
Canad. Math. Bull. Vol. 57 (1), 2014 pp. 97–104
http://dx.doi.org/10.4153/CMB-2012-039-0
c©Canadian Mathematical Society 2012

Rationality and the
Jordan–Gatti–Viniberghi Decomposition

Jason Levy

Abstract. We verify our earlier conjecture and use it to prove that the semisimple parts of the rational
Jordan–Kac–Vinberg decompositions of a rational vector all lie in a single rational orbit.

1 Introduction

Let k be a field of characteristic 0, and write k for its algebraic closure. Let G be a
reductive algebraic group (not necessarily connected), acting on a vector space V ,
with G, V , and the action all defined over k. Given a point v ∈ V , write Gv for the
stabilizer of v; it is an algebraic subgroup of G.

In [6], Kac and Vinberg made the following definitions:

Definition 1.1

(i) A vector s ∈ V is semisimple if the orbit G · s is Zariski closed.
(ii) A vector n ∈ V is nilpotent with respect to G if the Zariski closure G · n contains

the vector 0.
(iii) A Jordan decomposition of a vector γ ∈ V is a decomposition γ = s + n, with

(a) s semisimple,
(b) n nilpotent with respect to Gs,
(c) Gγ ⊆ Gs.

This Jordan–Kac–Vinberg decomposition matches the standard Jordan decompo-
sition when V is the Lie algebra g of G. In that case, every γ ∈ g has a unique Jordan
decomposition γ = s + n, and if γ lies in g(k) then so do s and n. For general V ,
however, as noted in [7], an element γ ∈ V may have multiple Jordan–Kac–Vinberg
decompositions. For all of them, the element s lies in a single G-orbit, namely the
unique closed G-orbit in G · γ.

In [7], Kac showed that every vector γ ∈ V has a Jordan–Gatti–Viniberghi de-
composition (as he called it), as a simple application of the Luna slice theorem. A
rational version of the Luna slice theorem has been proven by Bremigan [5], and it
implies (Lemma 4.3) that every k-point γ ∈ V (k) has a k-Jordan–Kac–Vinberg de-
composition, that is a Jordan–Kac–Vinberg decompostion γ = s + n with s (and
hence n) in V (k). This fact has not previously appeared in the literature.
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In this paper we show that given γ ∈ V (k), the semisimple parts s of all k-Jordan–
Kac–Vinberg decompositions γ = s + n of γ all lie in a single G(k)-orbit. In
other words, even though k-Jordan–Kac–Vinberg decompositions are not unique,
the G(k)-orbit of the semisimple parts is. This uniqueness is important in producing
the fine geometric expansion in relative trace formulas (see the discussion in [9]).

We use two tools to prove this. One is the rational version of the Hilbert–Mumford
Theorem, as proven by Kempf [8] and Rousseau. The Hilbert–Mumford Theorem
allows us to restate the problem in terms of limits of the form limt→0 λ(t) · γ, for
k-cocharacters λ in G.

The other is a recent rationality result of Bate–Martin–Röhrle–Tange [2] on such
limits.

In fact we prove the somewhat more general result, Theorem 3.4, that given γ ∈
V (k), the limit points limt→0 λ(t) · γ that are semisimple, ranging over all cocharac-
ters λ defined over k, all lie in a single G(k)-orbit. This solves the conjecture in [10].

2 Preliminaries

We begin with some notation. Let k be a field (of any characteristic), and write k for
its algebraic closure. Let G be a reductive algebraic group (not necessarily connected)
defined over k. Write X∗(G) for the group of characters χ : G → GL(1), and X∗(G)
for the set of cocharacters λ : GL(1)→ G. Similarly write X∗(G)k (resp. X∗(G)k) for
those characters (resp. cocharacters) defined over k. Define the map 〈 , 〉 : X∗(G) ×
X∗(G) → Z by requiring the identity χ

(
λ(t)

)
= t〈λ,χ〉. The group G acts naturally

on X∗(G):

(g · λ)(t) = gλ(t)g−1, for g ∈ G, λ ∈ X∗(G), t ∈ GL(1).

Given λ ∈ X∗(G)k and g ∈ G(k), the cocharacter g · λ is also in X∗(G)k.
Suppose that V is an affine G-variety. Given λ ∈ X∗(G) and v ∈ V , we say that

the limit

(2.1) lim
t→0

λ(t) · v

exists and equals x if there is a morphism of varieties ` : A1 → V with `(t) = λ(t) · v
for t 6= 0, and λ(0) = x. Notice that if ` exists then it is unique; also if V and λ are
defined over k, with v ∈ V (k), then ` must also be defined over k, and so x must lie
in V (k). Given v ∈ V (k), write Λ(v, k) for the set of λ ∈ X∗(G)k such that the limit
(2.1) exists.

The group G acts on itself via the action y 7→ xyx−1. Given λ ∈ X∗(G), let P(λ)
be the subvariety

P(λ) = {g ∈ G | lim
t→0

λ(t)gλ(t)−1 exists}.

It is an algebraic group, defined over k if λ is. These groups P(λ) were defined in [11]
and are called the Richardson parabolic subgroups in [2]. The map

hλ : P(λ)→ G, hλ(g) = lim
t→0

λ(t)gλ(t)−1
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is a homomorphism of algebraic groups, defined over k if λ is. The image and kernel
are given by

Im hλ = Gλ = {g ∈ G | λ(t)gλ(t)−1 = g, for all t}

ker hλ = {g ∈ G | lim
t→0

λ(t)gλ(t)−1 = 1} = Ru

(
P(λ)

)
(see [11] for details).

Now suppose that V is a G-module defined over k. Given any λ ∈ X∗(G), we can
then define the Gλ-modules

Vλ,n = {v ∈ V | λ(t) · v = tnv for all t}, n ∈ Z

Vλ,+ =
∑
n>0

Vλ,n, Vλ,0+ =
∑
n≥0

Vλ,n = Vλ,0 ⊕Vλ,+.

Notice that Vλ,0+ consists of those vectors v ∈ V such that the limit (2.1) exists, and
is invariant under P(λ); in fact for g ∈ P(λ), and v ∈ Vλ,0+,

(2.2) lim
t→0

λ(t) · (g · v) = hλ(g) ·
(

lim
t→0

λ(t) · v
)
.

Further, for v ∈ Vλ,0+ = Vλ,0⊕Vλ,+, the limit (2.1) is just the projection of v to Vλ,0.
Suppose next that A is a k-defined torus in G. For each χ ∈ X∗(A)k define V χ by

V χ = {v ∈ V | a · v = χ(a)v, for all a ∈ A}.

Then only finitely many V χ are nonzero and V is their direct sum. Given a vector
v ∈ V , write vχ for the component of v in the space V χ, χ ∈ X∗(A)k, and set

supp v = suppA v = {χ ∈ X∗(A)k | vχ 6= 0},

so that
v =

∑
χ∈supp v

vχ.

For any λ ∈ X∗(A)k ⊂ X∗(G)k, each vector space Vλ,n, n ∈ Z, is also a direct sum
of weight spaces:

Vλ,n =
∑

χ∈X∗(A)k
〈λ,χ〉=n

V χ.

We record the following obvious statement for later use.

Lemma 2.1 Suppose that λ is in X∗(A)k. For a vector v ∈ V , the limit (2.1) exists if
and only if for every χ ∈ supp v we have 〈λ, χ〉 ≥ 0; in this case the limit equals∑

χ∈X∗(A)k
〈λ,χ〉=0

vχ.
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3 Limits

In this section we assume that k is perfect. We summarize some results that we will
later use. First is the rational version of the Hilbert–Mumford Theorem, [8, Corol-
lary 4.3].

Lemma 3.1 If γ ∈ V (k), then there exists λ ∈ X∗(G)k so that the limit

lim
t→0

λ(t) · γ

exists and is semisimple.

Remark Note that this limit point must necessarily lie in V (k).

The following two results are also essential to our proof. The first is a restatement
of [2, Lemma 2.15].

Lemma 3.2 Suppose that A ⊂ G is a k-defined torus and λ, λ0 are in X∗(A)k. Suppose
that vectors γ, v0, v ′ ∈ V are related by

v0 = lim
t→0

λ0(t) · γ,

v ′ = lim
t→0

λ(t) · v0.

Then there exists µ ∈ X∗(A)k such that

Vµ,0 = Vλ0,0 ∩Vλ,0

Vµ,+ ⊇ Vλ0,+, Vµ,0+ ⊆ Vλ0,0+,

v ′ = lim
t→0

µ(t) · γ.

Remark The cocharacter µ can be of the form nλ0 + λ for any sufficiently large
n ∈ N.

The second result is [2, Cor. 3.7].

Lemma 3.3 Let v ∈ V (k) be semisimple. For every λ ∈ X∗(G)k, if the limit
limt→0 λ(t) · v exists, then it lies in G(k) · v.

Remark In fact, [2, Cor. 3.7] shows that the limit must lie in Ru

(
P(λ)

)
(k) · v.

Our main result in this section is the following.

Theorem 3.4 Let G be a reductive group and V a G-module. Suppose that k is
perfect and let γ ∈ V (k). Then for every λ, µ ∈ X∗(G)k such that both vectors
v = limt→0 λ(t) · γ and v ′ = limt→0 µ(t)·γ exist and are semisimple, v ′ lies in G(k)·v.
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Remarks (a) This solves Conjecture 1.5 of [10].
(b) As is well-known (see for example [2, Remark 2.8] or [8, Lemma 1.1]), we can

embed any affine G-variety over k inside a k-defined rational G-module, and hence
Theorem 3.4 is also valid for affine G-varieties.

Definition 3.5 Let Λ(γ, k)min be the set of cocharacters that minimize dim Vλ,0,
among λ ∈ X∗(G)k such that limt→0 λ(t) · γ exists and is semisimple.

Remark By the Kempf–Rousseau–Hilbert–Mumford theorem 3.1, and because
dim Vλ,0 is always a nonnegative integer, the set Λ(γ, k)min is non-empty.

Lemma 3.6 Given λ ∈ Λ(γ, k)min and p ∈ P(λ)(k), we have that λ ∈ Λ(p ·γ, k)min.
Further, the limit points

v = lim
t→0

λ(t) · γ and lim
t→0

λ(t) · (p · γ)

lie in the same G(k)-orbit.

Proof Let λ ∈ Λ(γ, k)min. By (2.2), limt→0 λ(t) · (p · γ) = hλ(p) · v, so the limit
exists and lies in the G(k)-orbit of v; consequently its G-orbit is closed.

On the other hand, given any µ ∈ Λ(p · γ, k), we have that p−1 · µ ∈ Λ(γ, k) and
dim Vµ,0 = dim V p−1·µ,0; since λ ∈ Λ(γ, k)min, this dimension is at least dim Vλ,0;
hence λ lies in Λ(p · γ, k)min.

Lemma 3.7 Given λ0 ∈ Λ(γ, k)min, write v0 = limt→0 λ0(t) · γ. Suppose that
A ⊂ G is a k-defined torus with λ0 ∈ X∗(A)k. Suppose that for λ ∈ X∗(A)k, the limit
v = limt→0 λ(t) · γ exists and has a closed G-orbit. Then v lies in G(k) · v0.

Proof By Lemma 2.1 the existence of the limit v implies that for every χ ∈ supp(γ)
we have 〈λ, χ〉 ≥ 0, and the vector v is the sum∑

χ∈supp γ
〈λ,χ〉=0

γχ,

the projection of γ to Vλ,0; in particular supp v ⊆ supp γ and γ− v ∈ Vλ,+. Similarly
supp(v0) is contained in supp(γ), and so by Lemma 2.1 we may conclude that the
limit v ′ = limt→0 λ(t) · v0 exists. Since G · v0 is closed, v ′ lies in G · v0, so that G · v ′
is also closed.

We then obtain, from Lemma 3.2, a µ ∈ Λ(γ, k) with v ′ = limt→0 µ(t) · γ, having
a closed G-orbit, and

Vµ,0 = Vλ0,0 ∩Vλ,0(3.1)

Vµ,+ ⊇ Vλ0,+, Vµ,0+ ⊆ Vλ0,0+.(3.2)

Since λ0 lies in Λ(γ, k)min, we may conclude that Vµ,0 = Vλ0,0, and hence by
(3.1), (3.2), also that Vµ,0+ = Vλ0,0+. The limit point v ′ is the projection of γ to
Vµ,0 = Vλ0,0, hence v ′ = v0.
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Since limt→0 µ(t) ·γ exists, γ and hence v lie in Vµ,0+. Now, the projection of γ−v
to

Vλ,0 =
∑

χ∈X∗(A)k
〈λ,χ〉=0

V χ

is zero. By (3.1), Vµ,0 ⊆ Vλ,0, so the projection of γ − v ∈ Vµ,0+ to Vµ,0 is also zero,
and hence

lim
t→0

µ(t) · v = lim
t→0

µ(t) · γ = v ′ = v0.

By 3.3, we can finally conclude that v lies in G(k) · v0.

Proof of Theorem 3.4 First, note that a cocharacter in G is necessarily a cocharac-
ter in the connected component G0 of the identity in G, and that it is sufficient to
prove Theorem 3.4 for G0. Without loss of generality, we therefore assume that G is
connected.

Pick λ0 ∈ Λ(γ, k)min, set v0 = limt→0 λ0(t) ·γ. Since being in the same G(k)-orbit
is an equivalence relation, it is clearly sufficient to prove the theorem for µ = λ0,
v ′ = v0.

The image of λ0 lies in a maximal torus, and by [4, 1.4] must in fact lie in a
maximal k-split torus A. Fix a minimal k-defined parabolic subgroup P of G, with
CG(A) ⊆ P ⊆ P(λ0). The choice of P corresponds to a choice of basis k∆ of simple
roots of G with respect to A.

The image of λ also lies in some maximal k-split torus, so since all maximal k-split
tori are conjugate over G(k) [3, Thm. 20.9(ii)], there exists g ∈ G(k) so that the image
of g · λ lies in A. Multiplying g on the left by an element of NG(A)(k) if necessary, we
can arrange that 〈g ·λ, α〉 ≥ 0 for every α ∈ k∆, that is, P ⊆ P(g ·λ). Let us write λA

for g · λ ∈ X∗(A).
We now apply the Bruhat decomposition: write

g = pwu, p ∈ P(k) ⊆ P(λA)(k), w ∈ NG(A), u ∈ Ru(P)(k).

Then

v = lim
t→0

λ(t) · γ = g−1 · lim
t→0

λA(t)g · γ

= g−1 · [lim
t→0

λA(t)pλA(t)−1] · lim
t→0

λA(t)wu · γ

= g−1hλA (p) · lim
t→0

λA(t)wu · γ

= g−1hλA (p)w · lim
t→0

(w−1 · λA)(t) · (u · γ),

(3.3)

with ghλA (p)w ∈ G(k). Note that the existence of the first limit in (3.3) implies the
existence of the others.

Now, u ∈ Ru(P)(k) ⊆ P(k) ⊆ P(λ0)(k), so by Lemma 3.6, λ0 ∈ Λ(u · γ, k)min.
Notice also that λ0 and w−1 · λA both lie in X∗(A)k. By Lemmas 3.7 and 3.6,

lim
t→0

(w−1 · λA) · (u · γ) ∈ G(k) · lim
a→0

λ0(t) · (u · γ) = G(k) · v0

so v is also in G(k) · v0.
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4 Application to Jordan Decompositions

In this section, we require k to have characteristic 0.

Definition 4.1 (i) A Jordan–Kac–Vinberg decomposition of a vector γ ∈ V is as
in Definition 1.1(iii).

(ii) Given γ ∈ V (k), a k-Jordan–Kac–Vinberg decomposition of γ is a Jordan–Kac–
Vinberg decomposition γ = s + n with s (and hence n) in V (k).

Kac [7] used the Luna Slice theorem to prove that every vector has a Jordan–Kac–
Vinberg decomposition. We now show that every vector in V (k) has a k-Jordan–Kac–
Vinberg decomposition.

Bremigan proved a rational version of the Luna Slice Theorem in [5]. The follow-
ing is an immediate consequence of it.

Lemma 4.2 Given v ∈ V (k) semisimple, let F be the subvariety of points γ ∈ V with
G · v ⊆ G · γ. Then there is a G-invariant retraction ψ : F → G · v that is defined over
k such that ψ(γ) ∈ Gψ(γ) · γ for every γ ∈ F.

Proof A G-invariant retraction ψ : F → G ·v, defined over k, is given in [5, Cor. 3.4].
A point γ ∈ F is written as γ = g · x with g ∈ G and v ∈ Gv · x (and x in the selected
Luna slice), and ψ(γ) is then set to be g · v. But then

ψ(γ) = g · v ∈ Gg·v · (g · x) = Gψ(γ) · γ,

as required.

Remark For fields of positive characteristic, the Luna Slice Theorem does not hold
without additional assumptions. See [1] for further details.

Corollary 4.3 Every γ ∈ V (k) has a k-Jordan–Kac–Vinberg decomposition.

Proof Let γ ∈ V (k). By Lemma 3.1, there exists a semisimple v ∈ G · γ ∩ V (k).
Lemma 4.2 provides a G-invariant map ψ, defined over k, from F to G · v. Setting
s = ψ(γ), we immediately see that s ∈ V (k), that s is semisimple, that Gγ ⊆ Gs,
and that the unique closed Gs-orbit in Gs · γ is s. Subtracting s, the unique closed
Gs-orbit in Gs · (γ − s) is 0. Therefore γ = s + (γ − s) is a k-Jordan–Kac–Vinberg
decomposition.

We can use the Hilbert–Mumford theorem to provide an alternate description of
a Jordan–Kac–Vinberg decomposition.

Proposition 4.4 A decomposition γ = s + n, with s semisimple, and Gγ ⊆ Gs, is a
Jordan–Kac–Vinberg decomposition if and only if there exists λ ∈ X∗(Gs) so that

(4.1) lim
t→0

λ(t) · γ = s.

If γ ∈ V (k), then γ = s + n is a k-Jordan–Kac–Vinberg decomposition if and only if λ
can be taken to be in X∗(Gs)k.
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Proof The first part of the proposition is just the second part over k, so we need only
consider the second part.

Given a k-Jordan–Kac–Vinberg decomposition γ = s+n, we know that 0 ∈ Gs · n.
The Hilbert–Mumford Theorem (Lemma 3.1) provides a λ ∈ X∗(Gs)k such that

(4.2) lim
t→0

λ(t) · n = 0.

However, since the image of λ is in Gs, we can add s and obtain (4.1).
In the other direction, given λ ∈ X∗(Gs)k, subtracting s from (4.1) gives (4.2),

implying that n is nilpotent with respect to Gs. Since γ and λ are defined over k, so
are s and n, hence γ = s + n is a k-Jordan–Kac–Vinberg decomposition.

From Proposition 4.4 and Theorem 3.4, we immediately obtain the following.

Corollary 4.5 For any two k-Jordan–Kac–Vinberg decompositions γ = s + n, γ =
s ′ + n ′ of γ ∈ V (k), we have s ′ ∈ G(k) · s.

This means that although a vector γ ∈ V (k) may have multiple k-Jordan–Kac–
Vinberg decompositions, all such decompositions lie in a single G(k)-orbit.
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