
J. Appl. Prob. 47, 893–897 (2010)
Printed in England

© Applied Probability Trust 2010

POSITIVE DEPENDENCE OF SIGNALS

MICHEL DENUIT,∗ Université Catholique de Louvain

Abstract

In this paper we further investigate the problem considered by Mizuno (2006) in the
special case of identically distributed signals. Specifically, we first propose an alternative
sufficient condition of crossing type for the convex order to hold between the conditional
expectations given signal. Then, we prove that the bivariate (2,1)-increasing convex order
ensures that the conditional expectations are ordered in the convex sense. Finally, the L2

distance between the quantity of interest and its conditional expectation given signal (or
expected conditional variance) is shown to decrease when the strength of the dependence
increases (as measured by the (2,1)-increasing convex order).
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1. Introduction and motivation

There are numerous situations in which we cannot observe directly a variable X of interest
but we only have at our disposal a signal S for X. The signal S is correlated to X so that
observing S brings some information about the hidden X: the more S is correlated to X, the
more information it contains. Hence, we prefer signals S as perfectly correlated to X as possible.
Considering two identically distributed signals S1 and S2 for X, the strength of the dependence
in the pairs (X, S1) and (X, S2) can be compared with appropriate bivariate stochastic order
relations, such as the concordance order for instance.

We can also compare signals based on the property that more informative signals lead to
greater variability of the conditional expectation E[X | S]. If the signal S is independent of X

then the variance of E[X | S] = E[X] is 0 so that S does not contain any information about X.
On the other hand, if the signal is perfect, that is, if S = X, then the variance of E[X | S]
is maximum, being equal to the variance of X. The convex order is often used in applied
probability to compare the variability inherent to probability distributions beyond standard
deviations. Recall that a random variable Y is said to be smaller than another random variable
Z in the convex order, henceforth denoted as Y �cx Z, if E[Y ] = E[Z] and E[(Y − t)+] ≤
E[(Z − t)+] for all t ∈ R. The name convex order comes from the fact that Y �cx Z if and
only if E[g(Y )] ≤ E[g(Z)] for all the convex functions g for which the expectations exist.
For more details, we refer the reader to, e.g. Shaked and Shanthikumar (2007) or to Denuit
et al. (2005). Here, we consider that a signal S2 is more informative than another signal S1
if E[X | S1] �cx E[X | S2]. The literature about auction theory says that S2 is more integral
precise than S1 in such a case. See Ganuza and Penalva (2010).

In this paper we show that these two approaches for comparing signals S1 and S2 are
essentially equivalent: if the pair (X, S2) is more positively dependent than the pair (X, S1) then
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there is more information in S2 about X compared to S1. We restrict our analysis to identically
distributed signals so that we concentrate on the dependence structure of (X, S1) and (X, S2),

avoiding any marginal effect.
Following Mizuno (2006), let us consider the trivariate nonnegative random vector (X, S1,

S2), where S1 and S2 are interpreted as noisy signals of the unobservable random variable X.
Let F denote the distribution function of X, i.e. F(x) = Pr[X ≤ x], and let G denote
the common distribution function of S1 and S2, i.e. G(s) = Pr[S1 ≤ s] = Pr[S2 ≤ s].
Furthermore, Gi(· | x) is the conditional distribution function of Si given X = x, i = 1, 2, and
mi(s) = E[X | Si = s] is the conditional expectation of X given Si = s, i = 1, 2. Throughout
the paper, we assume, as in Mizuno (2006), that both m1 and m2 are nondecreasing. Mizuno
(2006) proved that if the function x �→ G1(s1 | x) − G2(s2 | x) changes sign at most once
from negative to positive as x increases, then m1(S1) precedes m2(S2) in the convex order.

In this paper we first propose an alternative sufficient condition of crossing type for m1(S1)

and m2(S2) to be ordered in the convex sense. As suggested in Mizuno (2006, p. 1185), the
assumptions of his Proposition 1 are strong and can be relaxed when the analysis is restricted
to identically distributed signals. In fact, we show that if the bivariate (2,1)-increasing convex
order introduced in Denuit et al. (1999) holds between (X, S1) and (X, S2), then m1(S1) and
m2(S2) are ordered in the convex sense. This result turns out to be useful for the applications as
most bivariate models can be ordered in the bivariate (2,1)-increasing convex order (which is
weaker than the concordance order, or (1,1)-increasing convex order). Finally, we examine the
closeness (in the L2 distance) of X to its conditional expectation given signal when the strength
of dependence is increased (in the sense of the (2,1)-increasing convex order).

2. Crossing-type condition for the conditional expectations

Let us now propose an alternative to the sufficient condition in Proposition 1 of Mizuno
(2006) in the special case of identically distributed signals S1 and S2. Instead of considering
the function x �→ G1(s1 | x) − G2(s2 | x) for arbitrary s1 and s2, we use here the difference
s �→ m2(s) − m1(s) of the conditional expectations of X given signals. In the next result, we
show that it suffices that the difference m1 −m2 exhibits a single sign change for the conditional
expectations m1(S1) and m2(S2) to be ordered in the convex sense.

Proposition 2.1. Assume that m1 and m2 are nondecreasing. If s �→ m2(s) − m1(s) changes
sign at most once from negative to positive as s increases, that is,

m2(s) ≥ m1(s) �⇒ m2(s
′) ≥ m1(s

′) for all s ≤ s′, (2.1)

then m1(S1) �cx m2(S2).

Proof. Note that E[m1(S1)] = E[m2(S2)] = E[X]. Condition (2.1) ensures that the func-
tions m1 and m2 cross at most once, and that m2 dominates m1 for sufficiently large arguments.
Hence, the distribution functions of m1(S1) and m2(S2) cross exactly once (because of equal
expectations), the distribution function of m1(S1) dominating for sufficiently large arguments.
By Theorem 3.A.44 of Shaked and Shanthikumar (2007), this ensures that m1(S1) �cx m2(S2),
as announced.

The single crossing condition (2.1) is not on the conditional distributions, as in Mizuno
(2006), but involves the conditional expectations. It is useful in some applications, for instance
in auction theory. A related result has been obtained in Ganuza and Penalva (2010, Lemma 1)
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where the dispersive order between m1(S1) and m2(S2) is obtained under a stronger condition
than (2.1).

3. Bivariate (2,1)-increasing convex order

For some positive integer s, let Us−icx be the class of measurable functions with nonnegative
derivatives of degrees 1 to s. Recall from Denuit et al. (1998) that given two random variables
Y and Z, Y is said to be smaller than Z in the s-increasing convex sense, denoted by Y �s Z,
when E[g(Y )] ≤ E[g(Z)] for all the functions g ∈ Us−icx such that the expectations exist. For
s = 1, ‘�1’ coincides with the usual stochastic dominance. For s = 2, ‘�2’ is the increasing
convex order. Furthermore, Y �2 Z and E[Y ] = E[Z] if and only if Y �cx Z.

Let us now consider the bivariate case and denote by g(i,j) the (i, j)th mixed partial derivative
of g with respect to x1 and x2, that is, g(i,j) = (∂i+j /∂xi

1∂x
j
2 )g. For some positive integers

s1 and s2, let U(s1,s2)−icx be the class of measurable functions g such that g(k1,k2) ≥ 0 for all
k1 = 0, . . . , s1 and k2 = 0, . . . , s2, such that k1 + k2 ≥ 1. Recall from Denuit et al. (1999)
that (X, S1) is said to be smaller than (X, S2) in the bivariate (s1, s2)-increasing convex order,
denoted by (X, S1) �(s1,s2) (X, S2), when E[g(X, S1)] ≤ E[g(X, S2)] for all g ∈ U(s1,s2)−icx
such that the expectations exist.

For s1 = s2 = 1, ‘�(1,1)’ coincides with the concordance order. Concordance conveys the
idea of clustering of large and small events. Large and small values tend to be more often
associated under the distribution that dominates the other one in the concordance order. The
‘�(1,1)’ order can be characterized by

(X, S1) �(1,1) (X, S2)

⇐⇒ Pr[X > t1, S1 > t2] ≤ Pr[X > t1, S2 > t2] for all t1, t2

⇐⇒ E[h1(X)h2(S1)] ≤ E[h1(X)h2(S2)] for all nondecreasing h1, h2 ≥ 0

⇐⇒ E[g(X, S1)] ≤ E[g(X, S2)] for all nondecreasing g such that g(1,1) ≥ 0.

Since (X, S1) and (X, S2) have identical marginal distributions, we also have

(X, S1) �(1,1) (X, S2)

⇐⇒ cov[h1(X), h2(S1)] ≤ cov[h1(X), h2(S2)] for all nondecreasing h1, h2 ≥ 0

⇐⇒ Pr[X > t1 | S1 > t2] ≤ Pr[X > t1 | S2 > t2]
for all t1 and t2 provided that Pr[Si > t2] > 0, i = 1, 2.

The latter inequality intuitively means that the knowledge that S2 is large (that is, S2 > t2)
increases the probability that X is also large (that is, X > t1) compared to (X, S1).

Now, for s1 = 2 and s2 = 1, the stochastic order relation ‘�(2,1)’ is weaker than the
concordance order ‘�(1,1)’. Denoting as 1(A) the indicator function of the event A (equal to 1
if A is realized and to 0 otherwise), and remembering that (X, S1) and (X, S2) have identical
marginal distributions, it can be characterized by

(X, S1) �(2,1) (X, S2)

⇐⇒
∫ ∞

t1

Pr[X > ξ, S1 > t2] dξ ≤
∫ ∞

t1

Pr[X > ξ, S2 > t2] dξ for all t1, t2

⇐⇒ E[(X − t1)+ 1(S1 > t2)] ≤ E[(X − t1)+ 1(S2 > t2)] for all t1, t2

⇐⇒ E[h1(X)h2(S1)] ≤ E[h1(X)h2(S2)]
for all nondecreasing h1, h2 ≥ 0 with h1convex
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⇐⇒ cov[h1(X), h2(S1)] ≤ cov[h1(X), h2(S2)]
for all nondecreasing h1, h2 ≥ 0 with h1 convex

⇐⇒ E[g(X, S1)] ≤ E[g(X, S2)]
for all nondecreasing g such that g(2,0) ≥ 0, g(1,1) ≥ 0, and g(2,1) ≥ 0

⇐⇒ E[(X − t1)+ | S1 > t2] ≤ E[(X − t1)+ | S2 > t2] (3.1)

for all t1 and t2 provided that Pr[Si > t2] > 0, i = 1, 2.

Inequality (3.1) shows that (X, S1) �(2,1) (X, S2) means that the knowledge that S2 is large
(that is, S2 > t2) increases the average part of X above any threshold t1 compared to (X, S1).
This also means that the conditional distribution of X given S2 > t2 dominates the conditional
distribution of X given S1 > t2 in the ‘�2’ order.

We are now in a position to establish the following result.

Proposition 3.1. If (X, S1) �(2,1) (X, S2) then m1(S1) �cx m2(S2).

Proof. From Shaked and Shanthikumar (2007, Equation (3.A.41)) we know that Y �cx Z

if and only if E[Y ] = E[Z] and

E[Y | Y ≥ F−1
Y (p)] ≤ E[Z | Z ≥ F−1

Z (p)] for all p ∈ [0, 1),

where F−1
Y and F−1

Z are the quantile functions associated with the distribution functions FY

and FZ , respectively. Denoting by Gm1(S1) the distribution function of m1(S1), we have

E[m1(S1) | m1(S1) ≥ G−1
m1(S1)

(p)] = E[E[X | S1] | S1 ≥ G−1(p)]
= E[X | S1 ≥ G−1(p)].

As S1 and S2 are identically distributed, we see that m1(S1) �cx m2(S2) holds if and only if
the inequality

E[X | S1 ≥ t] ≤ E[X | S2 ≥ t] (3.2)

is valid for all t , which is the case if (X, S1) �(2,1) (X, S2) by virtue of (3.1).

Note that condition (3.2) also appears in Muliere and Petrone (1992) in their study of
dependence orderings based on generalized Lorenz curves.

4. The L2 distance between the signal and conditional expectation

The stochastic inequality (X, S1) �(2,1) (X, S2) means that S2 is a better, or more informa-
tive, signal for X than S1. The next result formalizes this intuitive idea by showing that m2(S2)

is closer to X than m1(S1) in the L2 distance.

Proposition 4.1. If s �→ mi(s) is nondecreasing for i = 1, 2 then

(X, S1) �(2,1) (X, S2) ⇒ E[(X − m2(S2))
2] ≤ E[(X − m1(S1))

2],
that is, X is closer to m2(S2) in the L2-norm.

Proof. The result is a direct consequence of Proposition 3.1 since

var[X] = E[var[X | Si]] + var[mi(Si)] and E[var[X | Si]] = E[(X − mi(Si))
2]

hold for i = 1, 2, and m1(S1) �cx m2(S2) implies that var[m1(S1)] ≤ var[m2(S2)].
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Note that the ‘�(2,1)’-ranking needed in this result is rather weak. Most parametric fam-
ilies of bivariate distributions are ‘�(1,1)’-monotonic in their parameters so that the result of
Proposition 3.1 generally applies.
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