Canad. Math. Bull. Vol. **57** (1), 2014 pp. 97–104 http://dx.doi.org/10.4153/CMB-2012-039-0 © Canadian Mathematical Society 2012

Rationality and the Jordan–Gatti–Viniberghi Decomposition

Jason Levy

Abstract. We verify our earlier conjecture and use it to prove that the semisimple parts of the rational Jordan–Kac–Vinberg decompositions of a rational vector all lie in a single rational orbit.

1 Introduction

Let *k* be a field of characteristic 0, and write *k* for its algebraic closure. Let *G* be a reductive algebraic group (not necessarily connected), acting on a vector space *V*, with *G*, *V*, and the action all defined over *k*. Given a point $v \in V$, write G_v for the stabilizer of *v*; it is an algebraic subgroup of *G*.

In [6], Kac and Vinberg made the following definitions:

Definition 1.1

- (i) A vector $s \in V$ is *semisimple* if the orbit $G \cdot s$ is Zariski closed.
- (ii) A vector $n \in V$ is *nilpotent* with respect to *G* if the Zariski closure $\overline{G \cdot n}$ contains the vector 0.
- (iii) A *Jordan decomposition* of a vector $\gamma \in V$ is a decomposition $\gamma = s + n$, with
 - (a) *s* semisimple,
 - (b) n nilpotent with respect to G_s ,
 - (c) $G_{\gamma} \subseteq G_s$.

This Jordan–Kac–Vinberg decomposition matches the standard Jordan decomposition when V is the Lie algebra g of G. In that case, every $\gamma \in g$ has a unique Jordan decomposition $\gamma = s + n$, and if γ lies in g(k) then so do s and n. For general V, however, as noted in [7], an element $\gamma \in V$ may have multiple Jordan–Kac–Vinberg decompositions. For all of them, the element s lies in a single G-orbit, namely the unique closed G-orbit in $\overline{G \cdot \gamma}$.

In [7], Kac showed that every vector $\gamma \in V$ has a Jordan–Gatti–Viniberghi decomposition (as he called it), as a simple application of the Luna slice theorem. A rational version of the Luna slice theorem has been proven by Bremigan [5], and it implies (Lemma 4.3) that every k-point $\gamma \in V(k)$ has a k-Jordan–Kac–Vinberg decomposition, that is a Jordan–Kac–Vinberg decomposition $\gamma = s + n$ with s (and hence n) in V(k). This fact has not previously appeared in the literature.

Received by the editors July 1, 2012.

Published electronically December 29, 2012.

AMS subject classification: 20G15, 14L24.

Keywords: reductive group, G-module, Jordan decomposition, orbit closure, rationality.

In this paper we show that given $\gamma \in V(k)$, the semisimple parts *s* of all *k*-Jordan–Kac–Vinberg decompositions $\gamma = s + n$ of γ all lie in a single G(k)-orbit. In other words, even though *k*-Jordan–Kac–Vinberg decompositions are not unique, the G(k)-orbit of the semisimple parts is. This uniqueness is important in producing the fine geometric expansion in relative trace formulas (see the discussion in [9]).

We use two tools to prove this. One is the rational version of the Hilbert–Mumford Theorem, as proven by Kempf [8] and Rousseau. The Hilbert–Mumford Theorem allows us to restate the problem in terms of limits of the form $\lim_{t\to 0} \lambda(t) \cdot \gamma$, for *k*-cocharacters λ in *G*.

The other is a recent rationality result of Bate–Martin–Röhrle–Tange [2] on such limits.

In fact we prove the somewhat more general result, Theorem 3.4, that given $\gamma \in V(k)$, the limit points $\lim_{t\to 0} \lambda(t) \cdot \gamma$ that are semisimple, ranging over all cocharacters λ defined over k, all lie in a single G(k)-orbit. This solves the conjecture in [10].

2 Preliminaries

We begin with some notation. Let *k* be a field (of any characteristic), and write *k* for its algebraic closure. Let *G* be a reductive algebraic group (not necessarily connected) defined over *k*. Write $X^*(G)$ for the group of characters $\chi: G \to GL(1)$, and $X_*(G)$ for the set of cocharacters $\lambda: GL(1) \to G$. Similarly write $X^*(G)_k$ (resp. $X_*(G)_k$) for those characters (resp. cocharacters) defined over *k*. Define the map $\langle , \rangle: X_*(G) \times$ $X^*(G) \to \mathbb{Z}$ by requiring the identity $\chi(\lambda(t)) = t^{\langle \lambda, \chi \rangle}$. The group *G* acts naturally on $X_*(G)$:

$$(g \cdot \lambda)(t) = g\lambda(t)g^{-1}, \text{ for } g \in G, \lambda \in X_*(G), t \in GL(1).$$

Given $\lambda \in X_*(G)_k$ and $g \in G(k)$, the cocharacter $g \cdot \lambda$ is also in $X_*(G)_k$.

Suppose that *V* is an affine *G*-variety. Given $\lambda \in X_*(G)$ and $\nu \in V$, we say that the *limit*

(2.1)
$$\lim_{t \to 0} \lambda(t) \cdot v$$

exists and equals *x* if there is a morphism of varieties $\ell : \mathbb{A}^1 \to V$ with $\ell(t) = \lambda(t) \cdot v$ for $t \neq 0$, and $\lambda(0) = x$. Notice that if ℓ exists then it is unique; also if *V* and λ are defined over *k*, with $v \in V(k)$, then ℓ must also be defined over *k*, and so *x* must lie in V(k). Given $v \in V(k)$, write $\Lambda(v, k)$ for the set of $\lambda \in X_*(G)_k$ such that the limit (2.1) exists.

The group *G* acts on itself via the action $y \mapsto xyx^{-1}$. Given $\lambda \in X_*(G)$, let $P(\lambda)$ be the subvariety

$$P(\lambda) = \{g \in G \mid \lim_{t \to 0} \lambda(t)g\lambda(t)^{-1} \text{ exists}\}.$$

It is an algebraic group, defined over *k* if λ is. These groups $P(\lambda)$ were defined in [11] and are called the Richardson parabolic subgroups in [2]. The map

$$h_{\lambda} \colon P(\lambda) \to G, \quad h_{\lambda}(g) = \lim_{t \to 0} \lambda(t)g\lambda(t)^{-1}$$

98

is a homomorphism of algebraic groups, defined over k if λ is. The image and kernel are given by

Im
$$h_{\lambda} = G^{\lambda} = \{g \in G \mid \lambda(t)g\lambda(t)^{-1} = g, \text{ for all } t\}$$

ker $h_{\lambda} = \{g \in G \mid \lim_{t \to 0} \lambda(t)g\lambda(t)^{-1} = 1\} = R_u(P(\lambda))$

(see [11] for details).

Now suppose that *V* is a *G*-module defined over *k*. Given any $\lambda \in X_*(G)$, we can then define the G^{λ} -modules

$$V_{\lambda,n} = \{ v \in V \mid \lambda(t) \cdot v = t^n v \text{ for all } t \}, \quad n \in \mathbb{Z}$$
$$V_{\lambda,+} = \sum_{n>0} V_{\lambda,n}, \quad V_{\lambda,0+} = \sum_{n\geq 0} V_{\lambda,n} = V_{\lambda,0} \oplus V_{\lambda,+}.$$

Notice that $V_{\lambda,0+}$ consists of those vectors $v \in V$ such that the limit (2.1) exists, and is invariant under $P(\lambda)$; in fact for $g \in P(\lambda)$, and $v \in V_{\lambda,0+}$,

(2.2)
$$\lim_{t \to 0} \lambda(t) \cdot (g \cdot v) = h_{\lambda}(g) \cdot \left(\lim_{t \to 0} \lambda(t) \cdot v\right).$$

Further, for $v \in V_{\lambda,0+} = V_{\lambda,0} \oplus V_{\lambda,+}$, the limit (2.1) is just the projection of v to $V_{\lambda,0}$. Suppose next that A is a k-defined torus in G. For each $\chi \in X^*(A)_k$ define V^{χ} by

$$V^{\chi} = \{ v \in V \mid a \cdot v = \chi(a)v, \text{ for all } a \in A \}.$$

Then only finitely many V^{χ} are nonzero and V is their direct sum. Given a vector $v \in V$, write v_{χ} for the component of v in the space V^{χ} , $\chi \in X^*(A)_k$, and set

$$\operatorname{supp} v = \operatorname{supp}_A v = \{ \chi \in X^*(A)_k \mid v_\chi \neq 0 \},\$$

so that

$$\nu = \sum_{\chi \in \operatorname{supp} \nu} \nu_{\chi}.$$

For any $\lambda \in X_*(A)_k \subset X_*(G)_k$, each vector space $V_{\lambda,n}$, $n \in \mathbb{Z}$, is also a direct sum of weight spaces:

$$V_{\lambda,n} = \sum_{\substack{\chi \in X^*(A)_k \ \langle \lambda, \chi
angle = n}} V^{\chi}.$$

We record the following obvious statement for later use.

Lemma 2.1 Suppose that λ is in $X_*(A)_k$. For a vector $v \in V$, the limit (2.1) exists if and only if for every $\chi \in \text{supp } v$ we have $\langle \lambda, \chi \rangle \geq 0$; in this case the limit equals

$$\sum_{\substack{\chi \in X^*(A)_k \\ \langle \lambda, \chi \rangle = 0}} \nu_{\chi}.$$

3 Limits

In this section we assume that k is perfect. We summarize some results that we will later use. First is the rational version of the Hilbert–Mumford Theorem, [8, Corollary 4.3].

Lemma 3.1 If $\gamma \in V(k)$, then there exists $\lambda \in X_*(G)_k$ so that the limit

$$\lim_{t\to 0}\lambda(t)\cdot\gamma$$

exists and is semisimple.

Remark Note that this limit point must necessarily lie in V(k).

The following two results are also essential to our proof. The first is a restatement of [2, Lemma 2.15].

Lemma 3.2 Suppose that $A \subset G$ is a k-defined torus and λ , λ_0 are in $X_*(A)_k$. Suppose that vectors γ , v_0 , $v' \in V$ are related by

$$v_0 = \lim_{t \to 0} \lambda_0(t) \cdot \gamma,$$

$$v' = \lim_{t \to 0} \lambda(t) \cdot v_0.$$

Then there exists $\mu \in X_*(A)_k$ such that

$$egin{aligned} V_{\mu,0} &= V_{\lambda_0,0} \cap V_{\lambda,0} \ V_{\mu,+} &\supseteq V_{\lambda_0,+}, \quad V_{\mu,0+} \subseteq V_{\lambda_0,0+}, \ v' &= \lim_{t o 0} \mu(t) \cdot \gamma. \end{aligned}$$

Remark The cocharacter μ can be of the form $n\lambda_0 + \lambda$ for any sufficiently large $n \in \mathbb{N}$.

The second result is [2, Cor. 3.7].

Lemma 3.3 Let $v \in V(k)$ be semisimple. For every $\lambda \in X_*(G)_k$, if the limit $\lim_{t\to 0} \lambda(t) \cdot v$ exists, then it lies in $G(k) \cdot v$.

Remark In fact, [2, Cor. 3.7] shows that the limit must lie in $R_u(P(\lambda))(k) \cdot v$.

Our main result in this section is the following.

Theorem 3.4 Let G be a reductive group and V a G-module. Suppose that k is perfect and let $\gamma \in V(k)$. Then for every $\lambda, \mu \in X_*(G)_k$ such that both vectors $v = \lim_{t\to 0} \lambda(t) \cdot \gamma$ and $v' = \lim_{t\to 0} \mu(t) \cdot \gamma$ exist and are semisimple, v' lies in $G(k) \cdot v$.

. .

100

Remarks (a) This solves Conjecture 1.5 of [10].

(b) As is well-known (see for example [2, Remark 2.8] or [8, Lemma 1.1]), we can embed any affine *G*-variety over k inside a k-defined rational *G*-module, and hence Theorem 3.4 is also valid for affine *G*-varieties.

Definition 3.5 Let $\Lambda(\gamma, k)_{\min}$ be the set of cocharacters that minimize dim $V_{\lambda,0}$, among $\lambda \in X_*(G)_k$ such that $\lim_{t\to 0} \lambda(t) \cdot \gamma$ exists and is semisimple.

Remark By the Kempf–Rousseau–Hilbert–Mumford theorem 3.1, and because dim $V_{\lambda,0}$ is always a nonnegative integer, the set $\Lambda(\gamma, k)_{\min}$ is non-empty.

Lemma 3.6 Given $\lambda \in \Lambda(\gamma, k)_{\min}$ and $p \in P(\lambda)(k)$, we have that $\lambda \in \Lambda(p \cdot \gamma, k)_{\min}$. Further, the limit points

$$v = \lim_{t \to 0} \lambda(t) \cdot \gamma$$
 and $\lim_{t \to 0} \lambda(t) \cdot (p \cdot \gamma)$

lie in the same G(k)*-orbit.*

Proof Let $\lambda \in \Lambda(\gamma, k)_{\min}$. By (2.2), $\lim_{t\to 0} \lambda(t) \cdot (p \cdot \gamma) = h_{\lambda}(p) \cdot v$, so the limit exists and lies in the G(k)-orbit of v; consequently its *G*-orbit is closed.

On the other hand, given any $\mu \in \Lambda(p \cdot \gamma, k)$, we have that $p^{-1} \cdot \mu \in \Lambda(\gamma, k)$ and $\dim V_{\mu,0} = \dim V_{p^{-1}\cdot\mu,0}$; since $\lambda \in \Lambda(\gamma, k)_{\min}$, this dimension is at least $\dim V_{\lambda,0}$; hence λ lies in $\Lambda(p \cdot \gamma, k)_{\min}$.

Lemma 3.7 Given $\lambda_0 \in \Lambda(\gamma, k)_{\min}$, write $v_0 = \lim_{t\to 0} \lambda_0(t) \cdot \gamma$. Suppose that $A \subset G$ is a k-defined torus with $\lambda_0 \in X_*(A)_k$. Suppose that for $\lambda \in X_*(A)_k$, the limit $v = \lim_{t\to 0} \lambda(t) \cdot \gamma$ exists and has a closed G-orbit. Then v lies in $G(k) \cdot v_0$.

Proof By Lemma 2.1 the existence of the limit v implies that for every $\chi \in \text{supp}(\gamma)$ we have $\langle \lambda, \chi \rangle \ge 0$, and the vector v is the sum

$$\sum_{\substack{\chi \in \text{supp } \gamma \\ \langle \lambda, \chi \rangle = 0}} \gamma_{\chi},$$

the projection of γ to $V_{\lambda,0}$; in particular supp $\nu \subseteq$ supp γ and $\gamma - \nu \in V_{\lambda,+}$. Similarly supp(ν_0) is contained in supp(γ), and so by Lemma 2.1 we may conclude that the limit $\nu' = \lim_{t\to 0} \lambda(t) \cdot \nu_0$ exists. Since $G \cdot \nu_0$ is closed, ν' lies in $G \cdot \nu_0$, so that $G \cdot \nu'$ is also closed.

We then obtain, from Lemma 3.2, a $\mu \in \Lambda(\gamma, k)$ with $\nu' = \lim_{t\to 0} \mu(t) \cdot \gamma$, having a closed *G*-orbit, and

$$(3.1) V_{\mu,0} = V_{\lambda_0,0} \cap V_{\lambda,0}$$

$$(3.2) V_{\mu,+} \supseteq V_{\lambda_0,+}, \quad V_{\mu,0+} \subseteq V_{\lambda_0,0+}$$

Since λ_0 lies in $\Lambda(\gamma, k)_{min}$, we may conclude that $V_{\mu,0} = V_{\lambda_0,0}$, and hence by (3.1), (3.2), also that $V_{\mu,0+} = V_{\lambda_0,0+}$. The limit point ν' is the projection of γ to $V_{\mu,0} = V_{\lambda_0,0}$, hence $\nu' = \nu_0$.

Since $\lim_{t\to 0} \mu(t) \cdot \gamma$ exists, γ and hence ν lie in $V_{\mu,0+}$. Now, the projection of $\gamma - \nu$ to

$$V_{\lambda,0} = \sum_{\substack{\chi \in X^*(A)_k \ \langle \lambda,\chi
angle = 0}} V^{\gamma}$$

is zero. By (3.1), $V_{\mu,0} \subseteq V_{\lambda,0}$, so the projection of $\gamma - \nu \in V_{\mu,0+}$ to $V_{\mu,0}$ is also zero, and hence

$$\lim_{t\to 0}\mu(t)\cdot \nu = \lim_{t\to 0}\mu(t)\cdot \gamma = \nu' = \nu_0.$$

By 3.3, we can finally conclude that v lies in $G(k) \cdot v_0$.

Proof of Theorem 3.4 First, note that a cocharacter in *G* is necessarily a cocharacter in the connected component G^0 of the identity in *G*, and that it is sufficient to prove Theorem 3.4 for G^0 . Without loss of generality, we therefore assume that *G* is connected.

Pick $\lambda_0 \in \Lambda(\gamma, k)_{\min}$, set $\nu_0 = \lim_{t\to 0} \lambda_0(t) \cdot \gamma$. Since being in the same G(k)-orbit is an equivalence relation, it is clearly sufficient to prove the theorem for $\mu = \lambda_0$, $\nu' = \nu_0$.

The image of λ_0 lies in a maximal torus, and by [4, 1.4] must in fact lie in a maximal *k*-split torus *A*. Fix a minimal *k*-defined parabolic subgroup *P* of *G*, with $C_G(A) \subseteq P \subseteq P(\lambda_0)$. The choice of *P* corresponds to a choice of basis $_k\Delta$ of simple roots of *G* with respect to *A*.

The image of λ also lies in some maximal *k*-split torus, so since all maximal *k*-split tori are conjugate over G(k) [3, Thm. 20.9(ii)], there exists $g \in G(k)$ so that the image of $g \cdot \lambda$ lies in *A*. Multiplying *g* on the left by an element of $N_G(A)(k)$ if necessary, we can arrange that $\langle g \cdot \lambda, \alpha \rangle \geq 0$ for every $\alpha \in {}_k\Delta$, that is, $P \subseteq P(g \cdot \lambda)$. Let us write λ_A for $g \cdot \lambda \in X_*(A)$.

We now apply the Bruhat decomposition: write

$$g = pwu, \quad p \in P(k) \subseteq P(\lambda_A)(k), \quad w \in N_G(A), \quad u \in R_u(P)(k).$$

Then

(3.3)

$$\begin{aligned}
\nu &= \lim_{t \to 0} \lambda(t) \cdot \gamma = g^{-1} \cdot \lim_{t \to 0} \lambda_A(t) g \cdot \gamma \\
&= g^{-1} \cdot [\lim_{t \to 0} \lambda_A(t) p \lambda_A(t)^{-1}] \cdot \lim_{t \to 0} \lambda_A(t) w u \cdot \gamma \\
&= g^{-1} h_{\lambda_A}(p) \cdot \lim_{t \to 0} \lambda_A(t) w u \cdot \gamma \\
&= g^{-1} h_{\lambda_A}(p) w \cdot \lim_{t \to 0} (w^{-1} \cdot \lambda_A)(t) \cdot (u \cdot \gamma),
\end{aligned}$$

with $gh_{\lambda_A}(p)w \in G(k)$. Note that the existence of the first limit in (3.3) implies the existence of the others.

Now, $u \in R_u(P)(k) \subseteq P(k) \subseteq P(\lambda_0)(k)$, so by Lemma 3.6, $\lambda_0 \in \Lambda(u \cdot \gamma, k)_{\min}$. Notice also that λ_0 and $w^{-1} \cdot \lambda_A$ both lie in $X_*(A)_k$. By Lemmas 3.7 and 3.6,

$$\lim_{t \to 0} (w^{-1} \cdot \lambda_A) \cdot (u \cdot \gamma) \in G(k) \cdot \lim_{a \to 0} \lambda_0(t) \cdot (u \cdot \gamma) = G(k) \cdot v_0$$

so v is also in $G(k) \cdot v_0$.

102

4 Application to Jordan Decompositions

In this section, we require k to have characteristic 0.

- **Definition 4.1** (i) A Jordan–Kac–Vinberg decomposition of a vector $\gamma \in V$ is as in Definition 1.1(iii).
- (ii) Given $\gamma \in V(k)$, a *k-Jordan–Kac–Vinberg decomposition* of γ is a Jordan–Kac–Vinberg decomposition $\gamma = s + n$ with *s* (and hence *n*) in *V*(*k*).

Kac [7] used the Luna Slice theorem to prove that every vector has a Jordan–Kac– Vinberg decomposition. We now show that every vector in V(k) has a k-Jordan–Kac– Vinberg decomposition.

Bremigan proved a rational version of the Luna Slice Theorem in [5]. The following is an immediate consequence of it.

Lemma 4.2 Given $v \in V(k)$ semisimple, let F be the subvariety of points $\gamma \in V$ with $G \cdot v \subseteq \overline{G \cdot \gamma}$. Then there is a G-invariant retraction $\psi \colon F \to G \cdot v$ that is defined over k such that $\psi(\gamma) \in \overline{G_{\psi(\gamma)} \cdot \gamma}$ for every $\gamma \in F$.

Proof A *G*-invariant retraction ψ : $F \to G \cdot v$, defined over *k*, is given in [5, Cor. 3.4]. A point $\gamma \in F$ is written as $\gamma = g \cdot x$ with $g \in G$ and $v \in \overline{G_v \cdot x}$ (and *x* in the selected Luna slice), and $\psi(\gamma)$ is then set to be $g \cdot v$. But then

$$\psi(\gamma) = g \cdot \nu \in \overline{G_{g \cdot \nu} \cdot (g \cdot x)} = \overline{G_{\psi(\gamma)} \cdot \gamma},$$

as required.

Remark For fields of positive characteristic, the Luna Slice Theorem does not hold without additional assumptions. See [1] for further details.

Corollary 4.3 *Every* $\gamma \in V(k)$ *has a k-Jordan–Kac–Vinberg decomposition.*

Proof Let $\gamma \in V(k)$. By Lemma 3.1, there exists a semisimple $v \in \overline{G \cdot \gamma} \cap V(k)$. Lemma 4.2 provides a *G*-invariant map ψ , defined over *k*, from *F* to $\overline{G \cdot v}$. Setting $s = \psi(\gamma)$, we immediately see that $s \in V(k)$, that *s* is semisimple, that $G_{\gamma} \subseteq G_s$, and that the unique closed G_s -orbit in $\overline{G_s \cdot \gamma}$ is *s*. Subtracting *s*, the unique closed G_s -orbit in $\overline{G_s \cdot (\gamma - s)}$ is 0. Therefore $\gamma = s + (\gamma - s)$ is a *k*-Jordan–Kac–Vinberg decomposition.

We can use the Hilbert–Mumford theorem to provide an alternate description of a Jordan–Kac–Vinberg decomposition.

Proposition 4.4 A decomposition $\gamma = s + n$, with s semisimple, and $G_{\gamma} \subseteq G_s$, is a Jordan–Kac–Vinberg decomposition if and only if there exists $\lambda \in X_*(G_s)$ so that

(4.1)
$$\lim_{t \to 0} \lambda(t) \cdot \gamma = s.$$

If $\gamma \in V(k)$, then $\gamma = s + n$ is a k-Jordan–Kac–Vinberg decomposition if and only if λ can be taken to be in $X_*(G_s)_k$.

Proof The first part of the proposition is just the second part over \overline{k} , so we need only consider the second part.

Given a *k*-Jordan–Kac–Vinberg decomposition $\gamma = s + n$, we know that $0 \in \overline{G_s \cdot n}$. The Hilbert–Mumford Theorem (Lemma 3.1) provides a $\lambda \in X_*(G_s)_k$ such that

(4.2)
$$\lim_{t \to 0} \lambda(t) \cdot n = 0.$$

However, since the image of λ is in G_s , we can add s and obtain (4.1).

In the other direction, given $\lambda \in X_*(G_s)_k$, subtracting *s* from (4.1) gives (4.2), implying that *n* is nilpotent with respect to G_s . Since γ and λ are defined over *k*, so are *s* and *n*, hence $\gamma = s + n$ is a *k*-Jordan–Kac–Vinberg decomposition.

From Proposition 4.4 and Theorem 3.4, we immediately obtain the following.

Corollary 4.5 For any two k-Jordan–Kac–Vinberg decompositions $\gamma = s + n$, $\gamma = s' + n'$ of $\gamma \in V(k)$, we have $s' \in G(k) \cdot s$.

This means that although a vector $\gamma \in V(k)$ may have multiple k-Jordan–Kac– Vinberg decompositions, all such decompositions lie in a single G(k)-orbit.

Acknowledgements We thank G. Röhrle for pointing out that the proof of Theorem 3.4 applies, and hence Theorem 3.4 also holds, for any perfect field k; and also for his careful proofreading.

References

- Peter Bardsley and R. W. Richardson, *Étale slices for algebraic transformation groups in characteristic p.* Proc. London Math. Soc. 51(1985), 295–317, 1985. http://dx.doi.org/10.1112/plms/s3-51.2.295
- [2] M. Bate, B. Martin, G. Röhrle, and R. Tange, *Closed Orbits and uniform S-instability in Geometric Invariant Theory*. Trans. Amer. Math. Soc., to appear. arxiv:0904.4853v4.
- [3] Armand Borel, *Linear algebraic groups*. Second edition. Graduate Texts in Math. **126**, Springer-Verlag, New York, 1991.
- [4] Armand Borel and Jacques Tits, *Groupes réductifs*. Inst. Hautes Études Sci. Publ. Math. 27(1965), 55–150.
- [5] Ralph J. Bremigan, Quotients for algebraic group actions over non-algebraically closed fields. J. Reine Angew. Math. 453(1994), 21–47.
- [6] V. Gatti and E. Viniberghi, Spinors of 13-dimensional space. Adv. in Math. 30(1978), 137–155. http://dx.doi.org/10.1016/0001-8708(78)90034-8
- [7] V. G. Kac, Infinite root systems, representations of graphs and invariant theory. II. J. Algebra 78(1982), 141–162. http://dx.doi.org/10.1016/0021-8693(82)90105-3
- [8] George R. Kempf, Instability in invariant theory. Ann. of Math. (2) 108(1978), 299–316. http://dx.doi.org/10.2307/1971168
- Jason Levy, A truncated Poisson formula for groups of rank at most two. Amer. J. Math. 117(1995), 1371–1408. http://dx.doi.org/10.2307/2375023
- [10] _____, Rationality and orbit closures. Canad. Math. Bull. 46(2003), 204–215. http://dx.doi.org/10.4153/CMB-2003-021-6
- R. W. Richardson, Conjugacy classes of n-tuples in Lie algebras and algebraic groups. Duke Math. J. 57(1988), 1–35. http://dx.doi.org/10.1215/S0012-7094-88-05701-8

Department of Mathematics and Statistics, University of Ottawa, 585 King Edward, Ottawa, ON K1N 6N5 e-mail: jlevy@uottawa.ca