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Stratified Resistive Tearing Instability
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Resistive tearing instabilities are common in fluids that are highly electrically conductive
and carry strong currents. We determine the effect of stable stratification on the tearing
instability under the Boussinesq approximation. Our results generalise previous work
that considered only specific parameter regimes, and we show that the length scale of
the fastest-growing mode depends non-monotonically on the stratification strength. We
confirm our analytical results by solving the linearised equations numerically, and we
discuss whether the instability could operate in the solar tachocline.
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1. Introduction

In magnetised fluids of large but finite conductivity, tearing-type instabilities frequently
arise in regions where one component of the magnetic field changes sign. In such
regions field lines can easily reconnect, forming structures of closed field lines known
as plasmoids or ‘magnetic islands’ (Ji et al. 2022). Tearing instabilities have long been
studied in the context of plasma confinement experiments (Furth, Killeen & Rosenbluth
1963), the Earth’s magnetotail (Coppi, Laval & Pellat 1966) and the solar atmosphere
(Somov & Verneta 1993), and more recently in diverse areas such as neutron stars
(Lyutikov 2003; Wood, Hollerbach & Lyutikov 2014; Gourgouliatos & Hollerbach 2016),
post-main-sequence stars (Kaufman et al. 2022) and generic magnetohydrodynamic
(MHD) turbulence (Boldyrev & Loureiro 2018). In each of these contexts, the crucial
property of the instability is that it leads to reconnection, releasing energy from the
magnetic field, even in fluids that are close to the ideal MHD limit.

The simplest geometry in which to study tearing instability is the ‘sheet pinch’ (Furth
et al. 1963), in which a thin and flat current sheet is embedded within a large-scale
magnetic field. Furth et al. (1963) considered an MHD model with asymptotically small

† Email address for correspondence: s.hopper@newcastle.ac.uk

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 994 A3-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

62
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:s.hopper@newcastle.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.621&domain=pdf
https://doi.org/10.1017/jfm.2024.621


S.J. Hopper, T.S. Wood and P.J. Bushby

resistivity, and showed that the tearing instability can be described analytically by solving
the ideal equations in the bulk of the fluid, solving the resistive equations in a boundary
layer within the current sheet and asymptotically matching these solutions. Their model
included variations in density and resistivity, but to simplify the analysis they assumed
that such variations are small, and they made a further approximation that is valid only
if the growth rate is slower than resistive diffusion across the boundary layer; this latter
approximation came to be known as the ‘constant-ψ approximation’. Later studies have
generalised this analysis to include various additional physical effects, but the majority
of analytical results to date have been dependent on the same constant-ψ approximation.
Under this approximation, the existence of the instability can be demonstrated, but it is not
possible to obtain the full dispersion relation or to identify the fastest growing mode. An
alternative approach is to solve the full set of (linear or nonlinear) equations numerically
(e.g. Dahlburg et al. 1983; Califano et al. 1999; Attico, Califano & Pegoraro 2000; Landi
et al. 2008; Jelínek et al. 2017; Kaufman et al. 2022). However, with this approach it is
not possible to understand how the instability behaves in the asymptotic regime of high
conductivity, which is often the regime of most physical interest.

Coppi et al. (1976) and Pegoraro & Schep (1986) showed that, in the simplest case (with
constant density and resistivity), the boundary-layer problem can be solved analytically,
which allows the full dispersion relation to be obtained and the fastest-growing mode to be
identified. In fact, this boundary-layer problem had already been solved earlier by Gibson
& Kent (1971), and generalised to include density stratification by Baldwin & Roberts
(1972). Unfortunately, their work seems to have been largely overlooked in the plasma
physics community, and the full solution of the unstratified case is usually attributed to
Coppi et al. (1976) (e.g. Boldyrev & Loureiro 2018).

In early studies, density stratification was often included because of its analogy with
the effect of stellarator curvature (e.g. Furth et al. 1963; Johnson, Greene & Coppi 1963).
In the present work, our motivation is the solar tachocline, which is a strongly stably
stratified layer within the Sun that is believed to harbour a strong toroidal magnetic field.
There are many instabilities that may play a role in the dynamics of the tachocline, such
as magnetic buoyancy (Parker 1955; Hughes 2007; Gilman 2018), magneto-rotational
instability (Balbus & Hawley 1991; Ogilvie 2007; Parfrey & Menou 2007; Kagan &
Wheeler 2014; Gilman 2018), clamshell and tipping-type instabilities (Cally, Dikpati &
Gilman 2003), as well as non-magnetic, shear-driven instabilities (Spiegel & Zahn 1970;
Garaud 2001). However, the possibility of tearing instability has seldom been mentioned
in this context, outside of a few studies (Ji & Daughton 2011; Lewis 2022), none of which
considered the effect of stratification. Recently, however, it has been suggested that the
tachocline contains a toroidal field whose sign oscillates in the radial direction, as a result
of inward diffusion of the cyclic dynamo field from the overlying convective envelope
(Forgács-Dajka & Petrovay 2001; Barnabé et al. 2017). Whether such a field configuration
is compatible with the Sun’s interior rotation, and with the solar dynamo cycle, remains
a matter of debate (e.g. Gough 2007; Matilsky et al. 2022). In any case, such a field
configuration seems likely to be subject to tearing instability, unless it is suppressed by
the tachocline’s stabilising stratification. This motivates us to investigate the degree to
which stable stratification affects the instability, and hence to assess whether it can arise
within the solar tachocline.

In this paper we re-derive the boundary-layer solution of Baldwin & Roberts (1972)
and use it to fully describe the effect of stratification on the tearing instability. We
identify several different parameter regimes depending on the degree of stratification,
and demonstrate that previous results are reproduced in particular asymptotic limits. We
then confirm our results by solving the linearised equations numerically. The plan of the
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paper is as follows. Our mathematical model is defined and the equations are linearised
in § 2. We derive analytical solutions valid in the bulk and boundary layer in §§ 3 and 4,
respectively. In § 5 we use asymptotic matching to obtain an implicit dispersion relation,
and describe its properties in the asymptotic limit of large conductivity. In § 6 we solve
the linearised equations numerically, validating the analytical results and quantifying the
effect of finite conductivity and domain size on the instability. The results are applied to
the solar tachocline in § 7, where we also consider the effect of thermal diffusion. We
summarise our findings in § 8.

2. The sheet pinch model

We consider an inviscid, stably stratified, Boussinesq fluid under the MHD approximation:

∂u
∂t

+ u · ∇u = − 1
ρ0

∇P + θez + 1
4πρ0

(∇ × B)× B, (2.1)

∂B
∂t

= ∇ × (u × B)+ η∇2B, (2.2)

∇ · B = 0, (2.3)

∇ · u = 0, (2.4)

∂θ

∂t
+ u · ∇θ = −N2uz, (2.5)

where ez is the unit vector in the z (vertical) direction, P is the pressure, ρ0 is the (constant)
reference density, u is the fluid velocity, with vertical component uz, B is the magnetic
field (measured in Gaussian c.g.s. units), η is the magnetic diffusivity, N is the (constant)
buoyancy frequency and θ is the buoyancy variable.

In these equations we have included magnetic diffusion, because it is essential for
tearing instability to operate, but we have neglected the diffusion of both momentum
and temperature. As we shall see, this simplification makes it possible to solve the
boundary-layer problem analytically. The effect of momentum diffusion is generally to
reduce the growth rate, as has been demonstrated in previous works (e.g. Porcelli 1987;
Tenerani et al. 2015). The effect of thermal diffusion, which is certainly important in the
solar tachocline, is addressed in § 7.1. Unsurprisingly, the main consequence of including
thermal diffusion is to reduce the stabilising effect of the stratification.

2.1. Background state
As illustrated in figure 1, we consider a background state at rest with a magnetic field
B = (B(z), 0, 0) in Cartesian coordinates. The crucial condition for tearing instability to
occur is that the sign of B(z) reverses for some value of z, which we take to be z = 0
without loss of generality. The fastest-growing tearing modes are generally found to be
invariant in the direction of the electric current (e.g. Furth et al. 1963), which in our case
is the y direction, and so for simplicity we only consider two-dimensional perturbations in
the xz plane. Such modes are insensitive to any component of the background field in the
y direction, and so we have taken this to be zero without loss of generality. For simplicity
we assume that B(z) is an odd function, which implies that the solutions of the linear
perturbation problem have either even or odd symmetry.
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Figure 1. Initial background state configuration. Horizontal arrows indicate the strength and direction of the
magnetic field, and the colour gradient indicates the stable density stratification. Tearing instability arises from
magnetic diffusion within an internal boundary layer, indicated by a thin grey strip around the x axis.

In what follows, for definiteness we generally adopt the so-called Harris field,

B(z) =
√

4πρ0β� tanh(z/�) (2.6)

(named for Harris (1962)), where the constant β quantifies the Alfvénic shear in the current
sheet, which has thickness �. We then define the Lundquist number as

S ≡ β�2

η
. (2.7)

However, it is straightforward to generalise our results to other choices for the background
field.

We note that the background state is not strictly a steady solution of the induction
equation (2.2) in the presence of finite resistivity. However, we are concerned with the
regime in which η is very small, in the sense that S � 1, and the slow diffusion of the
background state can be neglected provided that the instability grows on a time scale
much shorter than the bulk diffusion time, �2/η. In what follows, it is often convenient
to measure quantities in units defined by the background field, and in particular to use � as
the length scale and 1/β as the time scale, in which case the condition for self-consistency
of our instability analysis is naturally written as σ/β � 1/S, where σ is the growth rate.
In terms of these natural units, the strength of the stratification can be expressed as a
‘magnetic Richardson number’,

RB ≡ N2

β2 , (2.8)

named by analogy with the hydrodynamic Richardson number that determines the stability
of shear flows.

2.2. Linear perturbations
As mentioned above, we anticipate that the fastest-growing tearing mode will be invariant
in the direction of the electric current, which is the y direction for our choice of background
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state. We therefore consider small perturbations to the background state in the form

a(x, z, t) = eikx+σ tâ(z), (2.9)

where a(x, z, t) represents a perturbation to any of the variables, k is the wavenumber,
σ is the growth rate and â(z) is the perturbation eigenfunction. The linearised versions
of (2.1)–(2.5) can then be reduced to the following pair of coupled ordinary differential
equations for the z components of u and b:

σ 2û′′
z − (σ 2 + N2)k2ûz = ikσ

4πρ0
[Bb̂′′

z − (k2B + B′′)b̂z], (2.10)

ηb̂′′
z − (ηk2 + σ)b̂z = −ikBûz, (2.11)

where a prime (′) denotes a derivative with respect to z.
Following the method introduced by Furth et al. (1963), we consider separately the

bulk and boundary-layer regions of the domain, solving a leading-order asymptotic
approximation to (2.10) and (2.11) in each region. The solutions will then be connected
by asymptotic matching, in order to obtain a dispersion relation for the tearing instability.
For simplicity, we take the bulk domain to be infinite in extent, with a background field
B(z) that is bounded in magnitude. In that case, the only physically meaningful solutions
are those for which the perturbations are also bounded at infinity, and this will serve as
our boundary condition. (Other solutions would correspond to an injection of energy from
infinity, rather than an instability arising internally.) Furthermore, if B(z) is an odd function
(as we assume throughout) then we generally expect the fastest-growing solution to have
an even b̂z(z), and therefore an odd ûz(z), along with a real growth rate. These properties,
which are frequently assumed in studies of tearing instability (e.g. Coppi et al. 1976), are
confirmed in Appendix A.

3. The bulk solution

Within the bulk of the domain we neglect the diffusion of the field, and therefore
omit the terms in (2.11) involving η; this approximation requires the growth rate, σ , to
exceed the rate of diffusion, i.e. σ � η(k2 + 1/�2). Having neglected these terms, it is
straightforward to combine (2.10) and (2.11) into a single equation:

σ 2û′′
z − (σ 2 + N2)k2ûz = k2

4πρ0
[(B2û′

z)
′ − k2B2ûz]. (3.1)

We further assume that the growth rate of the instability is small compared with the Alfvén
frequency, i.e. σ � β�k, which allows us to neglect the terms involving σ 2 on the left-hand
side of this equation. The validity of all these assumptions will be verified once the growth
rate is known. Thus, we finally arrive at the bulk equation

(B2û′
z)

′ = (k2B2 + 4πρ0N2)ûz. (3.2)

The same equation was obtained by Furth et al. (1963), although they assumed that the
N2 term was small enough to be neglected in the bulk. When this term is not negligible,
which is the regime of interest in the present work, the nature of the bulk equation
changes subtly but significantly (e.g. Johnson et al. 1963). We note that z = 0, which is
the location of the boundary layer, is a regular singular point of (3.2). This is expected,
since it is within the boundary layer that resistivity (which we have neglected in the
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bulk equation) is required in order to regularise the solutions. As we approach z = 0,
where we assume that the background field is of the form B(z) � √

4πρ0βz, the general
solution of (3.2) is a superposition of two Frobenius power series with the exponents

−1
2 ±

√
1
4 + N2/β2 = −1

2 ±
√

1
4 + RB. Therefore unlike the unstratified case, in which

ûz can be written as a series in integer powers of z, in the stratified problem ûz is a
superposition of power series with generally incommensurate exponents. In particular, we
can anticipate that a difficulty will arise when the stratification is increased to the critical
value RB = 3/4, because then the Frobenius exponents will differ by 2, implying that
logarithmic terms must appear in the solution. As we shall see, this means that the usual
procedure for matching the bulk solution to the boundary-layer solution fails. We note that
non-integer exponents in the solution can also result from other physical processes, such
as geometric curvature (Glasser, Greene & Johnson 1975) and the Hall effect (Attico et al.
2000), but the consequences for the asymptotic matching problem have not been fully
recognised in the literature.

The above considerations are generic for any sensible choice of background field B(z).
In the particular case of the Harris field (2.6), the bulk equation can be solved in closed
form by first making the transformation T = tanh2(z/�) to put it into hypergeometric form:

d2ûz

dT2 +
(

3/2
T

− 1
1 − T

)
dûz

dT
= s2T + (r2 − 1

4 )(1 − T)
4T2(1 − T)2

ûz, (3.3)

where we have introduced dimensionless parameters r and s, which are defined as

r ≡
√

1
4 + RB and s ≡

√
(k�)2 + RB. (3.4a,b)

The solution that has the required boundedness as |z| → ∞ can be expressed in terms
of the hypergeometric function 2F1 as

ûz = T−1/4+(1/2)r(1 − T)s/22F1(
1
2 r + 1

2 s − 1
4 ,

1
2 r + 1

2 s + 5
4 , s + 1, 1 − T) sgn(z), (3.5)

where we have included a factor of sgn(z) so that ûz(z) is an odd function, for reasons
explained earlier. From here on, the strength of the stratification will generally be measured
in terms of the parameter r or RB, rather than N. The unstratified case corresponds to
r = 1/2, and the critical stratification mentioned above corresponds to r = 1. From (3.5)
it can be confirmed that the bulk solution near z = 0 has logarithmic behaviour when r = 1
(or when r is any other integer; see Appendix A).

4. The boundary-layer solution

The boundary layer is assumed to be thin, in the sense that its thickness (which is precisely
defined later) is smaller than both � and 1/k by a factor of S to some positive power. In
(2.10) and (2.11) we therefore approximate ∇2 � ∂2/∂z2 and

B(z) �
√

4πρ0 βz. (4.1)

These approximations result in the boundary-layer equations

σ û′′
z = ikβz√

4πρ0
b̂′′

z + k2N2

σ
ûz, (4.2)

σ b̂z =
√

4πρ0 ikβzûz + ηb̂′′
z . (4.3)
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Because these equations involve four derivatives, but only two factors of z, they are more
easily solved by working in Fourier space. Defining the Fourier transform of ûz as

ũz(ζ ) =
∫ ∞

−∞
eiζ zûz(z) dz, (4.4)

(4.2) and (4.3) can be transformed and combined into a single equation:[
σζ 2

β2 + RB
k2

σ

]
ũz = k2 d

dζ

(
ζ 2

σ + ηζ 2
dũz

dζ

)
. (4.5)

This is a second-order ordinary differential equation in ζ , with an essential singularity
at ζ → ∞. We are interested in the solution that is exponentially small at infinity, since
only this solution has an inverse Fourier transform. We note that, because the function
ûz(z) is odd, its transform ũz(ζ ) must also be odd. We therefore solve (4.5) in the domain
0 < ζ < ∞ and impose antisymmetry about ζ = 0.

As well as an essential singularity at ζ → ∞, (4.5) also has three regular singularities
at ζ = 0 and at ζ = ±i

√
σ/η. On closer inspection, however, the latter two are found to

be only ‘apparent’ singularities, suggesting that there is a change of variable that reduces
this equation to a solvable form (Shanin & Craster 2002). Indeed, if we define a new
independent variable X = (

√
ησ/βk)ζ 2 then the boundary-layer equation becomes

4X1/2 d
dX

(
X3/2

X + λ
dũz

dX

)
=
(

X + r2 − 1
4

λ

)
ũz, (4.6)

where r is defined as in (3.4a,b) and

λ ≡
√
σ 3/η

βk
= S1/2(σ/β)3/2(k�)−1. (4.7)

Following the method of Shanin & Craster (2002), we can express the desired solution in
terms of the Tricomi function U as

ũz = e−X/2X−1/4+r/2

⎡
⎢⎣U

⎛
⎜⎝(r + λ)2 − 1

4
4λ

, 1 + r,X

⎞
⎟⎠

+

⎛
⎜⎝(λ− 1

2
)2 − r2

4λ

⎞
⎟⎠U

⎛
⎜⎝(r + λ)2 − 1

4
4λ

+ 1, 1 + r,X

⎞
⎟⎠
⎤
⎥⎦ sgn(ζ ). (4.8)

This is equivalent to the solution obtained by Baldwin & Roberts (1972), and in the
unstratified limit, r → 1

2 , it reduces to the solution obtained by Pegoraro & Schep (1986).
From this solution, the thickness of the boundary layer can be defined as the region in
which the variable X is of order unity, which corresponds in z-space to a thickness of
(ησ )1/4/(βk)1/2. Unfortunately, at this stage we do not know the order of magnitude of
the growth rate, σ , and so the boundary layer is of indeterminate thickness. However, our
earlier assumption that it is much smaller than � can now be expressed more precisely as
σ/β � S(k�)2, which will be verified a posteriori.

We note, in passing, that our boundary-layer equation (4.5) has the same mathematical
form as one that arises when analysing tearing instability in the electron-MHD regime
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(e.g. Attico et al. 2000; Wood et al. 2014). However, to our knowledge, the fact that it can
be solved analytically has not previously been recognised in that context.

For the purposes of asymptotically matching the boundary-layer solution to the bulk
solution, as done in the following section, we need only determine the behaviour of
the boundary-layer solution for ‘large’ values of z (in comparison with the scale of the
boundary layer itself), which is dictated by the behaviour of (4.8) for X � 1. Specifically,
we make use of the result (see Kammler 2008)

ũz(ζ ) ∼ |ζ |−α sgn(ζ ) as ζ → 0 ⇐⇒ ûz(z) ∼ |z|α−1 sgn(z)

2i sin
(π

2
α
)
Γ (α)

as |z| → ∞ (4.9)

to determine the behaviour of the boundary-layer solution for large z from its solution (4.8)
in Fourier space.

5. Asymptotic matching

Now that we are in possession of analytical solutions valid in the bulk and boundary-layer
regions, all that is required is to asymptotically match these two solutions, and thus arrive
at a dispersion relation. Following Furth et al. (1963), in nearly all previous studies of
tearing instability this has been achieved essentially by matching the coefficients of the two
leading-order terms in the series representations for the bulk and boundary-layer solutions.
Our bulk solution (3.5) for ûz(z) has the form

ûz =
∞∑

n=0

[An|z|−1/2−r+2n + Bn|z|−1/2+r+2n] sgn(z), (5.1)

whereas our boundary-layer solution (4.8), after transforming back into z-space, has the
form

ûz =
∞∑

n=0

[an|z|−1/2−r−2n + bn|z|−1/2+r−2n] sgn(z), (5.2)

where the coefficients An, Bn, an and bn are known functions of k and σ .
Matching the first terms in each of the four series, bearing in mind that each solution

also allows an arbitrary overall factor, we obtain an implicit dispersion relation:

A0

B0
(k) = a0

b0
(σ, k). (5.3)

However, the terms that are matched under this procedure cease to be the leading-order
terms when r ≥ 1. Indeed, if r = 1 then, as mentioned earlier, both the bulk and the
boundary-layer solutions will feature logarithmic terms (of different forms) and hence this
matching process cannot be valid in that case. Fortunately, as we shall show, the tearing
instability is strongly suppressed by stable stratification before this mathematical difficulty
arises, so the standard matching procedure leading to (5.3) is adequate for our purposes.
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Taking the values for the coefficients A0, B0, a0 and b0 implied by (3.5) and (4.8) (see
Appendix A), we thus obtain the dispersion relation

(Sk�)2r/3 Γ (r)
Γ (−r)

Γ

(
s
2

− r
2

− 1
4

)

Γ

(
s
2

+ r
2

− 1
4

) Γ
(

s
2

− r
2

+ 5
4

)

Γ

(
s
2

+ r
2

+ 5
4

)

= λr/3Γ (−r)
Γ (r)

λ+ 1
2

+ r

λ+ 1
2

− r

Γ

⎛
⎜⎝(λ+ r)2 − 1

4
4λ

⎞
⎟⎠

Γ

⎛
⎜⎝(λ− r)2 − 1

4
4λ

⎞
⎟⎠

sin
[
π

2

(
1
2

+ r
)]

sin
[
π

2

(
1
2

− r
)] Γ

(
1
2

+ r
)

Γ

(
1
2

− r
) . (5.4)

Although this result is highly implicit, we note that the left-hand side of (5.4) (which comes
from the bulk solution) is only a function of k, and the right-hand side (which comes from
the boundary-layer solution) is only a function of λ, which itself is related to σ and k by
(4.7). In fact, for any value of r ∈ [ 1

2 , 1), and for any value of S > 0, we can prove that
there is always a single fastest-growing mode. First observe that the left-hand side of (5.4)

is a positive and monotonically increasing function of k for 0 < k� <
√

r + 1
2 ; it vanishes

as k� → 0 and diverges as k� →
√

r + 1
2 . Meanwhile the right-hand side is a positive

and monotonically decreasing function of λ for for 0 < λ < r + 1
2 ; it diverges as λ→ 0

and vanishes as λ→ r + 1
2 . Therefore (5.4) describes a monotonically decreasing relation

between k and λ over this range of k. Expressing this result in terms of the growth rate, σ ,

which is related to λ by (4.7), we find that σ vanishes at k = 0 and at k =
√

r + 1
2/�, and

has a unique maximum within this range of k, which corresponds to the fastest-growing
tearing mode.

In the unstratified limit, r → 1
2 , (5.4) reduces to the well-known result (e.g. Coppi et al.

1976; Pegoraro & Schep 1986; Boldyrev & Loureiro 2018)

S1/3 (k�)4/3

1 − (k�)2
= 1 − λ2

πλ5/6

Γ

(
1 + λ

4

)

Γ

(
3 + λ

4

) . (5.5)

In that case, and in the asymptotic limit S → ∞, the fastest-growing mode has λ of order
unity and k� � 1, such that the left-hand side can be approximated as a power law ∝ k4/3.
Hence, using the definition of λ in (4.7), the fastest-growing mode has k� ∼ S−1/4 and
σ/β ∼ S−1/2.

Interestingly, for any non-zero amount of stratification (i.e. for any value of r > 1/2),
the left-hand side of (5.4) has a different asymptotic behaviour in the limit k → 0 (and
so does the right-hand side in the limit λ→ 0). This implies that the instability changes
qualitatively in the presence of stratification (at least in the asymptotic limit of large S),
and as we show below, several distinct asymptotic regimes arise in the simultaneous limit
of S → ∞ and r → 1/2.
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Figure 2. Scaling regimes, demarcated by dotted lines, for the growth rate, σ , in the asymptotic limit S → ∞.
Coloured arrows track the behaviour of the fastest-growing mode as stratification is increased. The axes are
logarithmic.

Recalling the definition (3.4a,b) of r in terms of RB, we note that the limit r → 1/2 is
equivalent to RB → 0. In the following, we therefore consider the asymptotic limit S → ∞
with RB ∼ S−a for some positive constant a. To understand the behaviour of the dispersion
relation (5.4) in this limit, it is helpful to consider how the left- and right-hand sides behave
for different ranges of k and λ, respectively. For RB � 1, the left-hand side of (5.4) is of
order

S1/3R1/2
B (k�)1/3 for k� � R1/2

B , (5.6a)

S1/3(k�)4/3 for R1/2
B � k� � 1, (5.6b)

while the right-hand side is of order

R−1/2
B λ−1/3 for λ� RB, (5.7a)

λ−5/6 for RB � λ� 1, (5.7b)

1 − λ for λ ∼ 1. (5.7c)

From this information, and the fact that λ ≡ S1/2(σ/β)3/2(k�)−1, we can identify how the
growth rate, σ , scales with the wavenumber, k, in different regions of the parameter space.
The result is shown in figure 2, which illustrates how new regimes arise as the strength of
the stratification is increased (or, equivalently, as the value of the exponent a is decreased).
Qualitative changes to the dispersion relation occur for a = 1

2 , 2
5 , 2

9 and 0, and the form of
the function σ(k) for each of these critical values is indicated in figure 3. We note that, as
we would expect in a stably stratified system, increasing the strength of the stratification
acts to decrease the growth rate (at a given value of k).

The assumptions made about the growth rate in §§ 3 and 4 can now be checked, with
the aid of figure 2. In particular, we have assumed that S−1(1 + (k�)2) � σ/β � k� and
that σ/β � S(k�)2, and we find that these assumptions hold in all of the regions plotted,
as long as k� � S−1 and RB � 1.

We are primarily interested in how the fastest-growing mode changes in the presence of
stratification, and as illustrated by the dashed arrows in figure 2 there are three distinct
parameter regimes to consider, which we refer to as weakly, moderately and strongly
stratified.
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Figure 3. The dispersion relation in the asymptotic limit S → ∞, with RB ∼ S−a, for a = 1/2, 2/5, 2/9
and 0. The location of the fastest-growing mode is indicated with a circle.

5.1. The weakly stratified regime, a ≥ 1/2
If a > 1/2, then in the limit S → ∞ the entire dispersion relation is essentially identical
to the unstratified case, RB = 0. The fastest-growing mode thus has k� ∼ S−1/4 and
σ/β ∼ S−1/2, as described above.

In the case a = 1/2, the effects of stratification begin to affect the fastest-growing
mode, and to show how we can introduce a rescaled wavenumber, k̄ ≡ k�/R1/2

B , which
remains of order unity in the limit S → ∞. In this limit, the dispersion relation (5.4) can
be approximated as

(SR2
B)

1/3 k̄1/3(1 + k̄2)1/2 = 1 − λ2

πλ5/6

Γ

(
1 + λ

4

)

Γ

(
3 + λ

4

) . (5.8)

Figure 4 illustrates how the exact dispersion relation approaches this asymptotic form for
increasing values of S in the case where RB = 0.1S−1/2.

5.2. The moderately stratified regime, 2/9 ≤ a < 1/2
For stronger stratification (i.e. for smaller values of a), the effect of stratification in the
bulk domain suppresses a range of wavenumbers, including the fastest-growing mode. As
a result, the fastest-growing mode shifts to smaller length scales, with k� ∼ R1/2

B , and has
a reduced growth rate of σ/β ∼ S−3/5R−1/5

B .
For a < 2/5, the effects of stratification begin to be felt also in the boundary layer,

suppressing very small scales, but this does not affect the fastest-growing mode until
a ≤ 2/9. In the case a = 2/9 we can introduce rescaled parameters k̄ ≡ k�/R1/2

B and
λ̄ ≡ λ/RB that remain of order unity in the limit S → ∞. In this limit, the dispersion
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Figure 4. The dispersion relation (5.4) for various values of S, with RB = 0.1S−1/2. The dashed curve shows
the asymptotic solution (5.8) obtained in the limit S → ∞.

relation (5.4) can be approximated as

(SR9/2
B )1/3k̄1/3(1 + k̄2)1/2 = 1

πλ̄5/6

Γ

(
1 + 1/λ̄

4

)

Γ

(
3 + 1/λ̄

4

) . (5.9)

Figure 5 illustrates how the exact dispersion relation approaches this asymptotic form for
increasing values of S in the case where RB = 0.1S−2/9. We note that the right-hand side
of (5.9) is equivalent to the result obtained by Johnson et al. (1963) using an extension of
the constant-ψ approximation.

5.3. The strongly stratified regime, 0 ≤ a < 2/9
For even stronger stratification the peak in the growth rate broadens, such that we have
σ/β ∼ S−1R−2

B throughout the range S−1R−4
B � k� � R1/2

B . The fastest-growing mode,
which can be identified by considering the next-to-leading-order terms in the dispersion
relation, is found at k� ∼ S−1/2R−7/4

B .
In the case a = 0, for which RB is of order unity, the growth rate is very small – of

order σ ∼ S−1β. This is comparable to the rate of diffusion of the magnetic field in the
bulk, and so a key assumption of our analysis no longer holds (see § 3). Moreover, as
mentioned earlier, as RB → 3/4 (and so r → 1) the dispersion relation (5.4) becomes
singular (because Γ (−r) diverges), and so our dispersion relation is clearly not valid for
RB of order unity.

5.4. Finite Lundquist number, S
The analysis in the previous subsections considered the asymptotic limit S → ∞, but the
same trends can be observed by plotting the dispersion relation (5.4) for different values
of RB with large but finite S. Figure 6 shows results for various values of RB in the case
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Figure 5. The dispersion relation (5.4) for various values of S, with RB = 0.1S−2/9. The dashed curve shows
the asymptotic solution (5.9) obtained in the limit S → ∞.
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Figure 6. The dispersion relation (5.4) for S = 105 and various values of RB. Solid, thick lines represent the
transition between parameter regimes identified analytically: weak (magenta), moderate (green), strong (blue).
The dot-dashed lines represent intermediate values of RB (not shown in legend).

with S = 105. As predicted analytically, we find that as RB is increased the peak shifts to
larger values of k once RB � S−1/2, and broadens and shifts back to smaller values of k
once RB � S−2/9.

6. Numerical validation

The results presented in the previous section are formally valid only in the asymptotic limit
S → ∞, and also assume an unbounded domain. In order to test the robustness of these
analytical results, in the presence of boundaries, we have used a numerical eigensolver to
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Figure 7. The numerical (solid lines) eigenfunction ûz(z), scaled to its peak value, for k = 0.1/� and S = 105,
alongside the corresponding analytical (dashed lines) bulk ûz solution (3.5), for various values of RB. The
horizontal axis is logarithmically scaled to give equal prominence to the boundary layer. The + markers along
this axis indicate each 20th computational grid point out of 5000. The plots in the case RB = 0 (not shown) are
virtually indistinguishable from those for RB = 0.1S−1/2.

obtain solutions of the linearised equations (2.10) and (2.11) over a domain of finite size
in z. The solver is based on the Newton–Raphson–Kantorovich code originally developed
by Gough et al. (1976). We take the numerical domain to be z ∈ [0, 100�] and impose that
the perturbations ûz and b̂z are antisymmetric and symmetric at z = 0, respectively. At the
other boundary, z = 100�, we impose that ûz and b̂z both vanish.

In order to resolve both the bulk and boundary layer, we use a non-uniform grid with
5000 grid points spaced cubically in z, i.e. we have grid points at zn = 100�(n/5000)3.
Some example solutions for ûz, for varying degrees of stratification, are plotted in
figure 7. We note that the main effect of increasing the stratification is to suppress the
perturbations in the bulk of the domain, so that ûz becomes increasingly localised within
the boundary layer. Within the bulk, we find that ûz decays exponentially for large |z|, at
the rate exp(−s|z|/�) predicted by (3.5) (dashed lines in figure 7). The exact choice of
boundary conditions at z = 100� should therefore have negligible effect for wavenumbers
|k| � 1/(100�), but may have an effect for smaller wavenumbers. In the results that we
present below we have taken the Lundquist number to be S ≤ 106, anticipating that the
fastest-growing tearing mode will have |k| > 1/(100�) and will therefore be insensitive
to the boundary conditions. Conversely, for larger wavenumbers (|k| � 0.5/�) the bulk
solution decays rapidly away from the boundary layer, becoming so small that rounding
errors in the numerical solver become significant. For this reason we limited the domain
size to 100�.

6.1. Results

6.1.1. No stratification
We first verify that the results from the numerical solver are consistent with our asymptotic
solutions in the absence of stratification, i.e. with RB = 0. Figure 8 compares the analytical
and numerical dispersion relation for S = 104, 105 and 106. We find that the analytical
result slightly overestimates the growth rate, but becomes increasingly accurate for
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Figure 8. Analytical (solid lines) and numerical (dotted lines) dispersion relations for RB = 0 (no
stratification) for various values of S.

larger S, as expected. Even for S = 104, however, the analytical result predicts the growth
rate and the wavenumber of the fastest-growing mode to within about 2 %.

6.1.2. Weak stratification
We next consider the regime S → ∞ with RB ∼ S−1/2, which represents the upper end of
the ‘weak stratification’ regime identified in § 5.1. Figure 9 compares the analytical and
numerical results for the dispersion relation for S = 104, 105 and 106 with RB = 0.1S−1/2.
The axes in this figure are scaled with S, in order to match our analytical prediction for
the fastest-growing mode in the limit S → ∞. As in the unstratified case, the analytical
result slightly overestimates the true growth rate, but becomes more accurate for larger
S. Moreover, for large S the dispersion relation in a neighbourhood of the fastest-growing
mode converges to the result (5.8), which is indicated by the dashed curve in figure 9.

6.1.3. Moderate stratification
We next consider the regime S → ∞ with RB ∼ S−2/9, which represents the upper end
of the ‘moderate stratification’ regime identified in § 5.2. Figure 10 demonstrates the
convergence of the analytical and numerical results for increasing values of S in the case
RB = 0.1S−2/9. In this regime, the peak of the dispersion relation is well described by the
formula (5.9).

6.1.4. Strong stratification
For reasons discussed in § 5.3, our analytical results cease to be valid when the
stratification parameter RB is of order unity. However, for any value of RB < 3/4, our
analytical result still offers a prediction for the wavenumber and growth rate of the
fastest-growing mode. It is therefore interesting to compare this prediction with the
dispersion relation obtained numerically.

As illustrated in figure 11, the numerical results show the same flattening of the
dispersion curve predicted analytically, which becomes more pronounced for larger values
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Figure 9. Analytical (solid lines) and numerical (dotted lines) dispersion relations for various values of S,
with RB = 0.1S−1/2. The dashed curve shows the asymptotic solution (5.8) obtained in the limit S → ∞.
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Figure 10. Analytical (solid lines) and numerical (dotted lines) dispersion relations for various values of S,
with RB = 0.1S−2/9. The dashed curve shows the asymptotic solution (5.9) obtained in the limit S → ∞.

of S. The numerical results are also consistent with the prediction that the growth rate is of
order σ ∼ β/S in this regime. However, the analytical result overestimates the growth rate,
and in contrast to the cases presented earlier, this discrepancy increases for larger values of
S. The analytical result is therefore not applicable in this regime. For larger (fixed) values
of RB we would expect the discrepancy to be even larger, becoming infinite for RB = 3/4.

7. Application to the solar tachocline

The solar tachocline is believed to harbour a strong toroidal magnetic field, amplified
by rotational shear in that region. The exact strength and topology of the field is highly
uncertain, but several studies have suggested values of order 104G (e.g. Antia, Chitre &
Thompson 2000; Fan 2009; Jouve, Brun & Aulanier 2018). It has recently been argued
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Figure 11. Analytical (solid lines) and numerical (dotted lines) dispersion relations for various values of S,
with RB = 0.1.

that this toroidal field reverses in sign with depth, in the manner of a skin effect, as a
consequence of the cyclic nature of the solar dynamo (Forgács-Dajka & Petrovay 2001;
Barnabé et al. 2017; Matilsky et al. 2022). Such a configuration could potentially be
subject to tearing instability, and from our results we can attempt to estimate the growth
rate of such instability.

We will adopt the same parameter values used by Barnabé et al. (2017): a toroidal field
of B = 5 × 104G, which reverses sign on a vertical scale of � = 108 cm (about an order of
magnitude smaller than the tachocline’s thickness), and a (turbulent) magnetic diffusivity
of η = 108 cm2 s−1. With these parameters (and taking the density to be 0.21 g cm−3), the
Alfvénic shear is of order β ∼ 10−4 s−1, which is somewhat smaller than the buoyancy
frequency in the lower part of the tachocline, N ∼ 10−3 s−1, implying a magnetic
Richardson number of RB ∼ 100. Therefore, based on our results, tearing instability can
only operate in the upper, weakly stratified part of the tachocline. However, it must be
admitted that our analysis has so far neglected the effect of thermal diffusion, which would
likely lessen the stabilising influence of stratification, possibly allowing the instability to
operate even in the deeper parts of the tachocline. Including thermal diffusion significantly
complicates the problem from an analytical perspective, but it is relatively straightforward
to include in our numerical eigensolver. We therefore present a brief numerical analysis of
the effects of thermal diffusion on the instability below, in § 7.1. First, however, we note
that an upper bound for the tearing growth rate can be found by neglecting stratification
entirely. For the parameter values listed above, the Lundquist number is S ≡ β�2/η ∼ 104,
implying an upper bound of σ ∼ βS−1/2 ∼ 10−6 s−1, corresponding to growth times
of the order of weeks. This is far shorter than the 22-year period of the solar dynamo
cycle, so it seems unlikely that such a field could persist in the upper, unstratified part of
the tachocline. Even in the absence of other disturbing influences, such as overshooting
convective plumes, we would expect an initially axisymmetric toroidal field to break up
into magnetic islands via tearing instability, much faster than it could diffuse down through
the tachocline.
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Figure 12. Numerical dispersion relations for S = 104 and various values of RB. Solid lines are used for κ = η

and dashed lines are used for κ = 0. In the unstratified case (RB = 0) the solid and dashed curves are identical.
In the weakly stratified case (RB = 0.1S−1/2) the solid and dashed curves are virtually indistinguishable.

7.1. Inclusion of thermal diffusion
In the presence of thermal diffusion, equation (2.5) becomes

∂θ

∂t
+ u · ∇θ = −N2uz + κ∇2θ, (7.1)

where κ is the thermal diffusivity. In the solar tachocline, the microscopic diffusivity of
temperature exceeds that of magnetic field by several orders of magnitude (e.g. Gough
2007). However, since we have employed the same turbulent value η = 108 cm2 s−1 used
by Barnabé et al. (2017), it seems appropriate to employ a similar value for κ (which in
any case is not much larger than the microscopic value). It what follows we will therefore
take κ = η for simplicity.

By the same process described in § 2.2 we can reduce the linearised equations to a
system of ordinary differential equations:

σ 2û′′
z − σ 2k2ûz + k2σ θ̂ = ikσ

4πρ0
[Bb̂′′

z − (k2B + B′′)b̂z], (7.2)

ηb̂′′
z − [ηk2 + σ ]b̂z = −ikBûz, (7.3)

κθ̂ ′′ − [σ + k2κ]θ̂ = N2ûz. (7.4)

We have adapted the numerical eigensolver described in § 6 to solve this system of
equations, with the additional boundary condition that θ̂ = 0 at z = 0 and at the outer
boundary. Figure 12 compares the dispersion relations obtained numerically in the cases
κ = 0 and κ = η, for S = 104 and for various values of RB. (To reduce the computational
burden some of these results were obtained with a domain size of 80� and 1000 grid points.
We have verified that using a larger domain or additional grid points does not noticeably
affect the results.) In all cases with non-zero stratification, including thermal diffusion
leads to a larger growth rate, and the fastest growing mode is found at smaller length
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scales (i.e. larger k). Physically, this reflects the fact that thermal diffusion acts to lessen the
stabilising effect of the stratification, especially on small scales. This effect becomes more
significant as the strength of the stratification (measured by RB) is increased. Interestingly,
the results in figure 12 suggest that, with κ = η, the fastest growing mode has k� and√

S(σ/β) both of order unity even for ‘strong’ stratification (i.e. for RB of order unity).
Further work will be needed to confirm this, however, and to determine whether tearing
instability could occur in the deeper parts of the tachocline, where RB ∼ 100.

8. Conclusion

We have determined the effect of stable stratification on the resistive tearing instability.
In the absence of thermal diffusion, the dispersion relation has been obtained both
analytically and numerically. As the strength of the stratification is increased, it first
suppresses perturbations in the bulk, so the instability becomes more localised to the
boundary layer. At the same time, the fastest growing mode shifts to smaller scales. For
stronger stratification, the smallest scales in the boundary layer are suppressed also, and
for sufficiently strong stratification the fastest growing mode shifts back to larger scales,
while the perturbations become even more localised within the boundary layer. As the
buoyancy frequency approaches the Alfvénic shear rate, the growth rate drops to that of
bulk magnetic diffusion, and the instability is effectively nullified.

Our dispersion relation (5.4) generalises the well-known unstratified result (5.5) to all
values of stratification in the range 0 ≤ RB � 1, and the right-hand side reduces to the
result of Johnson et al. (1963) in what we have called the ‘moderately stratified regime’,
wherein stratification begins to affect the boundary layer. Because our dispersion relation
ceases to be valid for RB � 1 (at which point the tearing instability is effectively nullified),
it can be simplified somewhat by assuming that RB � 1. The simplest form that is valid
for all values of k is

(Sk�)1/3
√
(k�)2 + RB

1 − (k�)2
= 1 − λ2

πλ5/6

Γ

(
(1 + λ)(RB + λ)

4λ

)

Γ

(
(3 + λ)(1

3 RB + λ)
4λ

) . (8.1)

It is straightforward to check that this simplified form is consistent with all of the results
(5.5)–(5.9) presented in § 5.

In the presence of thermal diffusion, we have obtained the dispersion relation
numerically. We find that thermal diffusion generally leads to a faster growing instability
that operates on smaller length scales, and that this effect becomes increasingly significant
as the strength of the stratification increases. On the basis of these results, we conclude
that the alternating, axisymmetric toroidal field in the tachocline proposed in some
models (Forgács-Dajka & Petrovay 2001; Barnabé et al. 2017) would likely be subject to
non-axisymmetric tearing instability on a time scale far shorter than the solar cycle. This
conclusion is supported by recent numerical simulations (Matilsky et al. 2024), which
suggest that the field in the tachocline is characterised by long-lived, non-axisymmetric
structures, rather than a cyclic, axisymmetric toroidal field.
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Appendix A. Frobenius series

In order to asymptotically match the bulk solution (3.5) to the boundary-layer solution
(4.8), we must first express them both in the form of Frobenius series, as in (5.1) and (5.2).

The behaviour of the bulk solution (3.5) for small z can be deduced using the identity

2F1(a, b; c; z) = Γ (c)Γ (c − a − b)
Γ (c − a)Γ (c − b) 2F1(a, b; a + b + 1 − c; 1 − z)

+ Γ (c)Γ (a + b − c)
Γ (a)Γ (b)

(1 − z)c−a−b
2F1(c − a, c − b; 1 + c − a − b; 1 − z), (A1)

which allows us to express the solution as a power series in T , and hence z. We thus
eventually arrive at a power series in the form of (5.1), with

A0 = Γ (r)Γ (1 + s)�1/2+r

Γ (
5
4

+ 1
2

s + 1
2

r)Γ (−1
4

+ 1
2

s + 1
2

r)
,

B0 = Γ (−r)Γ (1 + s)�1/2−r

Γ (
5
4

+ 1
2

s − 1
2

r)Γ (−1
4

+ 1
2

s − 1
2

r)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A2)

We note that, if r is an integer, then at least one of these coefficients is undefined. This is
because the Frobenius series then involves logarithmic terms, as described in § 3.

The boundary-layer solution (4.8), which is defined in Fourier space, can readily be
expressed as a power series in X, and hence ζ . This solution has the form

ũz =
∞∑

n=0

[ãn|ζ |−1/2+r+2n + b̃n|ζ |−1/2−r+2n] sgn(ζ ), (A3)

where

ã0 = 2λΓ (−r)

(
λ− r + 1

2

)
Γ

⎛
⎜⎝(λ− r)2 − 1

4
4λ

⎞
⎟⎠

(√
λ�2

Sk

)−1/6+(1/3)r
,

b̃0 = 2λΓ (r)

(
λ+ r + 1

2

)
Γ

⎛
⎜⎝(λ+ r)2 − 1

4
4λ

⎞
⎟⎠

(√
λ�2

Sk

)−1/6−(1/3)r
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A4)
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We now take the inverse Fourier transform, using the identity (4.9). We thus arrive at a
power series in the form of (5.2), with

a0 = ã0

2iΓ
(

1
2

− r
)

sin
[
π

2

(
1
2

− r
)] and b0 = b̃0

2iΓ
(

1
2

+ r
)

sin
[
π

2

(
1
2

+ r
)] .

(A5a,b)

Substituting the above expressions for the coefficients A0, B0, a0 and b0 into (5.3) yields
the dispersion relation given in (5.4).

We have assumed throughout that ûz(z) is an odd function, and hence so is ũz(ζ ). For
completeness, we will now consider the opposite case, in which ûz(z) and ũz(ζ ) are both
even functions. In that case, the solution proceeds just as before, except for the absence of
the factors sgn(z) and sgn(ζ ) in (3.5), (4.8), (5.1), (5.2) and (A3). However, when we take
the inverse Fourier transform of (A3), in place of the identity (4.9) we must now use (see
Kammler 2008)

ũz(ζ ) ∼ |ζ |−α as ζ → 0 ⇐⇒ ûz(z) ∼ |z|α−1

2 cos
(π

2
α
)
Γ (α)

as |z| → ∞, (A6)

which ultimately leads to the same dispersion relation (5.4), except with both sine
functions replaced by cosines. For any value of r in the interval 1

2 < r ≤ 1 this change
introduces a small numerical factor to the right-hand side, which is equivalent to increasing
the value of S, and results in a smaller growth rate. In the regime RB � 1 this small
factor on the right-hand side is approximately (πRB/2)2, and we find that the growth rate
now predicted by the dispersion relation is much smaller than the rate of bulk diffusion,
i.e. σ � β/S. Therefore we conclude that tearing instability is effectively absent for
perturbations that have an even ûz(z).
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