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Abstract

In this paper we propose a new modelling framework for electricity futures markets
based on so-called ambit fields. The new model can capture many of the stylised facts
observed in electricity futures and is highly analytically tractable. We discuss martingale
conditions, option pricing, and change of measure within the new model class. Also, we
study the corresponding model for the spot price, which is implied by the new futures
model, and show that, under certain regularity conditions, the implied spot price can be
represented in law as a volatility modulated Volterra process.
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1. Introduction

Over the past two decades, electricity markets have been liberalised in many areas in the
world. The typical electricity market, such as, for instance, the Nordic Nord Pool market or the
European Energy Exchange (EEX) market, organises trade in spot, forward/futures contracts
and European options on these. Although these assets are parallel to other markets, such as
traditional commodities or stock markets, electricity has its own distinctive features calling
for new and more sophisticated stochastic models for derivative pricing as well as for risk
management purposes; see [22].

Recent research has particularly focused on modelling electricity spot (or day-ahead) prices;
see, e.g. [4], [5], [30], [41], [55], and [67]. Since electricity cannot be stored directly, except
via reservoirs for hydro-generated power or large and expensive batteries, the supply of power
is very inelastic, and spot prices may rise by several magnitudes when demand increases, due
to temperature drops, say. Since spot prices are determined by supply and demand, some form
of mean reversion or stationarity can be observed. The spot prices have clear deterministic
patterns over the year, week, and intra-day. The literature has focused on stochastic models for
the spot price dynamics, which take some of the various stylised facts into account. Recently, a
general, yet analytically tractable class of models has been proposed in [16] based on volatility
modulated Volterra processes and the subclass of Lévy semistationary processes.
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One of the fundamental problems in power market modelling is to understand the formation
of futures prices. Nonstorability of the spot makes the usual buy-and-hold hedging arguments
break down, and the notion of convenience yield is not relevant either; see [36], [40], and [42].
There is thus a highly complex relationship between spot and forwards, which is often modelled
by risk premiums; see, e.g. [35], [55], or [64] for some recent work on this aspect. A way around
this would be to follow the so-called Heath–Jarrow–Morton (HJM) approach, which has been
introduced in the context of modelling interest rates, see [45], and model the futures price
dynamics directly (rather than modelling the spot price and deducing the futures price from
the conditional expectation of the spot at delivery); see, e.g. [32]. However, many challenging
problems are connected to this way of modelling futures prices. First, standard models for
the futures dynamics generally depend on the current time and the time to maturity. However,
power markets trade in contracts that deliver power over a delivery period, introducing a new
dimension in the modelling. Hence, comprehensive futures price models should be functions
of both time to and length of delivery, which calls for random field models in time and space.
Furthermore, since the market trades in contracts with overlapping delivery periods, specific
noarbitrage conditions must be satisfied which essentially puts restrictions on the space structure
of the field. So far, the literature is sparse on modelling power futures prices applying the HJM
approach, presumably due to the lack of analytical tractability and empirical knowledge of the
price evolution; however, see, e.g. [19], [47], and [52].

Empirical studies, see [38], have shown that the logarithmic returns of futures prices are
nonnormally distributed with clear signs of (semi-) heavy tails. Also, a principal component
analysis by Koekebakker and Ollmar [54] revealed a high degree of idiosyncratic risk in power
futures markets. This strongly points towards random field models which, in addition, allow
for stochastic volatility. Moreover, the structure determining the interdependencies between
different contracts is by far not properly understood. Some empirical studies, see [2], suggest
that the correlations between contracts are decreasing with time to maturity, whereas the exact
form of this decay is not known. But how to take length of delivery into account in modelling
these interdependencies has been an open question. A first approach on how to tackle these
problems will be presented later in this paper.

In this paper we introduce a new modelling framework for electricity futures prices, which
is based on ambit fields. Ambit fields are defined as stochastic integrals with respect to an
independently scattered, infinitely divisible random measure, where the integrand is given by a
product of a deterministic weight function and a stochastic volatility field, and the integration is
carried out over an ambit set describing the sphere of influence for the stochastic field. Owing
to their very flexible structure, ambit processes have successfully been used for modelling
turbulence in physics and cell growth in biology; see [6]–[11] and [63].

In this paper we will show how the ambit concept can be used to develop a general modelling
framework for electricity futures. Ambit fields form a flexible class of random field models,
where one has a high degree of flexibility in modelling complex dependencies. These may be
probabilistic coming from a driving random noise and the stochastic volatility, or functional
from a specification of an ambit set or the deterministic weight function. Moreover, ambit fields
easily incorporate leptokurtic behaviour in price increments, stochastic volatility and leverage
effects, and the observed Samuelson effect in the volatility. Note that the Samuelson effect,
see [58], refers to the finding that, when the time to maturity approaches 0, the volatility of
the futures increases and converges to the volatility of the underlying spot price (provided the
futures price converges to the spot price).

Last but not least we will show that the ambit framework can shed some light on the connec-
tion between electricity spot and futures prices. Understanding the interdependencies between
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these two assets is crucial in many applications, e.g. in the hedging of exotic derivatives on the
spot using futures. Typical examples in electricity markets are so-called flexible load/virtual
power plant (VPP) contracts, which are particular kinds of swing option; see, e.g. [44].

The outline for the remaining part of the paper is as follows. In Section 2 we give a short
overview of the traditional models within the HJM class used for electricity futures. In Section 3
we introduce the new modelling framework for electricity futures markets together with its key
properties. The model will be specified as an arithmetic model. Examples of relevant model
specifications are discussed in detail. Next we derive the implied spot price from our new model
for the futures price, and we show that, under certain conditions, the implied spot price process
equals in law a volatility modulated Volterra process; see Section 4. In Section 5 we describe
how a geometric model based on ambit fields can be defined. Next, Section 6 focuses on option
pricing in our new modelling framework. In order to also obtain a visual impression of the new
models for the term structure of futures prices, we present a simulation algorithm for ambit
fields in Section 7 and highlight the main theoretical properties of the modelling framework
graphically. Moreover, since we do the modelling under the risk-neutral measure, we discuss
how a change of measure can be carried out to get back to the physical probability measure;
see Section 8. Finally, in Section 9 we conclude the paper.

2. A brief literature review

Although commodity markets have very distinct features, most models for energy futures
contracts are inspired by models for instantaneous forward rates in the context of the term
structure of interest rates; see [54] for an overview on the similarities between electricity futures
markets and interest rates. Hence, in order to get an overview on modelling concepts within
the HJM framework which have been developed in the context of the term structure of interest
rates, but which can also be used in the context of electricity markets, we will now review these
examples from the interest rate literature. However, later we will argue that, in order to account
for the particular stylised facts of power markets, there is a case for leaving these models behind
and focusing instead on ambit fields as a natural class for describing energy futures markets.

Throughout the paper, we denote by t ∈ R the current time, by T ≥ 0 the time of maturity
of a given futures/forward contract, and by x = T − t the corresponding time to maturity. We
use F(t, T ) to denote the price of a futures/forward contract at time t with time of maturity T .
Likewise, we use f for the futures/forward price at time t with time to maturity x = T − t when
we work with the Musiela parameterisation, i.e. we define f by ft (x) = ft (T − t) = F(t, T ).

Let us begin by looking at so-called multifactor models. Motivated by the classical HJM
framework (see [45]), the dynamics of the forward rate under the risk-neutral measure can
be modelled by dft (x) = ∑n

i=1 σ
(i)
t (x) dW

(i)
t for t ≥ 0 and n ∈ N, where the W(i) are

independent standard Brownian motions and the σ (i)(x) are independent positive stochastic
volatility processes for i = 1, . . . , n. The advantage of using these multifactor models is that
they are to a high degree analytically tractable. Extensions to allow for jumps in such models
have also been studied in detail in the literature. However, a principal component analysis by
Koekebakker and Ollmar [54] has indicated that we in fact need many factors (large n) to model
electricity futures prices. Hence, it is natural to study extensions to infinite-factor models which
are also called random field models.

In order to overcome the shortcomings of the multifactor models, Kennedy [50] pioneered
the approach of using random field models, in some cases called stochastic string models, for
modelling the term structure of interest rates. Random field models have a continuum of state
variables (in our case futures prices for all maturities) and, hence, are also called infinite-factor
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models, but they are typically very parsimonious in the sense that they do not require many
parameters. Note that finite-factor models can be accommodated by random field models as
degenerate cases.

Kennedy [50] proposed to model the forward rate by a centred, continuous Gaussian random
field plus a continuous deterministic drift. Furthermore, he specified a certain structure of the
covariance function of the random field which ensured that it had independent increments
in the time direction t (but not necessarily in the time to maturity direction x). Such models
include as special cases the classical HJM model when both the drift and the volatility functions
are deterministic, and also two-parameter models, such as models based on Brownian sheets.
Kennedy [50] derived suitable drift conditions which ensure the martingale properties of the
corresponding discounted zero-coupon bonds.

In a later article, Kennedy [51] revisited the continuous Gaussian random field models and
showed that the structure of the covariance function of such models can be specified explicitly
if one assumes a Markov property. Adding an additional stationarity condition, the correlation
structure of such processes is already very limited and Kennedy [51] proved that, in fact, under
a strong Markov and stationarity assumption, the Gaussian field is necessarily described by just
three parameters.

The Gaussian assumption was later relaxed and Goldstein [43] presented a term structure
model based on non-Gaussian random fields. Such models incorporate, in particular, condi-
tional volatility models, i.e. models which allow for more flexible (i.e. stochastic) behaviour
of the (conditional) volatilities of the innovations to forward rates (in the traditional Kennedy
approach such variances were just constant functions of maturity), and, hence, are particularly
relevant for empirical applications. Also, Goldstein [43] pointed out that one is interested in
very smooth random field models in the context of modelling the term structure of interest rates.
Such a smoothness (e.g. in the time to maturity direction) can be achieved by using integrated
random fields, e.g. he proposed integrating over an Ornstein–Uhlenbeck process. Goldstein [43]
derived drift conditions for the absence of arbitrage for such general non-Gaussian random field
models.

While such models are quite general and, hence, appealing in practice, Kimmel [53] pointed
out that the models defined by Goldstein [43] are generally specified as solutions to a set of
stochastic differential equations, where it is difficult to prove the existence and uniqueness of
solutions. Goldstein’s [43] models and many other conditional volatility random field models
are in fact complex and often infinite-dimensional processes, which lack the key property of
the Gaussian random field models introduced by Kennedy [50], i.e. that the individual forward
rates are low-dimensional diffusion processes. The latter property is in fact important for model
estimation and derivative pricing. Hence, Kimmel [53] proposed a new approach to random
field models which allows for conditional volatility and which preserves the key property of the
Kennedy [50] class of models: the class of latent variable term structure models. He proved
that such models ensure that the forward rates and the latent variables (which are modelled as
a joint diffusion) follow jointly a finite-dimensional diffusion.

A different approach to generalising the Kennedy [50] framework was proposed byAlbeverio
et al. [1]. They suggested replacing the Gaussian random field in the Kennedy [50] model by a
(pure jump) Lévy field. Special cases of such models are, e.g. the Poisson and the gamma sheet.

Finally, another approach for modelling forward rates has been proposed by Santa-Clara and
Sornette [59], who built their model on stochastic string shocks. Such models are related (and
under some assumptions even a special case) of the new modelling framework we present in
this paper.
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3. Arithmetic model for the futures price

Throughout this paper, we consider a probability space (�, F , Q), where the notation Q

is used for the probability measure since it denotes a risk-neutral probability measure. We
will define our new model in such a way that forward/futures prices are martingales under a
risk-neutral probability measure.

3.1. Background on Lévy bases

In the following, we will briefly sketch the basic traits of Lévy bases; a more detailed review
can be found in [15]. Recall that a Lévy basis is an infinitely divisible, independently scattered
random measure; see, e.g. [56]. Let Bb(R

d) denote the class of bounded Borel sets in Rd for
d ∈ N. We call L = {L(A) : A ∈ Bb(R

d)} a Lévy basis taking values in R if it satisfies the
following three properties.

(i) For any sequence (An)n∈N of disjoint elements of Bb(R
d) such that

⋃∞
j=1 Aj ∈ Bb(R

d),
we have L(

⋃∞
j=1 Aj) = ∑∞

j=1 L(Aj ) almost surely (a.s.).

(ii) For any finite sequence A1, . . . , An of disjoint elements of Bb(R
d), the random variables

L(A1), L(A2), . . . , L(An) are independent.

(iii) For any A ∈ Bb(R
d), the random variable L(A) is infinitely divisible.

Note that we call a Lévy basis atomless if L({a}) = 0 a.s. for every one-point set {a} ⊂ Rd .
Moreover, we call a Lévy basis homogeneous if L(A) = L(A + {a}) a.s. for any A ∈ Bb(R

d)

and a ∈ Rd .

Remark 3.1. Note that the term ‘random measure’ has been widely used in the literature, but
can potentially cause confusion in the sense that it has been used with two different definitions.
Classical probability theory defines a random measures as a locally finite kernel from the
underlying probability space to R (or to Rd for d ∈ N); see, e.g. [48, p. 203]. However, Lévy
bases defined above are generally not random measures according to that classical definition
since their realisations are in general not ordinary (signed) measures; see, e.g. [57, p. 118] for
a discussion of this aspect. Hence, some authors would rather call them random noise. The
‘random measures’ we are dealing with in the context of Lévy bases can rather be understood
as set-indexed stochastic processes.

Remark 3.2. It is well known that in the one-dimensional case, i.e. when d = 1, the process
defined by

Lt := L([0, t]) (3.1)

for a homogeneous Lévy basis L is a Lévy process ; see [61, Proposition 3.3]. Likewise, for
any Lévy process, one can find a homogeneous Lévy basis such that (3.1) holds (in law).

In the following we will often work with the so-called cumulant function, which is defined
as the distinguished logarithm of the characteristic function. Recall the definition of the
distinguished logarithm; see, e.g. [31, p. 255] or [60, p. 33].

Definition 3.1. Let g(z) be a complex-valued continuous function on R satisfying g(0) = 1
and g(z) �= 0 for every z. Then there is a unique complex-valued function f on R such that
f (0) = 0 and exp(f (z)) = g(z). We write f (z) = log(g(z)) and call f the distinguished
logarithm of g. In the case that g is a characteristic function, then f is called the cumulant
function.
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Throughout the paper, we will work with homogeneous Lévy bases, which have a cumulant
function of the form

C(ζ, L(A)) = log(E[exp(iζL(A))])
=

[
iζa − 1

2
ζ 2b +

∫
R

(eiζz − 1 − iζz 1[−1,1](z))ν(dz)

]
leb(A),

where leb(·) denotes the Lebesgue measure, a ∈ R, b ≥ 0, and ν is a Lévy measure on R.
Hence, we can associate an infinitely divisible random variable L′, called the Lévy seed, with
every homogeneous Lévy basis L such that, for A ∈ Bd(Rd),

C(ζ, L(A)) = leb(A)C(ζ, L′),

where

C(ζ, L′) = log(E[exp(iζL′)]) = iζa − 1

2
ζ 2b +

∫
R

(eiζz − 1 − iζz 1[−1,1](z))ν(dz). (3.2)

We call (a, b, ν) the characteristic triplet associated with L′ and (a, b, ν, leb) the characteristic
quadruplet associated with the homogeneous Lévy basis L.

3.2. The model

Let us now introduce our new modelling framework for the electricity futures curve
dynamics. Note that throughout the paper we do not distinguish between forward and futures
prices, but present a general framework which is applicable for modelling both forward and
futures prices. In the following, we consider a market with finite time horizon [0, T ∗] for some
T ∗ ∈ (0, ∞).

Note that in energy markets, futures specify a delivery period rather than a time of delivery.
Hence, we are interested in modelling the futures price at time t ≥ 0 with delivery period
[T1, T2] for t ≤ T1 ≤ T2 ≤ T ∗ say. In order to account for the delivery period, we use the
standard method, as, e.g. described in [17] and [22, Chapter 6], and model the (instantaneous)
futures price F(t, T ), where T ∈ [T1, T2] is interpreted as the (instantaneous) time of delivery.
The corresponding model for the futures price with delivery period [T1, T2] is then found to be

Ft(T1, T2) = 1

T2 − T1

∫ T2

T1

F(t, T ) dT . (3.3)

That is, we simply average the model for the instantaneous futures price over the delivery period
in order to have the futures price for a contract with delivery period.

In the following, we will focus on modelling the (instantaneous) futures price F(t, T ) and
(3.3) can then be used to derive the futures price for a given delivery period.

3.3. Modelling the instantaneous futures price

Let t ≥ 0 denote the current time, let T ∈ [t, T ∗] be the time of delivery, and let x = T − t

be the time to delivery of the (instantaneous) futures contract. Let us introduce our modelling
assumptions next.

(A1) L is a homogeneous, square-integrable Lévy basis on R2, which has zero mean; its
characteristic quadruplet is denoted by (a, b, ν, leb). Let Q denote the covariance
measure associated with L satisfying Q(dξ, ds) = (b + ∫

R
z2ν(dz)) dξ ds. To simplify

the exposition, we assume throughout the paper that Q is standardised and given by
Q(dξ, ds) = dξ ds.
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(A2) Let {Ft }t∈[−T ∗,T ∗] denote a filtration satisfying the usual conditions such that, for fixed
A ∈ Bb([0, T ∗]), the process (L(A, t))t∈[−T ∗,T ∗] is a martingale with respect to that
filtration.

(A3) The positive random field σ = σ(ξ, s) : � × R2 → (0, ∞) denotes the so-called
stochastic volatility field and is assumed to be independent of the Lévy basis L.

(A4) The function k : [0, T ∗] × [0, T ∗] × [−T ∗, T ∗] → [0, ∞) denotes the so-called weight
function.

(A5) For each T ∈ [0, T ∗], the random field (σ (ξ, s))(ξ,s)∈[0,T ∗]×[−T ∗,T ∗] is assumed to be
predictable and the following integrability condition needs to hold:

E

[∫
[0,T ∗]×[−T ∗,T ∗]

k2(T ; ξ, s)σ 2(ξ, s) dξ ds

]
< ∞.

(A6) We call the set

At = [0, T ∗]×[−T ∗, t] = {(ξ, s) : 0 ≤ ξ ≤ T ∗, −T ∗ ≤ s ≤ t} ⊆ [0, T ∗]×[−T ∗, T ∗]
the ambit set.

(A7) The deterministic integrable function � : [0, T ∗] → (0, ∞) denotes a seasonality and
trend function.

Definition 3.2. Let 0 ≤ t ≤ T ≤ T ∗. Under assumptions (A1)–(A7), the futures price under
the risk-neutral probability measure is defined as the ambit field given by

F(t, T ) = �(T ) +
∫

At

k(T ; ξ, s)σ (ξ, s)L(dξ, ds).

Often we work with the Musiela parametrisation with x = T −t , and define ft (x) = F(t, x+t).
Then

ft (x) = �(t + x) +
∫

At

k(x + t; ξ, s)σ (ξ, s)L(dξ, ds). (3.4)

Note that the stochastic integral with respect to the Lévy basis L is well defined in the sense
of Walsh [66], which extends classical Itô integration with respect to martingales to integration
with respect to martingale measures. A detailed review of this integration concept in the context
of ambit fields is given in [14] and [15].

Remark 3.3. Let us give a justification for the choice of the ambit set as At = [0, T ∗] ×
[−T ∗, t], which is depicted in Figure 1. As already mentioned, we consider a market with
finite time horizon T ∗, i.e. all futures contracts expire before that time point. We are interested
in modelling the futures market from today, i.e. t = 0, up to T ∗. We assume that today’s
observations are realisations of a random field which is obtained by integrating over the past, i.e.

F(0, T ) =
∫

A0

k(T ; ξ, s)σ (ξ, s)L(dξ, ds).

Without loss of generality, we assume here that the boundary of the time horizon in the past is
given by −T ∗ (rather than by a different parameter, e.g. −T ∗∗), which simplifies the exposition.
Since we follow a modelling approach based on a random field, our model permits consistency
with the initial term structure F(0, T ) and does not need to be recalibrated multiple times; see,
e.g. [43] for a discussion of this aspect.
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s

Time to delivery ξ 

T*

T*t Time0� T*

Figure 1: The ambit set At = [0, T ∗] × [−T ∗, t].

Remark 3.4. Note that the term ambit originates from the Latin words ambire and ambitus
where the latter means border, boundary, or sphere of influence. Hence, ambit sets are the
regions of influence in the past. We use the term ambit field to highlight that such random
fields are constructed by integrating over ambit sets, which can be considered as describing
the temporal past and the spatial neighbouring regions which are relevant for the object under
investigation.

Our first result is that futures prices as defined in Definition 3.2 are martingales under the
risk-neutral probability measure Q.

Proposition 3.1. For T ∈ [0, T ∗], the stochastic process (F (t, T ))0≤t≤T is a martingale with
respect to the filtration {Ft }t∈[0,T ].

Proof. The measurability and integrability are straightforward to show. Furthermore, for
0 ≤ t̃ ≤ t , we have At̃ ⊆ At . Using the independence property of σ and L and the fact that L

is a zero-mean process, we find that

E[F(t, T ) | Ft̃ ]
= �(T ) + E

[∫
At̃

k(T ; ξ, s)σ (ξ, s)L(dξ, ds)+
∫

At\At̃

k(T ; ξ, s)σ (ξ, s)L(dξ, ds)

∣∣∣∣ Ft̃

]

= �(T ) +
∫

At̃

k(T ; s, ξ)σ (ξ, s)L(dξ, ds)

= F(t̃, T ).

Alternatively, we could have argued as follows. The integrand in F(t, T ) does not depend
on t and satisfies the [66]-integrability conditions. Hence, the integral is itself a martingale
measure, and, in addition, �(T ) does not depend on t , which implies that (F (t, T ))0≤t≤T is a
martingale.

Remark 3.5. Note that necessary and sufficient conditions for a more general ambit field to
be a martingale are discussed in Appendix A.

The important implication of Proposition 3.1 is that our modelling framework is free of
arbitrage in the sense that there is no free lunch with vanishing risk as defined in [34].

We have chosen to model the futures price in (3.4) as an arithmetic model, which is in line
with many recent developments in the literature. For example, Bernhardt et al. [23] and García
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et al. [39] proposed and argued statistically for an arithmetic spot price model for Singapore
electricity data. An arithmetic spot model will naturally lead to arithmetic dynamics for the
futures price. Benth et al. [21] proposed an arithmetic model for spot electricity, and derived
arithmetic futures price dynamics. In [20] arithmetic spot and futures price models are used to
investigate the risk premium theoretically and empirically for the German EEX market. See
also [64] and [65] for recent work on arithmetic models for electricity spot and futures.

In addition, we will give a description of the corresponding geometric framework based on
ambit fields in Section 5.

3.4. Important properties of the new modelling framework

The ambit field specification is highly analytically tractable. In particular, we can easily
derive the (conditional) cumulant function.

Proposition 3.2. Let Gt = σ {σ(ξ, s), (ξ, s) ∈ At }. The conditional cumulant function of the
futures price—given the σ -algebra generated by the stochastic volatility field—is given by

Cσ (ζ, ft (x)) := log(E[exp(iζft (x)) | Gt ])
= iζ�(t + x) +

∫
At

C(ζ k(x + t; ξ, s)σ (ξ, s), L′) dξ ds, (3.5)

where L′ is the Lévy seed associated with L with cumulant function given by (3.2).

The proof of the above result is straightforward and given in, e.g. [15].

Example 3.1. If L is a homogeneous Gaussian Lévy basis then we have

C(ζ k(x + t; ξ, s)σ (ξ, s), L′) = iζ�(t + x) − 1
2ζ 2k2(x + t; ξ, s)σ 2(ξ, s).

While models based on random fields have been previously studied in the literature, see [1],
[43], [50], [51], [53], and [59], we stress that our model has an important property which
most models previously proposed in the literature lack: it allows for stochastic volatility in an
analytically tractable form. Note that Barndorff-Nielsen et al. [16], Benth [18], and Hikspoors
and Jaimungal [46] provided empirical evidence that spot and futures prices are influenced by a
stochastic volatility field σ . Here we assume that σ describes the volatility of the futures market
as a whole. The stochastic volatility is incorporated as a factor in the stochastic integrand, i.e. as
the random field σ(ξ, s). We typically use the quadratic variation to measure the accumulated
‘stochastic volatility’ over a certain time period. In our modelling context, we can deduce
from [66, Theorem 2.5] that the quadratic variation of the futures price ft (x) is given by∫

At

k2(x + t; ξ, s)σ 2(ξ, s) dξ ds.

Moreover, it is important to note that our new model does not only model one particular
futures contract, but it models the entire futures curve at once. Hence, it is interesting to study
the correlation structure for various futures contracts implied by our new modelling framework.
For the particular model defined in (3.4), for 0 ≤ t ≤ t +h ≤ T ∗ and 0 ≤ x, x′ ≤ T ∗, we have
At ∩ At+h = At and

cor(ft (x), ft+h(x
′))

=
∫
At

k(x + t, ξ, s)k(x′ + t + h, ξ, s)E[σ 2(ξ, s)] dξ ds√∫
At

k2(x + t, ξ, s)E[σ 2(ξ, s)] dξ ds
∫
At+h

k2(x′ + t + h, ξ, s)E[σ 2(ξ, s)] dξ ds
.
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Hence, we see that the correlation structure is determined by three factors: the intersection of
the corresponding ambit sets (here we have At ∩ At+h = At ), the weight function, and the
second moment of the stochastic volatility field. Furthermore, one could think of modelling
various commodity forward or futures contracts, such as electricity and natural gas futures,
simultaneously. In such a situation it becomes even more clear how flexible the ambit setup is.
We can specify different ambit sets, weight functions, stochastic volatility fields, and Lévy bases,
and obtain a rather flexible correlation structure. The details of these multivariate extensions
can be found in [15].

3.5. Examples of model specifications

In order to construct a fully parametric model for the futures price, we need to specify the
weight function k, the stochastic volatility field σ(ξ, s), and the Lévy basis L. The choice of
the model components will be based on stylised features, market intuition, and considerations
of mathematical/statistical tractability. Also, we will need to impose parameter restrictions,
which will ensure that the specific model parameters are indeed identifiable.

Since a futures model based on an ambit field has a very general structure, we would like
to point out some concrete model specifications which might be useful in practice and are
motivated from empirical work in [3], [16], and [25]. Clearly, in any particular application, the
concrete specification should be determined in a data-relevant fashion.

3.5.1. Specification of the Lévy basis. Recall that we have defined our model based on a Lévy
basis, which is square integrable and has zero mean. Extensions to allow for a nonzero mean
are straightforward and, hence, omitted. In principle, we can choose any infinitely divisible
distribution satisfying these two assumptions. A very natural starting point would be the
Gaussian Lévy basis. Alternative interesting choices in the context of modelling financial
data include the normal inverse gaussian (NIG) Lévy basis and the tempered stable Lévy basis.

3.5.2. Specification of the weight function. Next we present relevant specifications of the weight
function k. Note that the weight function k plays a key role for two reasons. First, it determines
the tempospatial autocorrelation structure of our ambit field. Second, it characterises the
Samuelson effect as we will see in Proposition 4.3 below.

Let us now study some relevant examples which are motivated by the recent literature. Note
that many traditional models for futures prices are based on stochastic processes rather than
on random fields and, hence, the corresponding weight function does not allow for a spatial
parameter. In order to incorporate such models in our modelling framework, we could think of
working under the following factorisation assumption for the weight function.

Assumption F. It holds that

k(x + t; ξ, s) = �(ξ)	(x + t, s)

for suitable functions 	 and �.

In the case that � ≡ 1 (and that there is no stochastic volatility component) we would almost
be back in the classical framework, as we will see in the following example.

Example 3.2. The traditional way to model the futures dynamics, using the Musiela parametri-
sation with x = T − t in the [45] models, is given by

dft (x) = ∂ft

∂x
(x) dt + h(x, t) dWt,
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where, for simplicity, we disregard any spatial dependency in the Gaussian field W so that it
is indeed a Brownian motion. Under appropriate (weak) conditions, the mild solution of this
stochastic partial differential equation (SPDE) is given by

ft (x) = Stf0(x) +
∫ t

0
St−sh(x, s) dWs,

where St is the right-shift operator, Stg(x) = g(x + t); see [28] and [33] for more details.
Hence,

ft (x) = f0(x + t) +
∫ t

0
h(s, (t + x) − s) dWs = ft (T − t) = f0(T ) +

∫ t

0
h(s, T − s) dWs.

In our new modelling framework, however, we are interested in nontrivial choices of � and
	. When working with a factorisation as in Assumption F, we could base our choice of the
temporal weight function 	 on weight functions which have proven to be suitable in the case of
modelling futures prices as a times series. Let us give some important examples in that context.

Example 3.3. Motivated by standard Ornstein–Uhlenbeck (OU) models, we could choose

	(x + t, s) = exp(−α(x + t − s))

for some α > 0. The choice of 	 can also be motivated from continuous-time ARMA
(CARMA) processes; see [26] and [27]. Specifically, for αi > 0, i = 1, . . . , p, p ∈ N,
introduce the matrix

A =
[

0 Ip−1
−αp −αp−1 − · · · − α1

]
,

where In denotes the n × n identity matrix. For 0 < p < q, define the p-dimensional vector
b� = (b0, b1, . . . , bp−1), where bq = 1 and bj = 0 for q < j < p, and introduce

	(x + t − s) = b� exp(A(x + t − s))ep,

with ek being the kth canonical unit vector in Rp.

Another interesting example which does not belong to the class of linear models is given as
follows.

Example 3.4. Motivated by a model introduced in [25], we could choose

	(x + t, s) = a

x + t − s + b

for a, b > 0.

We will come back to the latter example later on, when we focus in more detail on the
Samuelson effect. Bjerksund et al. [25] suggested such a weight function since they found that
it mimics the empirical Samuelson effect rather well.

Example 3.5. An important example is motivated by the model introduced in [3]. In addition
to the choice 	(x + t, s) = exp(−α(x + t − s)) for α > 0, we could define �(ξ) = exp(−βξ)

for β > 0.

An extension of the above example would be to work with weights induced by linear CARMA
models for the spatial component � also.
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Remark 3.6. It should be noted that our modelling framework allows for weight functions k

which are not separable in the s and ξ components, i.e. when Assumption F is not satisfied.
This feature makes it possible to allow for much more sophisticated correlation structures than
those used in classical models which are not based on random fields.

3.5.3. Specification of the stochastic volatility field. Let us briefly sketch possibilities of mod-
elling the stochastic volatility field. First, there is the trivial choice of setting σ ≡ 1. However,
given the empirical evidence of volatility clusters (at least in the time domain), it is unlikely
that such a model will be suitable for an application to real data.

A natural starting point to construct a nontrivial stochastic volatility field would be to work
with traditional stochastic volatility models which do not exhibit a spatial component. There
are at least two reasons which would justify such a choice. First, from a practical point of view,
we typically have very frequent data in the temporal dimension, but rather sparse data in the
spatial dimension. This would suggest that, from a modelling point of view, we might want to
focus on models which are not too complex in the spatial component. For example, it has been
pointed out in the literature, see, e.g. [59], that we are often interested in very smooth models
in the spatial component.

In Section 7 we will study a concrete example of a truly tempospatial volatility field. From a
theoretical point of view, there are various ways to construct tempospatial stochastic volatility
fields and we refer the reader to [15] for more results on this topic.

3.6. Remark on how to include length of delivery in the model

As mentioned before, the futures price corresponding to a delivery period [T1, T2] is modelled
by Ft(T1, T2) = (T2 − T1)

−1
∫ T2
T1

ft (u − t) du. Hence, given an ambit model of ft (x), we
simply average it over the delivery period in order to have the futures price for a contract with
delivery period.

Alternatively, we could think of modelling Ft(T1, T2) directly—by an ambit field. The main
idea here is to include the length of the delivery period τ := T2 − T1 as an additional spatial
component. For example, we could think of using∫

A∗
t

k(x + t, τ ; ξ, χ, s)σs(ξ, χ)L(dξ, dχ, ds),

as a building block for Ft(T1, T2), where A∗
t is a suitably extended ambit set and where we

assume that the corresponding integrability conditions hold, which ensure that the ambit field is
well defined. The main obstacle in building such models is the noarbitrage condition between
contracts with overlapping delivery periods. In fact, any model for Ft(T1, T2) must satisfy
(see [22])

Ft(T1, T2) = 1

T2 − T1

∫ T2

T1

Ft(τ, τ ) dτ,

which puts serious restrictions on the degrees of freedom in modelling. It will be interesting to
study the analytical properties of such models in more detail in future research.

4. Constructing the spot model from the futures price

After having studied the new model for the futures price, we investigate in detail the nature
of the spot price model implied by our new modelling framework for the futures price. Recall
that we are modelling under the risk-neutral measure.
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4.1. The implied spot price

By the noarbitrage assumption, the futures price for a contract which matures in zero time,
x = 0, has to be equal to the spot price, that is, ft (0) = St . Thus,

St = �(t) +
∫

At

k(t; ξ, s)σ (ξ, s)L(dξ, ds). (4.1)

More precisely, we have the following result.

Proposition 4.1. Suppose that ft (0) = St and that

lim
x↓0

∫
At

(k(x + t; ξ, s) − k(t; ξ, s))2E[σ 2(ξ, s)] dξ ds = 0.

Then ft (x) → St in L2(Q) as the time to maturity x tends to 0.

Proof. This follows readily by appealing to the Itô-type isometry for Walsh integrals.

The proposition shows us that the futures price will tend continuously in variance to the spot
price as the time to maturity decreases to 0.

We observe that the spot price process implied by our ambit field based futures price model
is driven by a (tempospatial) Lévy basis and not just by a Brownian motion or a Lévy process.
Barndorff-Nielsen et al. [16] proposed modelling energy spot prices by volatility modulated
Volterra processes, and we observe that our implied spot price St is in fact a superposition of
such spot models, in the same sense as one has superpositions of OU processes. That is, we do
not just integrate out the time parameter s, but we have an additional parameter ξ , which appears
both in the weight function and in the stochastic volatility component and can be viewed as
being randomised through the Lévy basis L.

Similarly to the result for the futures price, see Proposition 3.2, we can derive the conditional
cumulant function for the implied spot price.

Proposition 4.2. Let L be a homogeneous Lévy basis. Then, for St as defined by (4.1), the
conditional cumulant function is given by

Cσ (ζ, St ) = log(E[exp(iζSt ) | Gt ]) = iζ�(t) +
∫

At

C(ζ k(t; ξ, s)σ (ξ, s), L′) dξ ds,

where L′ is the Lévy seed associated with L.

A case of some special interest is the situation where the driving Lévy basis of the ambit
field is a homogeneous Gaussian Lévy basis. Then we obtain the following result.

Corollary 4.1. In the Gaussian case, where C(ζ, L′) = − 1
2ζ 2,

Cσ (ζ, St ) = iζ�(t) − 1

2
ζ 2

∫
At

k2(t; s, ξ)σ 2
s (ξ) dξ ds.

If k factorises as in Assumption F then

Cσ (ζ, St ) = iζ�(t) − 1

2
ζ 2

∫ t

−T ∗
	2(t; s)ω2

s ds, where ω2
s =

∫ T ∗

0
�2(ξ)σ 2

s (ξ) dξ.
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This implies that

St
law=

∫ t

−T ∗
	(t; s)ωs dWs,

where W is a Brownian motion. The latter is indeed a volatility modulated Volterra process
which is driven by a Brownian motion. Such processes have been used as a model for energy
spot prices in [16].

Remark 4.1. So far, we have assumed that T ∗ < ∞. Suppose for now that 	(t, s) = 	(t−s),
and consider the case in which T ∗ → ∞. Then, provided the limit exists, the spot price is given
by a Lévy semistationary process. This is indeed an interesting case since it includes many of
the traditional models for electricity spot prices.

Note that it is well known that there is no convergence of electricity futures prices to the
spot as time to start of delivery approaches. That is, if the delivery period is [T1, T2], T1 < T2,
then the futures price Ft(T1, T2) at time t does not converge to the spot price as t → T1. We
say that we observe a risk premium; see, e.g. [64] for some recent work on this aspect. One
could mimic such a behaviour with the model class we study here, by choosing the ‘delivery
time’ T as the midpoint, say, in the delivery interval [T1, T2], T = (T1 + T2)/2. Then we can
still associate a spot price to the futures dynamics ft (x), but we will never actually observe
the convergence in the market since at the start of delivery we have x = (T2 − T1)/2. On the
other hand, we will obtain a model where there is an explicit connection between the futures at
‘maturity’ t = T1 and the spot ST1 . This allows for modelling spot and futures jointly, taking
into account their dependency structure.

4.2. Relation to the Samuelson effect

Recall that the Samuelson effect describes the empirical fact that the volatility of the futures
price increases when the time to delivery approaches 0. In that case, from noarbitrage arguments,
we also expect that (at least theoretically) the volatility of the futures converges to the volatility
of the spot price. This finding is in fact naturally included in our modelling framework, which
we will show in the following.

Recall that the weight function k plays the role of a damping function and is therefore
nonincreasing in the first variable. In particular, this means that the function x �→ k(x + t; ξ, s)

is monotonically nonincreasing in x ≥ 0 for every (ξ, s) ∈ [0, T ∗]× [−T ∗, T ∗]. Equivalently,
we could say that x �→ k(x + t; ξ, s) is monotonically nondecreasing as x ↓ 0.

Proposition 4.3. Assume that the function x �→ k(x + t; ξ, s) is monotonically nonincreasing
in 0 ≤ x for every (ξ, s) ∈ [0, T ∗] × [−T ∗, T ∗]. Let c = var(L′), and assume that

sup
(ξ,s)∈[0,T ∗]×[−T ∗,T ∗]

E[σ 2(ξ, s)] ≤ K for a constant K > 0.

Then the variance of the futures price ft (x), given by

υt (x) := var(ft (x)) = c

∫
At

k2(x + t; ξ, s)E[σ 2(ξ, s)] dξ ds,

is monotonically nondecreasing as x ↓ 0. Furthermore, under the conditions of Proposition 4.1,
the variance of the futures converges to the variance of the implied spot price.

Proof. Let 0 ≤ x ≤ x′. Then

k2(x′ + t; ξ, s) − k2(x + t; ξ, s) ≤ 0.
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Hence,

υt (x
′) − υt (x) =

∫
At

(k2(x′ + t; ξ, s) − k2(x + t; ξ, s))E[σ 2(ξ, s)] dξ ds ≤ 0,

due to the fact that k(x + t; ξ, s) is nonincreasing in x.
Note that the variance of the spot is given by υt (0), and it follows from Proposition 4.1 that

vt (x) ≤ vt (0) for x ≥ 0. As x ↓ 0, vt (x) is a monotonically nondecreasing sequence which
is furthermore bounded by vt (0). Thus, there exists a limit limx↓0 vt (x) ≤ vt (0). Under the
condition of Proposition 4.1, this limit will be υt (0), the spot price variance. That is, we have
a Samuelson effect.

Example 4.1. Let us study the Samuelson effect in more detail in the absence of stochastic
volatility and under the assumption that the weight function factorises as in Assumption F (and
each component satisfies suitable integrability conditions). Then the variance of the futures
price is given by

υt (x) = c′
∫ t

−T ∗
	2(x + t, s) ds, where c′ = c

∫ T ∗

0
�2(ξ) dξ.

This implies that, in the context of Example 3.3 where we worked with an exponential weight,
we obtain

vt (x) = c′ 1

2α
(e−2αx − e−2α(x+t+T ∗)),

and, in the context of the [25] model, see Example 3.4, we have

vt (x) = c′a2
(

1

x + b
− 1

x + t + T ∗ + b

)
.

While in the first case the convergence to the spot volatility is determined by the exponential
function, the ratio function determines the convergence in the second case.

Example 4.2. We now consider the limiting case of the example above when T ∗ → ∞
(assuming that the corresponding integrals exists). Let us focus on the case of the model
motivated by Bjerksund et al. [25], where we have

k(x + t; ξ, s) = �(ξ)
a

x + t − s + b
, a, b > 0.

Then the variance of the futures price satisfies vt (x) = c′a2/(x + b), where we take T ∗ → ∞
in the definition of c′. Also, for the correlation between futures with different times to maturity,
we obtain, for h > 0,

cor(ft (x), ft (x + h)) = log(1 + r)

√
1 + r

r
for r = h

x + b
.

We observe that the correlation tends to 1 as r ↓ 0, which corresponds to either h ↓ 0,
i.e. when we consider futures with the same time to maturity, or x → ∞, i.e. futures in the
long end are perfectly correlated. Also, the correlation tends to 0 as r → ∞, corresponding to
h → ∞, meaning futures far apart from each other in terms of time of maturity are uncorrelated.
Finally, we remark that the correlation is monotonically decreasing with r , or, equivalently, the
correlation is increasing with time to maturity. This means that we have more idiosyncratic
risk in the short end than in the long end of the market.
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5. A geometric modelling framework

So far, we have worked with an arithmetic model for the futures price since this is a very
natural model choice and is in line with the traditional random field based models where the
futures are directly modelled by, e.g. a Gaussian random field.

An alternative approach, which ensures that futures prices are always positive, would be to
work with geometric models, i.e. we model the futures price as the exponential of an ambit
field. Most of the results we derived before can be directly carried over to the geometric setup.
For example, when we study the link between the futures price and the spot price, this has to
be interpreted as the link between the logarithmic futures price and the logarithmic spot price.
Likewise, when looking at probabilistic properties such as the moments and cumulants of the
processes, they can be regarded as the moments/cumulants of the logarithmic futures price.

The only result, which indeed needs some adjustment, is in fact the martingale property.
There will be an additional drift condition compared to the arithmetic case.

Before we formulate the martingale property, we specify an additional integrability assump-
tion.

Assumption I. Suppose that the assumptions (A1)–(A7) are satisfied. In addition, we assume
that

E

[
exp

(∫
At

C(−ik(T ; ξ, s)σ (ξ, s), L′) dξ ds

)]
< ∞ for all t ∈ [0, T ∗].

Now we show that a suitable specification of a geometric model based on ambit fields is a
martingale.

Proposition 5.1. We assume that Assumption I is satisfied. Then the futures price at time t ≥ 0
with delivery at time T ∈ [t, T ∗], denoted by (G(t, T ))t∈[0,T ] with

G(t, T )

= exp

(
�(T ) +

∫
At

k(T ; ξ, s)σ (ξ, s)L(dξ, ds) −
∫

At

C(−ik(T ; ξ, s)σ (ξ, s), L′) dξ ds

)
,

is a martingale with respect to {Ft }t∈[0,T ].

Proof. This results follows immediately from the results corresponding to the Esscher
transform for semimartingales, see [49], and from our integrability condition, Assumption I.

Example 5.1. In the special case where L = W is a standardised, homogeneous Gaussian
Lévy basis and Assumption I is satisfied, (G(t, T ))t∈[0,T ] with

G(t, T ) = exp

(
�(T ) +

∫
At

k(T ; ξ, s)σ (ξ, s)W(dξ, ds) − 1

2

∫
At

k2(T ; ξ, s)σ 2(ξ, s) dξ ds

)

is a martingale with respect to {Ft }t∈[0,T ].

6. Option pricing

Next we describe how to price options based on futures contracts with price dynamics given
by an ambit field. Recall that the futures price at time t ≥ 0 of a contract maturing at time
T ∈ [t, T ∗] is—in the arithmetic model—given by

ft (T − t) = �(T ) +
∫

At

k(T ; ξ, s)σ (ξ, s)L(dξ, ds),
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which is a martingale in t . Given a measurable function g : R �→ R, consider the problem of
pricing a European option which pays g(fτ (T −τ)) at exercise time τ ≤ T . From the arbitrage
theory, we find that the price of this option at time t ≤ τ is

C(t) = e−r(τ−t)E[g(fτ (T − τ)) | Ft ].
Here the constant r > 0 is the risk-free interest rate. For C to be well defined, we must suppose
that g(fτ (T − τ)) is integrable.

Since the cumulant function of the ambit field is available (see (3.5)), the Fourier-based
pricing method is an attractive approach (see [29]). If g, ĝ ∈ L1(R), with ĝ being the Fourier
transform of g, we can express the price of the option as

C(t) = 1

2π

∫
R

ĝ(z)E[eizfτ (T −τ) | Ft ] dz.

Here we make use of the integral representation of the inverse Fourier transform; see [37].
Thus, to find C(t), we must compute the conditional cumulant function of Y . First, we split
the ambit field to obtain

fτ (T − τ) = �(T ) +
∫

At

k(T ; s, ξ)σs(ξ)L(dξ, ds) +
∫

Aτ \At

k(T ; s, ξ)σs(ξ)L(dξ, ds).

The first integral on the right-hand side is Ft -measurable. Hence,

E[eizfτ (T −τ) | Ft ] = exp

(
iz�(T ) + iz

∫
At

k(T ; s, ξ)σs(ξ)L(dξ, ds)

)

× E

[
exp

(
iz

∫
Aτ \At

k(T ; s, ξ)σs(ξ)L(dξ, ds)

) ∣∣∣∣ Ft

]
.

The conditional expectation can be expressed analogously as in (3.5). Note that the option price
will not depend explicitly on ft (T − t).

Many relevant payoff functions g will not be in L1(R). For example, the payoff of a call
option g(x) = max(x − K, 0) will fail to satisfy this condition. In such circumstances, one
can dampen the payoff function by some exponential, and use the same procedure as above
(see [29] for more details, including examples). In the case of geometric futures price models,
we apply the machinery above to the payoff function h(x) = g(exp(x)).

7. Simulation study

In this section we will describe how to simulate an ambit field of the form

Yt (x) :=
∫

[0,T ∗]×[−T ∗,t]
k(x + t; ξ, s)σ (ξ, s)L(dξ, ds),

where we will assume that the volatility field is given by

σ 2(ξ, s) = V

(∫
[0,T ∗]×[−T ∗,s]

j (ξ, s; v, u)Lσ (dv, du)

)
, (7.1)

where V is a positive function, Lσ is a Lévy basis which is independent of L, and the positive
weight function j is such that the integral in (7.1) is well defined.

In order to obtain our model for the futures price, we will later add a seasonality component.
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7.1. Simulation algorithm

We begin by constructing a grid for the interval [0, T ∗]×[−T ∗, T ∗] by dividing the temporal
dimension [−T ∗, T ∗] into n − 1 equidistant intervals of length �t = 2T ∗/n, where we write
−T ∗ = t1 < t2 < · · · < tn = T ∗, and by dividing the spatial dimension [0, T ∗] into m − 1
equidistant intervals of length �x = T ∗/m, where we write 0 = x1 < x2 < · · · < xm = T ∗
for n, m ∈ N.

1. Simulate the stochastic volatility field on the grid points (xj , ti) for i = 1, . . . , n and
j = 1, . . . , m. We obtain the values σ(xj , ti). In the absence of stochastic volatility, we
set σ(xj , ti) = 1 for all i, j .

2. Set � := �x�t and simulate n(m − 1) independent random variables Z1,J
d= L(�x)

and ZI,J
d= L(�) for I = 2, . . . , n and J = 1, . . . , m − 1.

3. For j = 1, . . . , m, we set

Ŷt1(xj ) =
m−1∑
J=1

k(xj + t1; xJ , t1)σ (xJ , t1)Z1,J .

4. For i = 2, . . . , n and j = 1, . . . , m, we set

Ŷti (xj ) :=
i−1∑
I=1

m−1∑
J=1

k(xj + ti; xJ , tI , )σ (xJ , tI )ZI,J .

Steps 3 and 4 of the simulation algorithm make use of the definition of the stochastic integral
in the sense of [66] for simple processes. This allows us to represent the stochastic integral of
Yt (x) as Ŷt (x) in a discretised form, ensuring convergence when � goes to 0.

In the presence of stochastic volatility, we can use the same procedure as described above
for simulating the stochastic volatility field first.

Remark 7.1. Note that � = leb([xj , xj+1] × [ti , ti+1]). In the case that L = W is a Gaussian
homogeneous Lévy basis, with characteristic quadruplet (μ, c2, 0, leb), we simulate ZI,J ∼
independent and identically distributed N(μ�, c2�).

7.2. A recursive scheme for an exponential weight function

With this general simulation algorithm at hand, let us consider a specific example, where we
can derive a recursive scheme which allows us to simulate the ambit field much more quickly.

Let At = [0, T ∗] × [−T ∗, t], and suppose that the weight function k is a weighted sum of
two exponential functions, i.e.

k(x + t; ξ, s) = w exp(−λ1(x + t − s + ξ)) + (1 − w) exp(−λ2(x + t − s + ξ))

for w ∈ [0, 1] and λ1, λ2 > 0. This choice of weight function is motivated by the empirical
studies in [16], where such a specification was shown to fit spot price data collected from
the German power exchange EEX. In addition, suppose that σ(ξ, s) ≡ 1 for all (ξ, s) ∈
[0, T ∗] × [−T ∗, T ∗]. Owing to the specification of the weight function, we can split the ambit
field into two parts, i.e.

Yt (x) = wY
(1)
t (x) + (1 − w)Y

(2)
t (x),
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where

Y
(i)
t (x) =

∫
At

e−λi(x+t−s+ξ) L(dξ, ds) = e−λi(t+x)

∫
At

e−λi(ξ−s) L(dξ, ds)

for i = 1, 2. We immediately see that, for �t > 0,

Y
(i)
t+�t

(x) = e−λi�t Y
(i)
t (x) + e−λi�t e−λi(t+x)

∫ t+�t

t

∫ T ∗

0
e−λi(ξ−s) L(dξ, ds).

For small �t , the last integral can be approximated by

∫ t+�t

t

∫ T ∗

0
e−λi(ξ−s) L(dξ, ds) ≈ eλi t

∫ T ∗

0
e−λiξ L(dξ × �t),

to obtain the iterative Euler-like time-stepping scheme

Y
(i)
t+�t

(x) ≈ e−λi�t Y
(i)
t (x) + e−λi(x+�t )

∫ T ∗

0
e−λiξ L(dξ × �t). (7.2)

The integral over ξ can be computed numerically using a Riemann-like approximation as in the
general case above. We note that we can iterate numerically over space as well, since, for �x ,
we have the equality

Y
(i)
t (x + �x) = e−λi�x Y

(i)
t (x). (7.3)

We make use of (7.2) and (7.3) to implement efficient numerical schemes for the simulation of
the whole field Yt (x).

7.3. Examples

First, we illustrate the effect of the choice of the weight function. We simulate a Gaussian
ambit field and compare four choices of the kernel function.

1. An exponential weight function, i.e. k(x + t; ξ, s) = exp(−λ1(x + t − s + ξ)) with
λ1 = 0.226; see Figure 2(a).

2. A sum of two exponentials, i.e. k(x + t; ξ, s) = (1 − w) exp(−λ1(x + t − s + ξ)) +
w exp(−λ2(x+ t −s+ξ)) with λ1 = 0.226, λ2 = 0.012, and w = 0.07; see Figure 2(b).

3. A Bjerksund et al. [25]-type weight function, i.e. k(x + t; ξ, s) = 1/(t + x − s + b + ξ)

with b = 0.01; see Figure 2(c).

4. A gamma-type weight function, i.e. k(x+ t; ξ, s) = (x+ t −s+b+ξ)ν−1exp(− 1
2α(T −

s + b + ξ)) with b = 0.01, α = 0.055, and ν = 0.672; see Figure 2(d).

In Figure 2 we present the corresponding ambit fields, which do not involve stochastic
volatility and where the seasonality component is set to 0 for now. One can clearly see the
differences between the four random fields. While Figure 2(a) decays rather quickly to 0 as
x → T ∗, we see that this is not the case any more when we add a more slowly decaying second
exponential weight function in Figure 2(b). The choice of the kernel function in Figure 2(c)
is motivated by the work of Bjerksund et al. [25], who suggested that their weight function
mimics the empirical Samuelson effect better than the exponential function. We observe that
such a weight function can be considered as a special case of a gamma-type kernel, and show a
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(a) Exponential weight function (b) Sum of two exponential weight functions

(c) Bjerksund et al.-type weight function (d) Gamma-type weight function
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Figure 2: Gaussian ambit field with four different choices for the kernel function.

realisation of such an ambit field in Figure 2(d). While the underlying Gaussian Lévy basis is
the same in all four cases, we see very clearly that the choice of the weight function plays a key
role in practice. In addition, we see that our model easily incorporates wide fluctuations in the
short end and, in particular, in the implied spot price when x = 0. At the same time, choosing
a weight function which damps down the random noise as x → T ∗ leads to a rather smooth
long end of the futures curve.

Let us now make our example more practically relevant by adding stochastic volatility as
well as a seasonal component; see Figure 3. In the following, we choose only one weight
function, namely the sum of two exponential functions with the same parameter choices as
before. A realisation of such a field is depicted in Figure 3(a). Next we simulate a stochastic
volatility field, where we suppose that Lσ is an inverse Gaussian (IG) Lévy basis with mean �

and variance � 3ϕ, where we chose � = 2 and ϕ = �−3. Furthermore, V being the identity
function and j being the exponential function, we have j (s − u; ξ, v) = exp(−λσ (ξ + s −
u + v)) for λσ > 0. Since the weight function j is of exponential type, we can use the same
considerations as above to obtain a time and space iterative scheme for simulation of σ(x, t).
A realisation of the volatility field is shown in Figure 3(b), where we have chosen the decay rate
λσ = 0.5 as an example. Note that this stochastic volatility process is a spatial generalisation
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(a) Ambit field without stochastic volatility (b) Stochastic volatility field

(c) Ambit field with stochastic volatility (d) Seasonality field

(f) Futures price with stochastic volatility(e) Futures price without stochastic volatility
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Figure 3: Building an arithmetic model for the futures prices from a Gaussian ambit field by accounting
for seasonality and stochastic volatility.
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of a so-called Barndorff-Nielsen and Shephard (BNS) model, see [12], for the volatility process
σ 2

t , defined as the stationary solution of an IG Lévy process driven OU dynamics. The choice
of speed of mean reversion equal to 0.5 will in that context yield a half-life of ln 2/0.5 ≈ 1.4,
meaning that the volatility is fast mean reverting. This is in accordance with the empirical
results found in [16]. The corresponding volatility modulated ambit field is then depicted in
Figure 3(c). As we observe, the stochastic volatility case generates higher variation in the spot
prices and the short end of the futures curve. This is due to the integration over the volatility
in space that creates a higher variation than the Gaussian ambit field model. Also, since the
stochastic volatility is chosen to be fast decaying to 0 as x → T ∗, in the long end the volatility
smoothes the field compared to the ambit field without stochastic volatility in Figure 3(a).
Clearly, different choices of the volatility field would be possible. Next, we would like to
include seasonality in the futures curve, and add the seasonality field

�(t + x) = 50 + 3 sin

(
2π(t + x)

250

)
+ 0.25 sin

(
2π(t + x)

5

)
,

which accounts for yearly and weekly effects. Adding the seasonality field to the original
ambit fields depicted in Figures 3(a) and 3(c) leads to our simulated futures curves depicted in
Figures 3(e) and 3(f), where the former does not account for stochastic volatility whereas the
latter does.

In our simulation study we have illustrated graphically that the class of ambit fields is very
flexible and allows us to account for the specific stylised facts of electricity futures. We clearly
see the influence of the seasonality function in the spot (i.e. for x = 0), whereas in the long end
it is essentially only the seasonality function that gives variations in the price. It should be noted
that our simulation shows the instantaneous futures curve. Integrating over the corresponding
delivery periods will smooth the field further in the x direction and will then result in a curve
reflecting the futures contracts with various delivery periods. This means that when considering
delivery periods, the averaging will smoothen out much of the seasonality, at least for contracts
with longer delivery periods. Typically, in the long end of the futures market we have yearly
contracts, where the seasonality will be completely averaged out.

8. Change of measure

Since our futures price model is formulated under a risk-neutral pricing measure, it is of
interest to understand how to get back to the physical measure in order to have a model which can
be used for risk management purposes. We will introduce an Esscher transform to accommodate
this.

Proposition 8.1. Define the process

Mθ
t = exp

(∫
At

θ(ξ, s) L(dξ, ds) −
∫

At

C(−iθ(ξ, s), L′) dξ ds

)
.

The deterministic function θ : [0, T ∗] × [−T ∗, T ∗] �→ R is supposed to be integrable with
respect to the Lévy basis L in the sense of [66]. Assume that

E

[
exp

(∫
At

C(−iθ(s, ξ), L′) dξ ds

)]
< ∞ for all t ∈ RT ∗ .

Then Mθ
t is a martingale with respect to Ft with E[Mθ

0 ] = 1.
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The proof of the previous proposition is straightforward and, hence, omitted. We use that
result now in order to define an equivalent probability P by

dP

dQ

∣∣∣∣
Ft

= Mθ
t

for t ≥ 0. Hence, we have a change of measure from the risk-neutral probability Q under
which the futures price is defined to a real-world probability P. In effect, the function θ is an
additional parameter to be modelled and estimated, and it will play the role as the market price
of risk, as it models the difference between the risk-neutral and objective price dynamics.

We compute the characteristic exponent of an integral of L under P.

Proposition 8.2. For any v ∈ R, and Walsh-integrable function g with respect to L, it holds
that

CP

(
v,

∫
At

g(ξ, s)L(dξ, ds)

)

= logEP

[
exp

(
iv

∫
At

g(ξ, s)L(dξ, ds)

)]

= logE

[
exp

(∫
At

(ivg(ξ, s) + θ(ξ, s)) L(dξ, ds)

)]
exp

(
−

∫
At

C(−iθ(ξ, s), L′) dξ ds

)

=
∫

At

(C(vg(ξ, s) − iθ(ξ, s), L′) − C(−iθ(ξ, s), L′)) dξ ds.

Note that the transform above is a simple generalisation of the Esscher transform of Lévy
processes; see [13], [22], and [62] for more details on this aspect.

9. Conclusion

In this paper we presented a new modelling framework for electricity futures prices which
followed the HJM methodology by modelling futures directly. We proposed using ambit fields,
which are special types of random field, as the building block for the new modelling class.
Ambit fields are constructed by stochastic integration with respect to Lévy bases using the
integration concept of [66]. This ensured that the futures price was a martingale under the
risk-neutral measure and, hence, we obtained a model free of arbitrage. We discussed relevant
examples of model specifications within the new modelling framework and related them to
the traditional modelling concepts. We showed that our new modelling framework accounts
for the key stylised facts observed in electricity futures. Furthermore, we showed that futures
and spot prices can be linked to each other within the ambit field framework. In addition, we
discussed how a change of measure between the risk-neutral and physical probability measure
can be carried out, so that our model can be used both for option pricing purposes as well as
for applications in risk management under the physical probability measure.

A natural next step to take is to test our new model empirically and to study statistical aspects
related to our ambit field models, such as model estimation and model specification tests.

Appendix A. Martingale condition

Recall that we have formulated the model for the futures price such that the price is a
martingale. In the following, we formulate a martingale condition for more general ambit
fields.
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Theorem A.1. Let At = B × [−T ∗, t] for a bounded interval B ⊂ R and T ∗ > 0, and define

Yt (T − t) =
∫

At

h(T − t, t; ξ, s)σ (ξ, s)L(dξ, ds)

for a deterministic weight function h, a nonnegative random field σ , and a homogeneous,
square-integrable Lévy basis L with zero mean. Here we assume that the integrand satisfies
the [66]-integrability conditions, and that σ and L are independent.

For every T , the necessary and sufficient condition for (Yt (T − t))t≤T to be a continuous
L2-martingale with respect to the filtration defined in (A2) is that there exists a null set N ∈ R2

such that t �→ h(T − t, t; ξ, s) is a constant for all (ξ, s) �∈ N .

Proof. The sufficiency of the condition is an immediate consequence of the definition of
the [66]-integral. Hence, we focus on proving that the condition is also necessary. Suppose
that (Yt (T − t))t≤T is a continuous L2-martingale. This implies in particular that

E[Yt (T − t) | Ft̃ ] = Yt̃ (T − t̃ ) for all t̃ ≤ t.

Note that, for t̃ ≤ t , we have At̃ ⊆ At . Using the independence property of σ and L, and the
fact that L is a zero-mean process, we find that

E[Yt (T − t) | Ft̃ ] = E

[∫
At̃

h(T − t, t; ξ, s)σ (ξ, s)L(dξ, ds)

+
∫

At\At̃

h(T − t, t; ξ, s)σ (ξ, s)L(dξ, ds)

∣∣∣∣ Ft̃

]

=
∫

At̃

h(T − t, t; ξ, s)σ (ξ, s)L(dξ, ds)

= Yt̃ (T − t̃ ) + It̃ (T − t̃ ),

where

It̃ (T − t̃ ) =
∫

At̃

{h(T − t, t; ξ, s) − h(T − t̃ , t̃; ξ, s)}σ(ξ, s)L(dξ, ds).

Without loss of generality, we assume that var(L′) = 1. Since L is a Lévy basis with zero
mean, we know that E(It̃ (T − t̃ )) = 0, and from the Itô isometry we therefore obtain

var(It̃ (T − t̃ )) =
∫

At̃

{h(T − t, t; ξ, s) − h(T − t̃ , t̃; ξ, s)}2E(σ 2(ξ, s)) dξ ds.

Thus, It̃ (T − t̃ ) ≡ 0 implies that var(It̃ (T − t̃ )) ≡ 0. Hence, we can deduce that

h(T − t, t; ξ, s) = h(T − t̃ , t̃; ξ, s)

for almost every ξ and s. Finally, we can conclude that there exists a null set N ∈ R2 such that
t �→ h(T − t, t; ξ, s) is a constant for all (ξ, s) �∈ N .

Remark A.1. We see that the martingale condition for general ambit fields essentially suggests
a model structure like the one we have chosen in this paper if one wants to model by a martingale.
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[56] Rajput, B. S. and Rosiński, J. (1989). Spectral representations of infinitely divisible processes. Prob. Theory
Relat. Fields 82, 451–487.

[57] Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes. Stochastic Models
with Infinite Variance. Chapman & Hall, New York.

[58] Samuelson, P. (1965). Proof that properly anticipated prices fluctuate randomly. Industrial Manag. Rev. 6,
41–49.

[59] Santa-Clara, P. and Sornette, D. (2001). The dynamics of the forward interest rate curve with stochastic
string shocks. Rev. Financial Studies 14, 149–185.

[60] Sato, K.-I. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press.
[61] Sato, K.-I. (2004). Stochastic integrals in additive processes and application to semi-Lévy processes. Osaka J.

Math. 41, 211–236.
[62] Shiryaev, A. N. (1999). Essentials of Stochastic Finance. Facts, Models, Theory (Adv. Ser. Statist. Sci. Appl.

Prob. 3). World Scientific, River Edge, NJ.
[63] Vedel Jensen, E. B., Jónsdóttir, K. Y., Schmiegel, J. and Barndorff-Nielsen, O. E. (2006). Spatio-

temporal modelling – with a view to biological growth. In Statistical Methods for Spatio-Temporal Systems, eds
B. Finkenstädt et al., Chapman & Hall/CRC, Boca Raton, FL, pp. 47–76.

[64] Veraart, A. E. D. and Veraart, L. A. M. (2013). Risk premiums in energy markets. J. Energy Markets 6,
1–42.

[65] Veraart, A. E. D. and Veraart, L. A. M. (2014). Modelling electricity day-ahead prices by multivariate
Lévy semistationary processes. In Quantitative Energy Finance, eds F. E. Benth et al., Springer, New York,
pp. 157–188.

[66] Walsh, J. B. (1986). An introduction to stochastic partial differential equations. In Ecole d’Été de Probabilités
de Saint-Flour, XIV—1984 (Lecture Notes Math. 1180), Springer, Berlin, pp. 265–439.

[67] Weron, R. (2006). Modeling and Forecasting Electricity Loads and Prices. A Statistical Approach. John Wiley,
Chichester.

https://doi.org/10.1239/aap/1409319557 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1409319557

	1 Introduction
	2 A brief literature review
	3 Arithmetic model for the futures price
	3.1 Background on Lévy bases
	3.2 The model
	3.3 Modelling the instantaneous futures price
	3.4 Important properties of the new modelling framework
	3.5 Examples of model specifications
	3.5.1 Specification of the Lévy basis.
	3.5.2 Specification of the weight function.
	3.5.3 Specification of the stochastic volatility field.

	3.6 Remark on how to include length of delivery in the model

	4 Constructing the spot model from the futures price
	4.1 The implied spot price
	4.2 Relation to the Samuelson effect

	5 A geometric modelling framework
	6 Option pricing
	7 Simulation study
	7.1 Simulation algorithm
	7.2 A recursive scheme for an exponential weight function
	7.3 Examples

	8 Change of measure
	9 Conclusion
	A Martingale condition
	Acknowledgements
	References

