Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T03:23:59.926Z Has data issue: false hasContentIssue false

Ferroelastic orientation states and domain walls in lead phosphate type crystals

Published online by Cambridge University Press:  05 July 2018

U. Bismayer*
Affiliation:
Mineralogisch-Petrographisches Institut, Universität Hamburg, Grindelallee 48, D-20146 Hamburg, Germany
D. Mathes
Affiliation:
Mineralogisch-Petrographisches Institut, Universität Hamburg, Grindelallee 48, D-20146 Hamburg, Germany
D. Bosbach
Affiliation:
Institut für Mineralogie, Universität Münster, Corrensstr. 24, 48149, Münster, Germany
A. Putnis
Affiliation:
Institut für Mineralogie, Universität Münster, Corrensstr. 24, 48149, Münster, Germany
G. van Tendeloo
Affiliation:
EMAT, University of Antwerp RUCA, Groenenborgerlaan 171, Antwerp, Belgium
J. Novak
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
E. K. H. Salje
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK

Abstract

The monoclinic structural distortion in lead phosphate and lead arsenate is correlated with the ferroelastic phase transition RmC2/c and RmP21/c respectively. The resulting domain patterns in the mixed compounds depend on their chemical composition. The intersection of ferroelastic W domain walls with the (100) surface of lead phosphate-arsenate mixed crystals has been imaged using tapping mode atomic force microscopy. Dilution of the strain leads to characteristic surface deformations which deviate from those in pure lead phosphate. In high twinned lead phosphate-arsenate, X-ray diffraction (XRD) was used to show renormalization effects and scattering phenomena stemming from the twin walls. The wall trajectory was found to be independent of chemical variations using transmission electron microscopy.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aizu, K. (1970) Determination of state parameters and formulation of spontaneous strain for ferroelastics. J. Phys. Soc. Japan, 28, 706–16.CrossRefGoogle Scholar
Bismayer, U. and Salje, E. (1981) Ferroelastic phases in Pb3(PO4)2–Pb3(AsO4)2; X-ray and optical experiments. Acta Crystallogr., A37, 145–53.CrossRefGoogle Scholar
Bismayer, U., Salje, E. and Joffrin, C. (1982) Reinvestigation of the stepwise character of the ferroelastic phase transition in lead phosphatearsenate, Pb3(PO4)2–Pb3(AsO4)2 . J. Physique, 43, 119–28.CrossRefGoogle Scholar
Bismayer, U., Salje, E., Glazer, A.M. and Cosier, J. (1986) Effect of strain-induced order-parameter coupling on the ferroelastic behaviour of lead phosphate-arsenate. Phase Transitions, 6, 129–51.CrossRefGoogle Scholar
Bismayer, U., Hensler, J., Salje, E. and Güttler, B. (1994) Renormalization phenomena in Ba-diluted ferroelastic lead phosphate, (Pb1– xBax)3(PO4)2 . Phase Transitions, 48, 149–68.CrossRefGoogle Scholar
Bleser, T., Berge, B., Bismayer, U. and Salje, E.K.H. (1994) The possibility that the optical second-harmonic generation in lead phosphate, Pb3(PO4)2, is related to structural imperfections. J. Phys.: Cond. Matter, 6, 2093–9.Google Scholar
Bosbach, D., Putnis, A., Bismayer, U. and Güttler, B. (1997) An AFM study on ferroelastic domains in lead phosphate, Pb3(PO4)2 . J. Phys.: Cond. Matter, 9, 8397–405.Google Scholar
Bueble, S., Knorr, K., Brecht, E. and Schmahl, W. (1998) Influence of the ferroelastic twin domain structure on the {100} surface morphology of LaAlO3 HTSC substrates. Surf. Sci., 400, 345–55.CrossRefGoogle Scholar
Guimaraes, D.M.C. (1979) Ferroelastic transformations in lead orthophosphate and its structure as a function of temperature. Acta Crystallogr., A35, 108–14.CrossRefGoogle Scholar
Hayward, S.A., Chrosch, J., Salje, E.K.H. and Carpenter, M. (1996) Thickness of pericline twin walls in anorthoclase: an X-ray diffraction study. Eur. J. Mineral., 8, 1301–10.CrossRefGoogle Scholar
Hayward, S.A., Salje, E.K.H. and Chrosch, J. (1998) Local fluctuations in feldspar frameworks. Mineral. Mag., 62, 639–45.CrossRefGoogle Scholar
Keppler, U. (1970) Struktur der Tieftemperaturform des Bleiphosphates. Zeits. Kristallogr., 132, 228–35.CrossRefGoogle Scholar
Kleman, M. and Schlenker, M. (1972) Use of elasticity theory in magnetoelasticity. J. Appl. Phys., 43, 3184–90.CrossRefGoogle Scholar
Locherer, K., Hayward, S.A., Hirst, P.J., Chrosch, J., Yeadon, M., Abel, J.S. and Salje, E.K.H. (1996) X-ray analysis of mesoscopic twin structures. Phil. Trans. R. Soc. Lond. A, 354, 2815–45.Google Scholar
Novak, J. and Salje, E.K.H. (1998 a) Surface structure of domain walls. J. Phys. Cond. Matter, 10, L359–66.CrossRefGoogle Scholar
Novak, J. and Salje, E.K.H. (1998 b) Simulated mesoscopic structures of a domain wall in a ferroelastic lattice. Eur. Phys. J., B4, 279–84.CrossRefGoogle Scholar
Paulmann, C., Bismayer, U. and Aroyo, M. (1998) Precursors in lead phosphate-type ferroelastics: Diffuse X-ray scattering, group theory and modelling. Phase Transitions, 67, 126.CrossRefGoogle Scholar
Salje, E.K.H. (1993) Phase Transitions in Ferroelastic and Co-elastic Crystals, (Studen t edit ion). Cambridge University Press, Cambridge, UK.Google Scholar
Salje, E.K.H. and Ishibashi, Y. (1996) Mesoscopic structures in ferroelastic crystals: needle twins and right angle domains. J. Phys.: Cond. Matter, 8, 8847.Google Scholar
Salje, E., Graeme-Barber, A., Carpenter, M.A. and Bismayer, U. (1993) Lattice parameters, spontaneous strain and phase transitions in Pb3(PO4)2 . Acta Crystallogr., B49, 387–92.CrossRefGoogle Scholar
Salje, E.K.H., Buckley, A., Van Tendeloo, G., Ishibashi, Y. and Nord, G.L. Jr (1998) Needle twins and right-angled twins in minerals: Comparison between experiment and theory. Amer. Mineral., 83, 811–22.CrossRefGoogle Scholar
Salje, E.K.H., Bismayer, U., Hayward, S. and Novak, J. (2000) Twin walls and hierarchical mesoscopic structures. Mineral. Mag., 64, 6420–11.CrossRefGoogle Scholar
Torres, J., Rouceau, C. and Ayroles, R. (1982) Investigations of the interactions between ferroelastic domain walls and of the structural transition in lead phosphate observed by electron microscopy. I: experimental results. Phys. Stat. Sol. (a), 70, 695–9.Google Scholar
Viswanathan, K. and Miehe, G. (1978) The crystal structure of low temperature Pb3(AsO4)2 . Zeits. Kristallogr., 148, 275–80.CrossRefGoogle Scholar
Wood, I., Wadhawan, V.K. and Glazer, A.M. (1980) Temperature dependence of spontaneous birefringence in ferroelastic lead orthophosphate. J. Phys. C.: Solid State Phys., 13, 5155–64.CrossRefGoogle Scholar
Wruck, B., Salje, E.K.H., Zhang, M., Abraham, T. and Bismayer, U. (1994) On the thickness of ferroelastic twin walls in lead phosphate Pb3(PO4)2: an X-ray diffraction study. Phase Transitions, 48, 135–48CrossRefGoogle Scholar