CORRIGENDUM

E. Kremer (1982). Rating of Largest Claims and ECOMOR Reinsurance Treaties for Large Portfolios. Astin Bulletin 13, 47-56.

Ragnar Norberg pointed out to me that there is an incorrectness in the proof of the basic theorem on pages 50-51. Nevertheless by a slight modification the proof becomes complete. Instead of (3.6) one should use the bound

$$\frac{|r_k|}{\nu_k} \leq R_{k1}^{\varepsilon} + R_{k2}^{\varepsilon}.$$

With (for $\varepsilon > 0$)

$$R_{k1}^{\varepsilon} := E\left(\frac{1}{\nu_k} \cdot \sum_{i=1}^{N_k} |X_i| \cdot 1_{U_{\varepsilon}^c \cap [Y_{k1}, Y_{k2})}(X_i)\right)$$

$$R_{k2}^{\varepsilon} \coloneqq E\left(\frac{1}{\nu_k} \cdot \sum_{i=1}^{N_k} |X_i| \cdot 1_{U_{\varepsilon} \cap [Y_{k1}, Y_{k2})}(X_i)\right)$$

 $U_{\varepsilon} := [P_s - \varepsilon, P_s + \varepsilon]$ (U_{ε}^c denoting the complementary set of U_{ε}).

By the reasoning following formula (3.6) one can conclude with the theorem of dominated convergence:

$$\lim_{k\to\infty} R_{k1}^{\varepsilon} = 0$$

$$\lim_{k\to\infty}\sup R_{k2}^{\varepsilon} \leq E(|X_i|\cdot 1_{U_{\varepsilon}}(X_i)).$$

Since F is by assumption continuous, the last expression can be made arbitrarily small (by suitable choice of ε), implying statement (3.7) of the proof.

ERRATUM

P. TER BERG (1980). Two Pragmatic Approaches to Loglinear Claim Cost Analysis. Astin Bulletin 11, 77-90.

Formula (5.7) contains an annoying printing error. The correct formula reads:

(5.7)
$$\frac{\partial^2 \log L}{\partial \boldsymbol{n} \partial \boldsymbol{n}'} = -\frac{1}{2} \sum \varphi_r \left(\frac{y_r}{\mu_r} + \frac{n_r^2 \mu_r}{v_r} - 2n_r \right) \boldsymbol{z}_r \boldsymbol{z}_r'.$$

This correction is important if one maximizes the loglikelihood function via Newton's method, which needs the inverse of (5.7).