(C) Canadian Mathematical Society 2012

# Rationality and the <br> Jordan-Gatti-Viniberghi Decomposition 

Jason Levy

Abstract. We verify our earlier conjecture and use it to prove that the semisimple parts of the rational Jordan-Kac-Vinberg decompositions of a rational vector all lie in a single rational orbit.

## 1 Introduction

Let $k$ be a field of characteristic 0 , and write $\bar{k}$ for its algebraic closure. Let $G$ be a reductive algebraic group (not necessarily connected), acting on a vector space $V$, with $G, V$, and the action all defined over $k$. Given a point $v \in V$, write $G_{v}$ for the stabilizer of $v$; it is an algebraic subgroup of $G$.

In [6], Kac and Vinberg made the following definitions:

## Definition 1.1

(i) A vector $s \in V$ is semisimple if the orbit $G \cdot s$ is Zariski closed.
(ii) A vector $n \in V$ is nilpotent with respect to $G$ if the Zariski closure $\overline{G \cdot n}$ contains the vector 0 .
(iii) A Jordan decomposition of a vector $\gamma \in V$ is a decomposition $\gamma=s+n$, with
(a) $s$ semisimple,
(b) $n$ nilpotent with respect to $G_{s}$,
(c) $G_{\gamma} \subseteq G_{s}$.

This Jordan-Kac-Vinberg decomposition matches the standard Jordan decomposition when $V$ is the Lie algebra $\mathfrak{g}$ of $G$. In that case, every $\gamma \in \mathfrak{g}$ has a unique Jordan decomposition $\gamma=s+n$, and if $\gamma$ lies in $\mathfrak{g}(k)$ then so do $s$ and $n$. For general $V$, however, as noted in [7], an element $\gamma \in V$ may have multiple Jordan-Kac-Vinberg decompositions. For all of them, the element $s$ lies in a single $G$-orbit, namely the unique closed $G$-orbit in $\overline{G \cdot \gamma}$.

In [7], Kac showed that every vector $\gamma \in V$ has a Jordan-Gatti-Viniberghi decomposition (as he called it), as a simple application of the Luna slice theorem. A rational version of the Luna slice theorem has been proven by Bremigan [5], and it implies (Lemma 4.3) that every $k$-point $\gamma \in V(k)$ has a $k$-Jordan-Kac-Vinberg decomposition, that is a Jordan-Kac-Vinberg decompostion $\gamma=s+n$ with $s$ (and hence $n$ ) in $V(k)$. This fact has not previously appeared in the literature.

[^0]In this paper we show that given $\gamma \in V(k)$, the semisimple parts $s$ of all $k$-Jordan-Kac-Vinberg decompositions $\gamma=s+n$ of $\gamma$ all lie in a single $G(k)$-orbit. In other words, even though $k$-Jordan-Kac-Vinberg decompositions are not unique, the $G(k)$-orbit of the semisimple parts is. This uniqueness is important in producing the fine geometric expansion in relative trace formulas (see the discussion in [9]).

We use two tools to prove this. One is the rational version of the Hilbert-Mumford Theorem, as proven by Kempf [8] and Rousseau. The Hilbert-Mumford Theorem allows us to restate the problem in terms of limits of the form $\lim _{t \rightarrow 0} \lambda(t) \cdot \gamma$, for $k$-cocharacters $\lambda$ in $G$.

The other is a recent rationality result of Bate-Martin-Röhrle-Tange [2] on such limits.

In fact we prove the somewhat more general result, Theorem 3.4, that given $\gamma \in$ $V(k)$, the limit points $\lim _{t \rightarrow 0} \lambda(t) \cdot \gamma$ that are semisimple, ranging over all cocharacters $\lambda$ defined over $k$, all lie in a single $G(k)$-orbit. This solves the conjecture in [10].

## 2 Preliminaries

We begin with some notation. Let $k$ be a field (of any characteristic), and write $\bar{k}$ for its algebraic closure. Let $G$ be a reductive algebraic group (not necessarily connected) defined over $k$. Write $X^{*}(G)$ for the group of characters $\chi: G \rightarrow \mathrm{GL}(1)$, and $X_{*}(G)$ for the set of cocharacters $\lambda$ : GL(1) $\rightarrow G$. Similarly write $X^{*}(G)_{k}$ (resp. $\left.X_{*}(G)_{k}\right)$ for those characters (resp. cocharacters) defined over $k$. Define the map $\langle\rangle:, X_{*}(G) \times$ $X^{*}(G) \rightarrow \mathbb{Z}$ by requiring the identity $\chi(\lambda(t))=t^{\langle\lambda, \chi\rangle}$. The group $G$ acts naturally on $X_{*}(G)$ :

$$
(g \cdot \lambda)(t)=g \lambda(t) g^{-1}, \quad \text { for } g \in G, \lambda \in X_{*}(G), t \in \mathrm{GL}(1)
$$

Given $\lambda \in X_{*}(G)_{k}$ and $g \in G(k)$, the cocharacter $g \cdot \lambda$ is also in $X_{*}(G)_{k}$.
Suppose that $V$ is an affine $G$-variety. Given $\lambda \in X_{*}(G)$ and $v \in V$, we say that the limit

$$
\begin{equation*}
\lim _{t \rightarrow 0} \lambda(t) \cdot v \tag{2.1}
\end{equation*}
$$

exists and equals $x$ if there is a morphism of varieties $\ell: \mathbb{A}^{1} \rightarrow V$ with $\ell(t)=\lambda(t) \cdot v$ for $t \neq 0$, and $\lambda(0)=x$. Notice that if $\ell$ exists then it is unique; also if $V$ and $\lambda$ are defined over $k$, with $v \in V(k)$, then $\ell$ must also be defined over $k$, and so $x$ must lie in $V(k)$. Given $v \in V(k)$, write $\Lambda(v, k)$ for the set of $\lambda \in X_{*}(G)_{k}$ such that the limit (2.1) exists.

The group $G$ acts on itself via the action $y \mapsto x y x^{-1}$. Given $\lambda \in X_{*}(G)$, let $P(\lambda)$ be the subvariety

$$
P(\lambda)=\left\{g \in G \mid \lim _{t \rightarrow 0} \lambda(t) g \lambda(t)^{-1} \text { exists }\right\} .
$$

It is an algebraic group, defined over $k$ if $\lambda$ is. These groups $P(\lambda)$ were defined in [11] and are called the Richardson parabolic subgroups in [2]. The map

$$
h_{\lambda}: P(\lambda) \rightarrow G, \quad h_{\lambda}(g)=\lim _{t \rightarrow 0} \lambda(t) g \lambda(t)^{-1}
$$

is a homomorphism of algebraic groups, defined over $k$ if $\lambda$ is. The image and kernel are given by

$$
\begin{aligned}
\operatorname{Im} h_{\lambda} & =G^{\lambda}=\left\{g \in G \mid \lambda(t) g \lambda(t)^{-1}=g, \text { for all } t\right\} \\
\operatorname{ker} h_{\lambda} & =\left\{g \in G \mid \lim _{t \rightarrow 0} \lambda(t) g \lambda(t)^{-1}=1\right\}=R_{u}(P(\lambda))
\end{aligned}
$$

(see [11] for details).
Now suppose that $V$ is a $G$-module defined over $k$. Given any $\lambda \in X_{*}(G)$, we can then define the $G^{\lambda}$-modules

$$
\begin{gathered}
V_{\lambda, n}=\left\{v \in V \mid \lambda(t) \cdot v=t^{n} v \text { for all } t\right\}, \quad n \in \mathbb{Z} \\
V_{\lambda,+}=\sum_{n>0} V_{\lambda, n}, \quad V_{\lambda, 0+}=\sum_{n \geq 0} V_{\lambda, n}=V_{\lambda, 0} \oplus V_{\lambda,+}
\end{gathered}
$$

Notice that $V_{\lambda, 0+}$ consists of those vectors $v \in V$ such that the limit (2.1) exists, and is invariant under $P(\lambda)$; in fact for $g \in P(\lambda)$, and $v \in V_{\lambda, 0+}$,

$$
\begin{equation*}
\lim _{t \rightarrow 0} \lambda(t) \cdot(g \cdot v)=h_{\lambda}(g) \cdot\left(\lim _{t \rightarrow 0} \lambda(t) \cdot v\right) \tag{2.2}
\end{equation*}
$$

Further, for $v \in V_{\lambda, 0+}=V_{\lambda, 0} \oplus V_{\lambda,+}$, the limit (2.1) is just the projection of $v$ to $V_{\lambda, 0}$. Suppose next that $A$ is a $k$-defined torus in $G$. For each $\chi \in X^{*}(A)_{k}$ define $V^{\chi}$ by

$$
V^{\chi}=\{v \in V \mid a \cdot v=\chi(a) v, \text { for all } a \in A\}
$$

Then only finitely many $V^{\chi}$ are nonzero and $V$ is their direct sum. Given a vector $v \in V$, write $v_{\chi}$ for the component of $v$ in the space $V^{\chi}, \chi \in X^{*}(A)_{k}$, and set

$$
\operatorname{supp} v=\operatorname{supp}_{A} v=\left\{\chi \in X^{*}(A)_{k} \mid v_{\chi} \neq 0\right\}
$$

so that

$$
v=\sum_{\chi \in \operatorname{supp} v} v_{\chi} .
$$

For any $\lambda \in X_{*}(A)_{k} \subset X_{*}(G)_{k}$, each vector space $V_{\lambda, n}, n \in \mathbb{Z}$, is also a direct sum of weight spaces:

$$
V_{\lambda, n}=\sum_{\substack{\chi \in X^{*}(A)_{k} \\\langle\lambda, \chi\rangle=n}} V^{\chi} .
$$

We record the following obvious statement for later use.
Lemma 2.1 Suppose that $\lambda$ is in $X_{*}(A)_{k}$. For a vector $v \in V$, the limit (2.1) exists if and only if for every $\chi \in \operatorname{supp} v$ we have $\langle\lambda, \chi\rangle \geq 0$; in this case the limit equals

$$
\sum_{\substack{x \in X^{*}(A)_{k} \\\langle\lambda, \lambda\rangle=0}} v_{\chi} .
$$

## 3 Limits

In this section we assume that $k$ is perfect. We summarize some results that we will later use. First is the rational version of the Hilbert-Mumford Theorem, [8, Corollary 4.3].

Lemma 3.1 If $\gamma \in V(k)$, then there exists $\lambda \in X_{*}(G)_{k}$ so that the limit

$$
\lim _{t \rightarrow 0} \lambda(t) \cdot \gamma
$$

exists and is semisimple.
Remark Note that this limit point must necessarily lie in $V(k)$.
The following two results are also essential to our proof. The first is a restatement of [2, Lemma 2.15].

Lemma 3.2 Suppose that $A \subset G$ is a $k$-defined torus and $\lambda, \lambda_{0}$ are in $X_{*}(A)_{k}$. Suppose that vectors $\gamma, v_{0}, v^{\prime} \in V$ are related by

$$
\begin{aligned}
v_{0} & =\lim _{t \rightarrow 0} \lambda_{0}(t) \cdot \gamma, \\
v^{\prime} & =\lim _{t \rightarrow 0} \lambda(t) \cdot v_{0}
\end{aligned}
$$

Then there exists $\mu \in X_{*}(A)_{k}$ such that

$$
\begin{gathered}
V_{\mu, 0}=V_{\lambda_{0}, 0} \cap V_{\lambda, 0} \\
V_{\mu,+} \supseteq V_{\lambda_{0},+}, \quad V_{\mu, 0+} \subseteq V_{\lambda_{0}, 0+}, \\
v^{\prime}=\lim _{t \rightarrow 0} \mu(t) \cdot \gamma .
\end{gathered}
$$

Remark The cocharacter $\mu$ can be of the form $n \lambda_{0}+\lambda$ for any sufficiently large $n \in \mathbb{N}$.

The second result is [2, Cor. 3.7].
Lemma 3.3 Let $v \in V(k)$ be semisimple. For every $\lambda \in X_{*}(G)_{k}$, if the limit $\lim _{t \rightarrow 0} \lambda(t) \cdot v$ exists, then it lies in $G(k) \cdot v$.

Remark In fact, [2, Cor. 3.7] shows that the limit must lie in $R_{u}(P(\lambda))(k) \cdot v$.
Our main result in this section is the following.
Theorem 3.4 Let $G$ be a reductive group and $V$ a $G$-module. Suppose that $k$ is perfect and let $\gamma \in V(k)$. Then for every $\lambda, \mu \in X_{*}(G)_{k}$ such that both vectors $v=\lim _{t \rightarrow 0} \lambda(t) \cdot \gamma$ and $v^{\prime}=\lim _{t \rightarrow 0} \mu(t) \cdot \gamma$ exist and are semisimple, $v^{\prime}$ lies in $G(k) \cdot v$.

Remarks (a) This solves Conjecture 1.5 of [10].
(b) As is well-known (see for example [2, Remark 2.8] or [8, Lemma 1.1]), we can embed any affine $G$-variety over $k$ inside a $k$-defined rational $G$-module, and hence Theorem 3.4 is also valid for affine $G$-varieties.

Definition 3.5 Let $\Lambda(\gamma, k)_{\min }$ be the set of cocharacters that minimize $\operatorname{dim} V_{\lambda, 0}$, among $\lambda \in X_{*}(G)_{k}$ such that $\lim _{t \rightarrow 0} \lambda(t) \cdot \gamma$ exists and is semisimple.

Remark By the Kempf-Rousseau-Hilbert-Mumford theorem 3.1, and because $\operatorname{dim} V_{\lambda, 0}$ is always a nonnegative integer, the set $\Lambda(\gamma, k)_{\text {min }}$ is non-empty.

Lemma 3.6 Given $\lambda \in \Lambda(\gamma, k)_{\min }$ and $p \in P(\lambda)(k)$, we have that $\lambda \in \Lambda(p \cdot \gamma, k)_{\min }$. Further, the limit points

$$
v=\lim _{t \rightarrow 0} \lambda(t) \cdot \gamma \quad \text { and } \quad \lim _{t \rightarrow 0} \lambda(t) \cdot(p \cdot \gamma)
$$

lie in the same $G(k)$-orbit.
Proof Let $\lambda \in \Lambda(\gamma, k)_{\min }$. By (2.2), $\lim _{t \rightarrow 0} \lambda(t) \cdot(p \cdot \gamma)=h_{\lambda}(p) \cdot v$, so the limit exists and lies in the $G(k)$-orbit of $v$; consequently its $G$-orbit is closed.

On the other hand, given any $\mu \in \Lambda(p \cdot \gamma, k)$, we have that $p^{-1} \cdot \mu \in \Lambda(\gamma, k)$ and $\operatorname{dim} V_{\mu, 0}=\operatorname{dim} V_{p^{-1} \cdot \mu, 0} ;$ since $\lambda \in \Lambda(\gamma, k)_{\min }$, this dimension is at least $\operatorname{dim} V_{\lambda, 0}$; hence $\lambda$ lies in $\Lambda(p \cdot \gamma, k)_{\text {min }}$.

Lemma 3.7 Given $\lambda_{0} \in \Lambda(\gamma, k)_{\min }$, write $v_{0}=\lim _{t \rightarrow 0} \lambda_{0}(t) \cdot \gamma$. Suppose that $A \subset G$ is a $k$-defined torus with $\lambda_{0} \in X_{*}(A)_{k}$. Suppose that for $\lambda \in X_{*}(A)_{k}$, the limit $v=\lim _{t \rightarrow 0} \lambda(t) \cdot \gamma$ exists and has a closed $G$-orbit. Then $v$ lies in $G(k) \cdot v_{0}$.

Proof By Lemma 2.1 the existence of the limit $v$ implies that for every $\chi \in \operatorname{supp}(\gamma)$ we have $\langle\lambda, \chi\rangle \geq 0$, and the vector $v$ is the sum

$$
\sum_{\substack{\chi \in \text { supp } \gamma \\\langle\lambda, \chi\rangle=0}} \gamma_{\chi},
$$

the projection of $\gamma$ to $V_{\lambda, 0}$; in particular supp $v \subseteq \operatorname{supp} \gamma$ and $\gamma-v \in V_{\lambda,+}$. Similarly $\operatorname{supp}\left(v_{0}\right)$ is contained in $\operatorname{supp}(\gamma)$, and so by Lemma 2.1 we may conclude that the limit $v^{\prime}=\lim _{t \rightarrow 0} \lambda(t) \cdot v_{0}$ exists. Since $G \cdot v_{0}$ is closed, $v^{\prime}$ lies in $G \cdot v_{0}$, so that $G \cdot v^{\prime}$ is also closed.

We then obtain, from Lemma 3.2, a $\mu \in \Lambda(\gamma, k)$ with $v^{\prime}=\lim _{t \rightarrow 0} \mu(t) \cdot \gamma$, having a closed $G$-orbit, and

$$
\begin{gather*}
V_{\mu, 0}=V_{\lambda_{0}, 0} \cap V_{\lambda, 0}  \tag{3.1}\\
V_{\mu,+} \supseteq V_{\lambda_{0},+}, \quad V_{\mu, 0+} \subseteq V_{\lambda_{0}, 0+} . \tag{3.2}
\end{gather*}
$$

Since $\lambda_{0}$ lies in $\Lambda(\gamma, k)_{\min }$, we may conclude that $V_{\mu, 0}=V_{\lambda_{0}, 0}$, and hence by (3.1), (3.2), also that $V_{\mu, 0+}=V_{\lambda_{0}, 0+.}$. The limit point $v^{\prime}$ is the projection of $\gamma$ to $V_{\mu, 0}=V_{\lambda_{0}, 0}$, hence $v^{\prime}=v_{0}$.

Since $\lim _{t \rightarrow 0} \mu(t) \cdot \gamma$ exists, $\gamma$ and hence $v$ lie in $V_{\mu, 0+}$. Now, the projection of $\gamma-v$ to

$$
V_{\lambda, 0}=\sum_{\substack{\chi \in X^{*}(A)_{k} \\\langle\lambda, \chi\rangle=0}} V^{\chi}
$$

is zero. By (3.1), $V_{\mu, 0} \subseteq V_{\lambda, 0}$, so the projection of $\gamma-v \in V_{\mu, 0+}$ to $V_{\mu, 0}$ is also zero, and hence

$$
\lim _{t \rightarrow 0} \mu(t) \cdot v=\lim _{t \rightarrow 0} \mu(t) \cdot \gamma=v^{\prime}=v_{0}
$$

By 3.3, we can finally conclude that $v$ lies in $G(k) \cdot v_{0}$.
Proof of Theorem 3.4 First, note that a cocharacter in $G$ is necessarily a cocharacter in the connected component $G^{0}$ of the identity in $G$, and that it is sufficient to prove Theorem 3.4 for $G^{0}$. Without loss of generality, we therefore assume that $G$ is connected.

Pick $\lambda_{0} \in \Lambda(\gamma, k)_{\min }$, set $v_{0}=\lim _{t \rightarrow 0} \lambda_{0}(t) \cdot \gamma$. Since being in the same $G(k)$-orbit is an equivalence relation, it is clearly sufficient to prove the theorem for $\mu=\lambda_{0}$, $v^{\prime}=v_{0}$.

The image of $\lambda_{0}$ lies in a maximal torus, and by $[4,1.4]$ must in fact lie in a maximal $k$-split torus $A$. Fix a minimal $k$-defined parabolic subgroup $P$ of $G$, with $C_{G}(A) \subseteq P \subseteq P\left(\lambda_{0}\right)$. The choice of $P$ corresponds to a choice of basis ${ }_{k} \Delta$ of simple roots of $G$ with respect to $A$.

The image of $\lambda$ also lies in some maximal $k$-split torus, so since all maximal $k$-split tori are conjugate over $G(k)$ [3, Thm. 20.9(ii)], there exists $g \in G(k)$ so that the image of $g \cdot \lambda$ lies in $A$. Multiplying $g$ on the left by an element of $N_{G}(A)(k)$ if necessary, we can arrange that $\langle g \cdot \lambda, \alpha\rangle \geq 0$ for every $\alpha \in{ }_{k} \Delta$, that is, $P \subseteq P(g \cdot \lambda)$. Let us write $\lambda_{A}$ for $g \cdot \lambda \in X_{*}(A)$.

We now apply the Bruhat decomposition: write

$$
g=p w u, \quad p \in P(k) \subseteq P\left(\lambda_{A}\right)(k), \quad w \in N_{G}(A), \quad u \in R_{u}(P)(k)
$$

Then

$$
\begin{align*}
v & =\lim _{t \rightarrow 0} \lambda(t) \cdot \gamma=g^{-1} \cdot \lim _{t \rightarrow 0} \lambda_{A}(t) g \cdot \gamma  \tag{3.3}\\
& =g^{-1} \cdot\left[\lim _{t \rightarrow 0} \lambda_{A}(t) p \lambda_{A}(t)^{-1}\right] \cdot \lim _{t \rightarrow 0} \lambda_{A}(t) w u \cdot \gamma \\
& =g^{-1} h_{\lambda_{A}}(p) \cdot \lim _{t \rightarrow 0} \lambda_{A}(t) w u \cdot \gamma \\
& =g^{-1} h_{\lambda_{A}}(p) w \cdot \lim _{t \rightarrow 0}\left(w^{-1} \cdot \lambda_{A}\right)(t) \cdot(u \cdot \gamma)
\end{align*}
$$

with $g h_{\lambda_{A}}(p) w \in G(k)$. Note that the existence of the first limit in (3.3) implies the existence of the others.

Now, $u \in R_{u}(P)(k) \subseteq P(k) \subseteq P\left(\lambda_{0}\right)(k)$, so by Lemma 3.6, $\lambda_{0} \in \Lambda(u \cdot \gamma, k)_{\min }$. Notice also that $\lambda_{0}$ and $w^{-1} \cdot \lambda_{A}$ both lie in $X_{*}(A)_{k}$. By Lemmas 3.7 and 3.6,

$$
\lim _{t \rightarrow 0}\left(w^{-1} \cdot \lambda_{A}\right) \cdot(u \cdot \gamma) \in G(k) \cdot \lim _{a \rightarrow 0} \lambda_{0}(t) \cdot(u \cdot \gamma)=G(k) \cdot v_{0}
$$

so $v$ is also in $G(k) \cdot v_{0}$.

## 4 Application to Jordan Decompositions

In this section, we require $k$ to have characteristic 0 .
Definition 4.1 (i) A Jordan-Kac-Vinberg decomposition of a vector $\gamma \in V$ is as in Definition 1.1(iii).
(ii) Given $\gamma \in V(k)$, a $k$-Jordan-Kac-Vinberg decomposition of $\gamma$ is a Jordan-KacVinberg decomposition $\gamma=s+n$ with $s$ (and hence $n$ ) in $V(k)$.

Kac [7] used the Luna Slice theorem to prove that every vector has a Jordan-KacVinberg decomposition. We now show that every vector in $V(k)$ has a $k$-Jordan-KacVinberg decomposition.

Bremigan proved a rational version of the Luna Slice Theorem in [5]. The following is an immediate consequence of it.

Lemma 4.2 Given $v \in V(k)$ semisimple, let $F$ be the subvariety of points $\gamma \in V$ with $G \cdot v \subseteq \overline{G \cdot \gamma}$. Then there is a G-invariant retraction $\psi: F \rightarrow G \cdot v$ that is defined over $k$ such that $\psi(\gamma) \in \overline{G_{\psi(\gamma)} \cdot \gamma}$ for every $\gamma \in F$.

Proof A $G$-invariant retraction $\psi: F \rightarrow G \cdot v$, defined over $k$, is given in [5, Cor. 3.4]. A point $\gamma \in F$ is written as $\gamma=g \cdot x$ with $g \in G$ and $v \in \overline{G_{v} \cdot x}$ (and $x$ in the selected Luna slice), and $\psi(\gamma)$ is then set to be $g \cdot v$. But then

$$
\psi(\gamma)=g \cdot v \in \overline{G_{g \cdot v} \cdot(g \cdot x)}=\overline{G_{\psi(\gamma)} \cdot \gamma}
$$

as required.
Remark For fields of positive characteristic, the Luna Slice Theorem does not hold without additional assumptions. See [1] for further details.

Corollary 4.3 Every $\gamma \in V(k)$ has a $k$-Jordan-Kac-Vinberg decomposition.
Proof Let $\gamma \in V(k)$. By Lemma 3.1, there exists a semisimple $v \in \overline{G \cdot \gamma} \cap V(k)$. Lemma 4.2 provides a $G$-invariant map $\psi$, defined over $k$, from $F$ to $G \cdot v$. Setting $s=\psi(\gamma)$, we immediately see that $s \in V(k)$, that $s$ is semisimple, that $G_{\gamma} \subseteq G_{s}$, and that the unique closed $G_{s}$-orbit in $\overline{G_{s} \cdot \gamma}$ is $s$. Subtracting $s$, the unique closed $G_{s}$-orbit in $\overline{G_{s} \cdot(\gamma-s)}$ is 0 . Therefore $\gamma=s+(\gamma-s)$ is a $k$-Jordan-Kac-Vinberg decomposition.

We can use the Hilbert-Mumford theorem to provide an alternate description of a Jordan-Kac-Vinberg decomposition.

Proposition 4.4 A decomposition $\gamma=s+n$, with s semisimple, and $G_{\gamma} \subseteq G_{s}$, is a Jordan-Kac-Vinberg decomposition if and only if there exists $\lambda \in X_{*}\left(G_{s}\right)$ so that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \lambda(t) \cdot \gamma=s \tag{4.1}
\end{equation*}
$$

If $\gamma \in V(k)$, then $\gamma=s+n$ is a $k$-Jordan-Kac-Vinberg decomposition if and only if $\lambda$ can be taken to be in $X_{*}\left(G_{s}\right)_{k}$.

Proof The first part of the proposition is just the second part over $\bar{k}$, so we need only consider the second part.

Given a $k$-Jordan-Kac-Vinberg decomposition $\gamma=s+n$, we know that $0 \in \overline{G_{s} \cdot n}$. The Hilbert-Mumford Theorem (Lemma 3.1) provides a $\lambda \in X_{*}\left(G_{s}\right)_{k}$ such that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \lambda(t) \cdot n=0 \tag{4.2}
\end{equation*}
$$

However, since the image of $\lambda$ is in $G_{s}$, we can add $s$ and obtain (4.1).
In the other direction, given $\lambda \in X_{*}\left(G_{s}\right)_{k}$, subtracting $s$ from (4.1) gives (4.2), implying that $n$ is nilpotent with respect to $G_{s}$. Since $\gamma$ and $\lambda$ are defined over $k$, so are $s$ and $n$, hence $\gamma=s+n$ is a $k$-Jordan-Kac-Vinberg decomposition.

From Proposition 4.4 and Theorem 3.4, we immediately obtain the following.
Corollary 4.5 For any two $k$-Jordan-Kac-Vinberg decompositions $\gamma=s+n, \gamma=$ $s^{\prime}+n^{\prime}$ of $\gamma \in V(k)$, we have $s^{\prime} \in G(k) \cdot s$.

This means that although a vector $\gamma \in V(k)$ may have multiple $k$-Jordan-KacVinberg decompositions, all such decompositions lie in a single $G(k)$-orbit.

Acknowledgements We thank G. Röhrle for pointing out that the proof of Theorem 3.4 applies, and hence Theorem 3.4 also holds, for any perfect field $k$; and also for his careful proofreading.

## References

[1] Peter Bardsley and R. W. Richardson, Étale slices for algebraic transformation groups in characteristic p. Proc. London Math. Soc. 51(1985), 295-317, 1985. http://dx.doi.org/10.1112/plms/s3-51.2.295
[2] M. Bate, B. Martin, G. Röhrle, and R. Tange, Closed Orbits and uniform S-instability in Geometric Invariant Theory. Trans. Amer. Math. Soc., to appear. arxiv:0904.4853v4.
[3] Armand Borel, Linear algebraic groups. Second edition. Graduate Texts in Math. 126, Springer-Verlag, New York, 1991.
[4] Armand Borel and Jacques Tits, Groupes réductifs. Inst. Hautes Études Sci. Publ. Math. 27(1965), 55-150.
[5] Ralph J. Bremigan, Quotients for algebraic group actions over non-algebraically closed fields. J. Reine Angew. Math. 453(1994), 21-47.
[6] V. Gatti and E. Viniberghi, Spinors of 13-dimensional space. Adv. in Math. 30(1978), 137-155. http://dx.doi.org/10.1016/0001-8708(78)90034-8
[7] V. G. Kac, Infinite root systems, representations of graphs and invariant theory. II. J. Algebra 78(1982), 141-162. http://dx.doi.org/10.1016/0021-8693(82)90105-3
[8] George R. Kempf, Instability in invariant theory. Ann. of Math. (2) 108(1978), 299-316. http://dx.doi.org/10.2307/1971168
[9] Jason Levy, A truncated Poisson formula for groups of rank at most two. Amer. J. Math. 117(1995), 1371-1408. http://dx.doi.org/10.2307/2375023
[10] , Rationality and orbit closures. Canad. Math. Bull. 46(2003), 204-215. http://dx.doi.org/10.4153/CMB-2003-021-6
[11] R. W. Richardson, Conjugacy classes of $n$-tuples in Lie algebras and algebraic groups. Duke Math. J. 57(1988), 1-35. http://dx.doi.org/10.1215/S0012-7094-88-05701-8


[^0]:    Received by the editors July 1, 2012.
    Published electronically December 29, 2012.
    AMS subject classification: 20G15, 14L24.
    Keywords: reductive group, $G$-module, Jordan decomposition, orbit closure, rationality.

