendix E. Uniqueness of the operator perturbation

A sort of ‘proof by contradiction’ is proposed : we will perturb R(iωo)
−1 with an operator

of size larger than its minimum value εo and show that the subsequent amplitude equation
leads to an inconsistent result.

It follows from R(iωo)
−1ûo = εof̂ o in (2.2) that[

R(iωo)
−1 − εo

〈ĝ, ûo〉 f̂ o〈ĝ, ∗〉
]

ûo = 0 (E1)

holds for all the possible choices of ĝ (in the main text we chose ĝ = ûo). Without
loss of generality we impose ‖ĝ‖2 = 1. Let us write 〈ĝ, ûo〉 = |〈ĝ, ûo〉|eiα and define
ε

.= εo/|〈ĝ, ûo〉| ≥ εo, which is necessarily larger than or equal to εo. We pick a ĝ such
that ε � 1, and select ε as our new small parameter. We can define the singular operator
as

Φ
.= R(iωo)

−1 − εP, where P = e−iα f̂ o〈ĝ, ∗〉 (E2)

(implying ‖P‖ = 1). We clearly still have Φûo = 0, and we can show that Φ†â = 0
with â .= R(iωo)

†ĝ (indeed if ĝ = ûo, we have â = f̂ o). We can perform the exact
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same asymptotic expansion as in the main text, replacing the small parameter εo by ε

everywhere. In particular, the Navier–Stokes equations are forced by F = √
ε

3f̂ heiωot +
c.c. The amplitude equation that we would eventually obtain is

1
η

dA
dT

= φ〈â, f̂ h〉 − |〈ĝ, ûo〉|〈â, f̂ o〉A − μ + ν

η
A |A|2 , (E3)

with the coefficients

η = 1
〈â, ûo〉 ,

μ

η
= 〈â, 2C(ûo, u2,0)〉, ν

η
= 〈â, 2C(û∗

o, û2,2)〉. (E4a–c)

In the linear regime, the equilibrium solution of this amplitude equation is A =
φ〈â, f̂ h〉/(|〈ĝ, ûo〉|〈â, f o〉), which leads to a linear gain of

G =
∥∥√εAûo

∥∥∥∥∥φ√
ε

3f̂ h

∥∥∥ = 1
ε

|〈â, f̂ h〉|
|〈ĝ, ûo〉‖〈â, f o〉|

= 1
εo

|〈â, f̂ h〉|
|〈â, f o〉|

. (E5)

If we force the flow with the optimal forcing structure f̂ h = f̂ o, we indeed recover the
linear gain G = 1/εo. However, the contradiction lies in the fact if we choose to force
with f̂ h = â instead, the linear gain becomes G = (1/εo)/|〈â, f o〉| ≥ 1/εo, meaning that
we found a forcing structure that led to a larger gain than f̂ o, which is by definition
impossible. To guarantee the consistency of our amplitude equation (which must predict
the correct linear gain), we must have â = f̂ o, which implies directly ĝ = ûo and ε = εo.
As a corollary, â = f̂ o is also the only choice that guarantees the consistency between the
amplitude equation and the sensitivity formula shown in Appendix A.

Appendix F. Higher-order corrections of the WNNt equation

Recall (3.19) obtained at order ε2
o

Φu2 = αuo + A2e−Ltũ2 − dA
dT

εouot − Auo. (F1)

After satisfaction of the Fredholm alternative, which leads to an equation for the amplitude
A, the relation (3.19) can be re-expressed as

Φu2 = A2
(

e−Ltũ2 − εoμ2uo

)
for t > 0, (F2)

where the orthogonality of the right-hand side with b(t) is ensured by construction
of μ2(t) = 〈ũ2(t), l(t)〉/〈l(t), l(t)〉 in (3.22). The general solution to (F2) reads u2 =
u(⊥l)

2 + A2l(t). The particular solution of the system, u(⊥l)
2 , is obtained by solving (F2)

after replacing Φ(t) by e−Lt. Indeed, such u(⊥l)
2 must be orthogonal to l(t), since 0 =

〈right-hand side, b(t)〉 = 〈eLt(right-hand side), l(t)〉 = 〈u(⊥l)
2 , l(t)〉. On the other hand,

the term A2l(t) constitutes the homogeneous part of the solution, where A2 is a scalar
amplitude. It can be kept in further calculations, provided it is included in the final
amplitude for l(t), which would then become εoA + ε2

oA2 + O(ε3
o). Instead, and without

loss of generality (Fujimura 1991), we propose to set A2 = 0 such that

u2 = u(⊥l)
2 = A2 (ũ2 − μ2l) for t > 0. (F3)

In particular, this implies that the term ∂t(Pu2) that appears at O(ε3
o) actually vanishes

since Pu2 = Pu(⊥l)
2 = 0. If this is performed at each order j ≥ 3, all the terms ∂t(Puj)
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vanish. In this way, the ‘retroaction’ forcing due to the operator perturbation only appears
at O(ε2

o).
Deriving a higher-order amplitude equation for transient growth requires introducing

a very long time scale τ = ε2
o t, such that A = A(T, τ ). The total derivative in T should

then replaced as partial derivative, and the amplitude equation derived at order ε2
o writes

∂TA = A2μ̇2 subject to limt→0(α − A) = 0. One gathers at order ε3
o for t > 0

∂t(Φu3) = −2A3e−LtC(l, u2) − e−Lt∂Tu2 − e−Lt∂τ u1 − ∂t(Pu2)

= −2A3H e−Lt [C(l, ũ2) − μ2C(l, l)
]− 2A(∂TA)

(
e−Ltũ2 − εoμ2uo

)
− εouo∂τ A

= −2A3e−Lt [C(l, ũ2) − μ2C(l, l) + μ̇2 (ũ2 − μ2l)
]− εouo∂τ A, (F4)

since (i) ∂Tu2 = 2A(∂TA)(ũ2 − μ2l), (ii) Pu2 = 0 and (iii) e−Lt∂τ u1 = H e−Ltl∂τ A =
Hεouo∂τ A. Equation (F4) is subject to u3(0) = 0. Its particular solution yields

u3(t, T, τ ) = A(T, τ )3u(a)
3 (t) + ∂A(T, τ )

∂τ
u(b)

3 (t), (F5)

where

dt

[
Φu(a)

3

]
= −2e−Lt [C(l, ũ2) − μ2C(l, l) + μ̇2(ũ2 − μ2l)

]
, and

dt

[
Φu(b)

3

]
= −εouo,

⎫⎪⎬
⎪⎭ (F6)

subject to the initial conditions u(a)
3 (0) = u(b)

3 (0) = 0. After time integration, we obtain

Φu3 = A3e−Ltũ3 − εouot∂τ A, t > 0, (F7)

where ũ3 is solution of

dũ3

dt
= Lũ3 − 2

[
C(l, ũ2) − μ2C(l, l) + μ̇2(ũ2 − μ2l)

]
, ũ3(0) = 0. (F8)

Cancelling the projection of the right-hand side of (F7) on b(t), dividing the ensuing
relation by 〈b(t), uo〉 and taking the partial derivative with respect to t leads to

εoA3 dμ3

dt
= εo

∂A
∂τ

, t > 0, (F9)

where

μ3(t) = ε−1
o

〈
e−Ltũ3(t), b(t)

〉
〈uo, b(t)〉 = 〈ũ3(t), l(t)〉

〈l(t), l(t)〉 . (F10)

To be meaningful, (F9) and its initial condition must be re-written solely in terms of
t, which is done by evaluating T = εot and τ = ε2

o t. The total derivative of A, denoted
dtA, is now needed, as it takes into account the implicit dependence of A; it reads dtA =
∂tA + εo∂TA + ε2

o∂τ A = εo∂TA + ε2
o∂τ A, such that

εoA2 dμ2(t)
dt

+ ε2
oA3 dμ3(t)

dt
= dA

dt
, t > 0, (F11)

subject to limt→0(α − A(εot, ε2
o t)) = 0 so A(t → 0) = α and the amplitude A is extended

by continuity in t = 0 so as to impose A(0) = α.
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Appendix G. Transient gain sensitivity and comparison with the WNNt model

We consider a linear system ∂tu = Lu subject to the initial condition u(0) with ‖u(0)‖ =
1. The linear transient gain at t = to writes Go = ‖u(to)‖. A variational method is used
to derive the variation of the optimal transient gain induced by a small perturbation δL of
operator. Let us introduce the Lagrangian

L = G2
o −

∫ to

0

〈
∂tu − Lu, u†

〉
dt − β

(
1 − ‖u(0)‖2

)
, (G1)

where the Lagrange multipliers u† and β enforce the constraints on the state equation and
on the norm of the initial condition, respectively. Imposing 〈∂uL, δu〉 = 0 for all δu leads
to the adjoint equation ∂tu† = −L†u†, to be integrated backward in time from the terminal
condition u†(to) = 2u(to). Eventually, the gain variation induced by δL is

δ(G2
o) =

〈
∂L
∂L

, δL
〉

=
∫ to

0

〈
(δL)u, u†

〉
dt. (G2)

(Note that formula (G2) was also derived in Meliga (2018) although using a different
approach.) On the other hand, we derived in the main text for the WNNt model

a(t) = U0

εo

[
1 −

(
U0

εo

)2

2μ3(t)

]−1/2

. (G3)

The weakly nonlinear transient gain squared can be expressed as G(to)2 = (a(to)/U0)
2,

while the linear gain squared is G2
o = (1/εo)

2, such that

1
G(to)2 − 1

G2
o

= −U2
02μ3(to). (G4)

We are interested in small variations around G2
o, thus we write G(to)2 = G2

o + δG2
o with

|δG2
o/G2

o| � 1. In this manner, 1/G2
o − 1/G(to)2 = δ(G2

o)/G4
o + h.o.t., eventually leading

to

δ(G2
o) = 2μ3(to)

U2
0

ε4
o

. (G5)

In addition,

μ3(to) = ε−1
o

〈
e−Lto ũ3(to), b(to)

〉
〈uo, b(to)〉 , (G6)

with ũ3(t) = −eLt ∫ t
0 2e−LsC[ũ2(s), l(s)] ds. Therefore

μ3(to) = −ε−1
o

〈∫ to
0 2e−LsC[ũ2(s), l(s)] ds, b(to)

〉
〈uo, b(to)〉

= −ε−1
o

∫ to
0

〈
2e−LsC[ũ2(s), l(s)], b(to)

〉
ds

〈uo, b(to)〉 . (G7)

By definition, b(to) = (eLto)†l(to) and 〈uo, b(to)〉 = 〈eLtouo, l(to)〉 = 1/εo. In addition,
(e−Ls)†(eLto)† = (eLtoe−Ls)† = (e−L(s−to))†, such that

μ3(to) = −
∫ to

0

〈
2C[ũ2(s), l(s)],

(
e−L(s−to)

)†
l(to)

〉
ds. (G8)
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In terms of our previous notations, we have the direct correspondence u(t) = l(t)/εo and
u†(s) = (e−L(s−to))†2u(to), so we can write

δ(G2
o) =

(
2U2

0
ε4

o

)(
−ε2

o

2

∫ to

0

〈
2C[ũ2(s), u(s)],

(
e−L(s−to)

)†
2u(to)

〉
ds
)

= −
∫ to

0

〈
2C
[
(U0/εo)

2ũ2(s), u(s)
]
, u†(s)

〉
ds. (G9)

The sensitivity relation (G2) is immediately recognised, where δL is here induced by the
addition of (U0/εo)

2ũ2 to the base flow. Indeed, U0/εo = alin is the linear solution of
(G3) corresponding the limit U0 → 0, such that the flow field is described in this limit by
U(t) = Ue + alinl(t) + a2

linũ2(t) + O(ε3
o).
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