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Applications of the propensity score weighting method in
psychogeriatric research: correcting selection bias and

adjusting for confounders

The propensity score (PS) weighting method is an
analytic technique that has been applied in multiple
fields for a number of purposes. Here, we discuss
two common applications, which are (1) to correct
for selection bias and (2) to adjust for confounding
variables when estimating the effect of an exposure
variable on the outcome of interest.

In observational psychogeriatric research, invest-
igators often need to address the issue of selection
biases that determine who ends up participating
in a given study (Ganguli er al, 2015; Guo
et al., 2015). For example, when implementing
an MRI study within an ongoing prospective
community-based MRI study, we would ideally
want to approach every age-appropriate person in
the community. In actual fact, the participants
will be limited to those who are available for
MR imaging at the time (alive, in the area at
the time, physically able to come to the radiology
department), interested in undergoing MRI, and
eligible (without contraindications) for MRI.

Study participants who died or dropped out
of the parent study before the MRI study was
implemented introduce what we called “attrition
bias” (or survival bias) into the surviving sample.
Individuals expressing interest in such an MRI
study tend to be younger, of better physical,
mental, and cognitive health, and with higher
education; we have previously designated these
attributes as representing “volunteer bias,” which
further renders the available sample less random
or “representative” of the target population.
Furthermore, perhaps due to cost considerations,
investigators may select a subsample of participants
for MRI based on the hypothesis being tested,
e.g. according to their cognitive status, rather
than include all available participants or a random
subsample. They must also exclude available and
interested participants ineligible for MRI scanning
because of contraindications such as an implanted
cardiac pacemaker. As a result, the external
validity (generalizability) of the study findings are
potentially limited by attrition bias, volunteer bias,
and selection bias, unless a way can be found to
quantify and correct these biases.

https://doi.org/10.1017/51041610216002490 Published online by Cambridge University Press

In a research area, where the randomized trial
design is impractical, investigators usually use an
observational study design to investigate the effect
of an exposure variable on an outcome of interest
(Teno er al., 2012; Xu and Kane, 2013). In the
absence of randomization, confounding issues can
become quite challenging. For example, in studying
the effect of physical activity on cognitive decline
among individuals 65 years or older, the researchers
might find that participants with the exposure
variable of being physically active tend to be
younger, healthier, with less comorbid conditions,
and were less likely to be depressed, as compared
with those who were physically inactive. Since
the same attributes are also associated with the
outcome variable of better cognitive functioning,
we have a potential confounding effect. The
researchers need to first address confounding
to estimate accurately the effect of the non-
randomized exposure variable, i.e. level of physical
activities; only then the results of the study can truly
emulate data from a randomized trial design.

In the two examples mentioned above, the
main issues in data analysis can be resolved
by postulating a propensity score model (PSM),
deriving weights from the PSM, and then
incorporating weights into the analysis of the main
outcome model. For the MRI study, we can use
the weights obtained from three appropriate PSMs
to create an equivalent sample that is comparable
to the target population. For studying physical
activity on cognitive decline, we can use the weight
obtained from an appropriate PSM to create an
equivalent sample that emulates a trial which
randomly assigned individuals to the physically
active group or the physically inactive group.

Logistic regression is the most frequently used
model for building a PSM. When a PSM is
fitted and estimated from the corresponding
observational data, the PS of each individual can
be obtained from the predicted probability of the
fitted logistic regression model.

In the example of the MRI study, three logistic
regression PSMs are needed to model selection
bias, volunteer bias, and attrition bias.
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The first PSM is for those who are eligible and
available to participate in the study. The outcome
variable is dichotomous, indicating whether or
not an individual is selected for the final
MRI study. Covariates must include all available
variables related to the selection process and the
outcome, including sociodemographic variables,
history of physical and mental health, physical
and cognitive activities, other lifestyle factors, and
the neuropsychological tests results. From the first
PSM, weights can be constructed for the actual
participants of the study. The weight is the inverse
of the PS, which is the predicted probability, from
the regression model, of selection for the MRI
study.

It is important to note that the quality of a
PSM is affected by the existence of unmeasured
(or residual) confounders, which are covariates
impacting selection (or main exposure) but ex-
cluded from the observational study. Unmeasured
confounders could result in biased estimation and
the inference of the exposure effect. We should
perform a sensitivity analysis to determine the
impact of unmeasured confounding, if it exists,
on estimation (Liu et al., 2013). The commonly
used methods include Rosenbaum and Rubin
(1983) and VanderWeele and Arah (2011). To
reduce the impact of unmeasured confounders in
a PSM, we can include the observed covariates
that are theoretically correlated to the unmeasured
confounders, include interaction terms, and apply
the doubly robust estimators (Robins er al., 1994).

The second PSM for the MRI study is
constructed among those who expressed interest
in the MRI study. The outcome variable is dicho-
tomous, indicating whether or not an individual is
interested in participation. Covariates must include
all available variables potentially related to the
individual’s interest in MRI study participation and
the outcome, such as higher education or lack of
depression. From the second PSM, weights can
be constructed for those who were interested in
participation. The weight is the inverse of the
PS, which is the predicted probability of interest
obtained from the regression model.

The third PSM is for all individuals or a
random sample of the original study population.
The outcome variable is dichotomous, indicating
whether or not an individual could be approached
for his/her interest in the study. The covariates
must include all variables related to the availability
of a candidate for interview, i.e. for not having
died or dropped out already. From the third PSM,
weights can be constructed among those who
were approached. The weight is the inverse of the
predicted probability of a candidate being available
for interview.
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The final weight will be constructed for the
actual participants of the MRI study by multiplying
the three individual weights described above. The
final weight is used to correct biases from selection,
volunteer, and attrition of the participants so that
the results of the study can be generalized to the
target population.

In the example of studying the effect of
physical activities on cognitive decline, one logistic
regression PSM is needed to adjust for the
confounding issue. The outcome variable of
the PSM is dichotomous, indicating whether an
individual is physically active or not. The covariates
need to include all available confounding variables,
which may be not equally distributed between the
physically active group and the inactive group.
From this PSM, the weight for each individual can
be constructed as the predicted probability of being
physically active.

For both examples, the weights are constructed
using the PS-based inverse probability weighting
(IPW) method. In the main analysis model, instead
of giving individuals equal weights, we give those
individuals higher weights if they have lower
chances of being selected into the MRI study,
or if they have lower chances of being physically
active in the physical activity study. With these
weights, the results from the MRI main model can
be generalized to the target population; and the
effect of physical activity on cognitive decline in
the physical activity study will be similar to that
obtained from a hypothetically randomized trial.

Some points are worth mentioning in using the
PS weighting method. First, the standard errors of
the estimated exposure effect should be corrected.
Bootstrap or sampling standard errors can be
used in this correction. Second, the distribution
of the weights needs to be examined before being
implemented into the main outcome model. If
a subject has a very large weight (greater than
10), then the estimated exposure effects could be
inaccurate or unstable. For the estimated results
to be stable, we can either exclude individuals
having large weights, yet keep in mind that the
exclusion could affect the interpretation and the
generalizability of the results, or use the stabilized
weights (Robins ez al., 2000).

For the PSM, careful thought should be given
to choosing variables for the model, as opposed
to including as many “adjustment” variables as
possible. Researchers should include variables that
are theoretically both associated with the selection
(or main exposure) and the outcome or variables
only associated with the outcome. Conversely,
variables that are theoretically associated with the
selection (or the main exposure variable) but
not associated with the outcome are not true
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confounders and therefore not recommended for
the PSM (Rubin and Thomas, 1996; Brookhart
et al., 2006; Stuart et al, 2013). To avoid
multicollinearity, we should not include variables
that are highly correlated with either. It is important
to point out that the decision of variable selection
should not be based on the p values because the
goal here is not to build a parsimonious PSM.
Moreover, the commonly used strategy for variable
selection (e.g. stepwise, forward, backward) is not
recommended here because model overfitting is not
an issue.

The purpose of fitting a PSM is to accurately
predict the selection (in the MRI study) or group
assignment (physically active or inactive group
in the physical activity study). Therefore, the
performance of a PSM cannot be judged by using
the usual modeling diagnostic tools such as the
area under the receiver operating characteristic
curve (AUC under ROC), c-statistic, or other
model-fitting statistics. Those measures used to
quantify the quality of a PSM also can measure
the reduction in selection bias, or the reduction in
confounding, which can be done through examin-
ing the distribution of characteristics between those
who were selected and who were not, and between
the individuals in different groups. To adjust
for confounders, it is highly recommended that
researchers evaluate the overlap of the empirical PS
distributions (common support) and the covariate
balance between the exposure and non-exposure
groups. The recommended tests include graphical
and numerical diagnostic methods; for examples,
standardized differences, quantile—quantile plot,
density plot, love plot, and ratio of variances
(Rubin, 2001; Stuart, 2010).

To adjust for confounding, one needs to be
aware of the difference between multivariable mod-
eling and the PS method. Although multivariable
modeling is the most commonly used method
for confounding adjustment, the PS method has
the following advantages. First, the PS method
summarizes a set of confounders into a single
measure; therefore, it is easier to achieve balance
among covariates. Although distributions of PS are
similar between groups when using the PS method,
covariate balance between groups still needs to be
examined because two individuals with the same
PS for two individuals may not have the same
characteristics. Second, for smaller sample sizes,
model overfitting has a smaller impact on the
PS method than multivariable modeling. Third,
unlike regression-based confounding adjustment
methods, the PS method does not assume linearity
in covariates; it compares covariates between
groups within the multidimensional covariate space
and does not allow for extrapolation.
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In summary, in research where an observational
design is used to examine the causal effect
of an exposure variable on the outcome of
interest, the PS weighting method is becoming a
standard way to correct selection bias or adjust
for confounders. By applying this methodology in
making estimations and inferences, researchers can
enhance the validity of their analyses. This will
help clinicians and policy-makers make informed
decisions and develop appropriate prevention and
intervention care for the elderly population.
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